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Triphone HMM Models

Each phone is modelled in the context of its left and right neighbour phones

Pronunciation of a phone is influenced by the preceding and succeeding phones.
E.g. The phone [p] in the word “peek” : p iy K’ vs. [p] in the word “pool” : p uw |

Number of triphones that appear in data = 1000s or 10,000s

If each triphone HMM has 3 states and each state generates m-component GMMs
(m = 64), for d-dimensional acoustic feature vectors (d = 40) with 2 having d? parameters

Hundreds of millions of parameters!

Insufficient data to learn all triphone models reliably. What do we do? Share parameters
across triphone models!



Parameter Sharing

Sharing of parameters (also referred to as “parameter tying”) can be
done at any level:

Parameters in HMMSs corresponding to two triphones are said to be
tied if they are identical

Transition probs
/ are tied i.e. ti=t; /\ |

\S/tate observation densitie\s/
are tied

More parameter tying: Tying variances of all Gaussians within a state,
tying variances of all Gaussians in all states, tying individual Gaussians, etc.



1. Tied Mixture Models

All states share the same Gaussians (i.e. same means and
covariances)

Mixture weights are specific to each state
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2. State Tying

Observation probabilities are shared across states which
generate acoustically similar data
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Tied state HMMs

Four main steps in building a tied state HMM
system:
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HMMs with single Gaussian

. N observation probability densities
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Transition matrix remains common
across all triphones of each phone.
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Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994



Tied state HMMs

Four main steps in building a tied state HMM
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Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994



Decision Trees

Classification using a decision tree:
Begins at the root node: What property is satisfied?
Depending on answer, traverse to different branches
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Decision Trees

Given the data at a node, either declare the node to be a
leaf or find another property to split the node into branches.

Important questions to be addressed for DTs:
1. How many splits at a node? Chosen by the user.

2. Which property should be used at a node for splitting?
One which decreases “impurity” of nodes as much as
possible.

3. When is a node a leaf? Set threshold in reduction in
iImpurity



Tied state HMMs

Four main steps in building a tied state HMM
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How do we build these phone DTs?

1. What questions are used?

Linguistically-inspired binary questions: “Does the left or right phone come
from a broad class of phones such as vowels, stops, etc.?” “Is the left or
right phone [k] or [m]?”



How do we build these phone DTs?

1. What questions are used?
Linguistically-inspired binary questions: “Does the left or right phone come
from a broad class of phones such as vowels, stops, etc.?” “Is the left or
right phone [k] or [m]?”

2. What is the training data for each phone state, p;? (root node of DT)



Training data for DT nodes

Align training data, x; = (xi1, ..., xi;) i=1...N where x;;€ R4,
against a set of triphone HMMs

Use Viterbi algorithm to find the best HMM state sequence
corresponding to each x;

Tag each x;; with ID of current phone along with left-context
and right-context

/ N1 AN
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sil/lb/aa b/aa/g aa/g/sll

xi 1S tagged with |ID aaz[b/g] i.e. xi; Is aligned with the second state
of the 3-state HMM corresponding to the triphone b/aa/g

For a state j in phone p, collect all x;;’'s that are tagged with ID p,[?/7]



How do we build these phone DTs?

1. What questions are used?
Linguistically-inspired binary questions: “Does the left or right phone come
from a broad class of phones such as vowels, stops, etc.?” “Is the left or
right phone [K] or [m]?”

2. What is the training data for each phone state, p;? (root node of DT)

All speech frames that align with the jth state of every triphone HMM that
has p as the middle phone

3. What criterion is used at each node to find the best question to split the
data on?

Find the question which partitions the states in the parent node so as to
give the maximum increase in log likelihood



Likelihood of a cluster of states

If a cluster of HMM states, S = {s1, S2, ..., Sm} consists of M states
and a total of K acoustic observation vectors are associated with

S, {x1, x2..., xx} , then the log likelihood associated with S is:
K

L(S) =) > logPr(zi; s, Xs)ys(w:)

1=1 s& S

For a question g that splits S into Syes and Sno, compute the
following quantity:

Ag = L(S5Fes) + L(54,) — L(5)

yes

Go through all questions, find Aq for each question g and choose
the question for which Aq Is the biggest

Terminate when: Final Aq Is below a threshold or data associated
with a split falls below a threshold



Likelihood criterion

Initial set of untied states
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Tie states 1n each leaf node

Given a phonetic question, let the
initial set of untied states S be split
into two partitions Syes and Sno

Each partition is clustered to form
a single Gaussian output
distribution with mean psyes and
covariance 2syes

Use the likelihood of the parent
state and the subsequent split
states to determine which gquestion
a node should be split on

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994



Example: Phonetic Decision Tree (DT)

One tree is constructed for each state of each phone to cluster all the
corresponding triphone states

—y —y —4 DT for center
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Head node Uses all training data
aa/ow 2/}, aa/owz/s. __— tagged as owy[?/7]

aa/ow/d, h/ow/p. -~
aa/owi/n, m/owz/g. Is left ctxt aw
N

s r'_ght_CtXt B Is right ctxt nasal?
fricative?
N Yes

Yes

O
| | s right ctxta leaf £
Leag A Leaf B glide? aa/ows/h,
aa/ow /. aa/otws/@. aa/ows/i.
aa/ow /4. aa/ow2/g. Y‘es/ W
' legfC lea) D A
A vy h/ow, h/owsr
o/ows/t. b/ows/k,




For an unseen triphone at test time

- Transition Matrix:

- All triphones of a given phoneme use the same
transition matrix common to all triphones of a phoneme

State observation densities:

Use the triphone identity to traverse all the way to a leaf
of the decision tree

Use the state observation probabilities associated with
that leaf



That’s a wrap on HMM-based acoustic models
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DNN-based acoustic models?

