
Instructor: Preethi Jyothi

Acoustic Modeling:
Tied-state HMMs & DNN-based models

Lecture 7

CS 753

Acoustic 
Indices

Language  
Model Word  

Sequence

Acoustic 
Models

Triphones

Context 
Transducer

Monophones

Pronunciation  
Model

Words

H

a/a_b

b/a_b

.

.

.
x/y_z

f1:ε

} FST Union +
Closure

Resulting
FST

H

f2:ε

f3:ε f4:ε f5:ε

f4:ε f6:εf0:a+a+b

Recall: Acoustic Model

Triphone HMM Models

• Each phone is modelled in the context of its left and right neighbour phones

• Pronunciation of a phone is influenced by the preceding and succeeding phones.  
E.g. The phone [p] in the word “peek” : p iy k” vs. [p] in the word “pool” : p uw l

• Number of triphones that appear in data ≈ 1000s or 10,000s

• If each triphone HMM has 3 states and each state generates m-component GMMs  
(m ≈ 64), for d-dimensional acoustic feature vectors (d ≈ 40) with Σ having d2 parameters

• Hundreds of millions of parameters!  

• Insufficient data to learn all triphone models reliably. What do we do? Share parameters
across triphone models!

Parameter Sharing
• Sharing of parameters (also referred to as “parameter tying”) can be

done at any level:
• Parameters in HMMs corresponding to two triphones are said to be

tied if they are identical

t2 t4
t1 t3 t5

t’2 t’4
t’1 t’3 t’5

Transition probs  
are tied i.e. t’i = ti

State observation densities  
are tied

• More parameter tying: Tying variances of all Gaussians within a state, 
tying variances of all Gaussians in all states, tying individual Gaussians, etc.

1. Tied Mixture Models

• All states share the same Gaussians (i.e. same means and
covariances)

• Mixture weights are specific to each state

Triphone HMMs (No sharing)

Triphone HMMs (Tied Mixture Models)

2. State Tying
• Observation probabilities are shared across states which

generate acoustically similar data

Triphone HMMs (No sharing)

p/a/k b/a/gb/a/k

Triphone HMMs (State Tying)

p/a/k b/a/gb/a/k

Tied state HMMs
Four main steps in building a tied state HMM
system:
1. Create and train 3-state monophone

HMMs with single Gaussian
observation probability densities

2. Clone these monophone
distributions to initialise a set of
untied triphone models. Train them
using Baum-Welch estimation.
Transition matrix remains common
across all triphones of each phone.

3. For all triphones derived from the
same monophone, cluster states
whose parameters should be tied
together.

4. Number of mixture components in
each tied state is increased and
models re-estimated using BW

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994

Tied state HMMs
Four main steps in building a tied state HMM
system:
1. Create and train 3-state monophone

HMMs with single Gaussian
observation probability densities

2. Clone these monophone
distributions to initialise a set of
untied triphone models. Train them
using Baum-Welch estimation.
Transition matrix remains common
across all triphones of each phone.

3. For all triphones derived from the
same monophone, cluster states
whose parameters should be tied
together.

4. Number of mixture components in
each tied state is increased and
models re-estimated using BW

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994

Which states should be tied
together? Use decision trees.

Decision Trees

Classification using a decision tree:
Begins at the root node: What property is satisfied?
Depending on answer, traverse to different branches

Shape?

Oval
Leafy Cylindrical

Taste? Color?Spinach

Sour Neutral

Tomato
Color?

Green

White Snakegourd
Turnip

Radish

White

Brinjal

Purple

Decision Trees

• Given the data at a node, either declare the node to be a
leaf or find another property to split the node into branches.

• Important questions to be addressed for DTs:
1. How many splits at a node? Chosen by the user.
2. Which property should be used at a node for splitting?

One which decreases “impurity” of nodes as much as
possible.

3. When is a node a leaf? Set threshold in reduction in
impurity

Tied state HMMs
Four main steps in building a tied state HMM
system:
1. Create and train 3-state monophone

HMMs with single Gaussian
observation probability densities

2. Clone these monophone
distributions to initialise a set of
untied triphone models. Train them
using Baum-Welch estimation.
Transition matrix remains common
across all triphones of each phone.

3. For all triphones derived from the
same monophone, cluster states
whose parameters should be tied
together.

4. Number of mixture components in
each tied state is increased and
models re-estimated using BW

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994

Which states should be tied
together? Use decision trees.

How do we build these phone DTs?

1. What questions are used? 
 
Linguistically-inspired binary questions: “Does the left or right phone come
from a broad class of phones such as vowels, stops, etc.?” “Is the left or
right phone [k] or [m]?”

2. What is the training data for each phone state, pj? (root node of DT)

How do we build these phone DTs?

1. What questions are used? 
 
Linguistically-inspired binary questions: “Does the left or right phone come
from a broad class of phones such as vowels, stops, etc.?” “Is the left or
right phone [k] or [m]?”

2. What is the training data for each phone state, pj? (root node of DT)

Training data for DT nodes
• Align training data, xi = (xi1, …, xiTi) i=1…N where xit ∈ ℝd ,

against a set of triphone HMMs
• Use Viterbi algorithm to find the best HMM state sequence

corresponding to each xi

• Tag each xit with ID of current phone along with left-context
and right-context

{ { {xit

sil/b/aa b/aa/g aa/g/sil

xit is tagged with ID aa2[b/g] i.e. xit is aligned with the second state
of the 3-state HMM corresponding to the triphone b/aa/g

• For a state j in phone p, collect all xit’s that are tagged with ID pj[?/?]

1. What questions are used? 
 
Linguistically-inspired binary questions: “Does the left or right phone come
from a broad class of phones such as vowels, stops, etc.?” “Is the left or
right phone [k] or [m]?”

2. What is the training data for each phone state, pj? (root node of DT) 
 
All speech frames that align with the jth state of every triphone HMM that
has p as the middle phone

3. What criterion is used at each node to find the best question to split the
data on?  
 
Find the question which partitions the states in the parent node so as to
give the maximum increase in log likelihood

How do we build these phone DTs?

• If a cluster of HMM states, S = {s1, s2, …, sM} consists of M states
and a total of K acoustic observation vectors are associated with
S, {x1, x2 …, xK} , then the log likelihood associated with S is:

• For a question q that splits S into Syes and Sno, compute the
following quantity:

• Go through all questions, find Δq for each question q and choose
the question for which Δq is the biggest

• Terminate when: Final Δq is below a threshold or data associated
with a split falls below a threshold

Likelihood of a cluster of states

L(S) =
KX

i=1

X

s2S

log Pr(xi;µS ,⌃S)�s(xi)

�q = L(Sq
yes) + L(Sq

no)� L(S)

Likelihood criterion

• Given a phonetic question, let the
initial set of untied states S be split
into two partitions Syes and Sno

• Each partition is clustered to form
a single Gaussian output
distribution with mean μSyes and
covariance ΣSyes

• Use the likelihood of the parent
state and the subsequent split
states to determine which question
a node should be split on

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994

Example: Phonetic