; Acoustic
Acoustic Models Trioh
Indices ripnones

Phone posteriors

T

__l;‘_“_j
W,
B (1) ‘ Can we use
DNN deep neural networks Resultin
B instead of HMMs to ooT J
| W, learn mappings
! v \; between acoustics H
Y __ and phones?

2 : LB . St * W SObservation
e Bote B ER e [ P
g "; - h - e 4 — — # o; — "



Brief Introduction to Neural Networks



Feed-forward Neural Network
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Feed-forward Neural Network
Brain Metaphor
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Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.pn



https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

Feed-forward Neural Network
Parameterized Model

‘ o 0\‘”5
X1
o °

X2 W24
Parameters of

a5 = g(Was - 83+ Was ° the network: all w;
= g(W35 - (g(W13 - ai1 +Wo3 - ag)) + (and biases not
Was - (g(W14 a1 +Wo4 - a2))) shown here)

If X is a 2-dimensional vector and the layer above it is a 2-dimensional
vector h, a fully-connected layer is associated with:

h=xW+Db

where wj in W is the weight of the connection between it" neuron in the
input row and jth neuron in the first hidden layer and b is the bias vector




Feed-forward Neural Network
Parameterized Model

Q- Q\%
X1
a5

X2 W24

as = g(Was - az+Wys

= g(Wss - (g(W13 - @1 +Was - @) +
Was - (g(W14 - @1+ Was - 82)))

The simplest neural network is the perceptron:

Perceptron(x) = xW + b

A 1-layer feedforward neural network has the form:
MLP(x) = g(xXW1 + b1) W2 + b2



Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + &)

nonlinear activation functions
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Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + ex)
Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2* + 1)

output
0.0
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nonlinear activation functions
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Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + ex)
Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2* + 1)
Rectified Linear Unit (ReLU): RELU(x) = max(0, x)

nonlinear activation functions

10

B RelLU
tanh

B sigmoid

output




Optimization Problem

- To train a neural network, define a loss function L(y,y):

a function of the true output y and the predicted output y

L(y,y) assigns a non-negative numerical score to the neural
network’s output, y

+ The parameters of the network are set to minimise L over
the training examples (i.e. a sum of losses over different
training samples)

L is typically minimised using a gradient-based method



Stochastic Gradient Descent (SGD)

SGD Algorithm

Inputs:
Function NN(x; 6), Training examples, X1 ... Xn and
outputs, y1 ... yn and Loss function L.

do until stopping criterion
Pick a training example Xxi, Vi

Compute the loss L(NN(xi: 8), Vi
0 —0-nVL
done

Return: 6



Training a Neural Network

Define the Loss function to be minimised as a node L

Goal: Learn weights for the neural network which minimise L

Gradient Descent: Find oL/ow for every weight w, and update it as
W <«—w -y OL/Ow

How do we efficiently compute oL/ow for all w?
Will compute o0L/ou for every node u in the network!

oL/ow = oL/ou - ou/ow where u IS the node which uses w



Training a Neural Network

New goal: compute 0L/0u for every node u in the network
Simple algorithm: Backpropagation
Key fact: Chain rule of differentiation

If L can be written as a function of variables v1,..., va, which In turn
depend (partially) on another variable u, then

OL/Ou = X; OL/Ov; - Ovi/Ou



Backpropagation

If L can be written as a function of variables v1,..., v, Which In turn
depend (partially) on another variable u, then

OL/0u = X; OL/0Ov; - Ovi/Ou
f
/

Consider v4,..., vn as the T

e .\,/I\.\
.5%’ >
o o o o

Then, the chain rule gives
OL/Ou =Xy erw) OL/Ov - Ov/Ou



Backpropagation

OL/Ou =X, erw) OL/Ov - Ov/Ou

Backpropagation 1

Forward Pass

Base case: OL/OL = 1 T First, in a forward

For each u (top to pass, compute
bottom): values of all nodes

For each v € I'(u): given an input

inductivelv. h (The values of each node

nauctively, have /‘ will be needed during

computed OL/ov \ backprop)
Directly compute ov/cu

Compute 0L/0u

Compute oL/ow N S
_ ere values computed in the
where 0L/0w = OL/Ou - Ou/Ow == forward pass may be needed




History of Neural Networks in ASR

Neural networks for speech recognition were explored as
early as 1987
Deep neural networks for speech

Beat state-of-the-art on the TIMIT corpus [MO9]

Significant improvements shown on large-vocabulary
systems [D11]

Dominant ASR paradigm [H12]

[IM0O9] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition,” NIPS Workshop on Deep Learning for Speech Recognition, 2009.

[D11] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition,” TASL 20(1

[H12] G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”, IEEE Signal Processing Magazine, 2012.



What’s new?

- Why have NN-based systems come back to prominence?

Important developments
Vast quantities of data available for ASR training
Fast GPU-based training
Improvements in optimization/initialization techniques
Deeper networks enabled by fast training

Larger output spaces enabled by fast training and
availability of data



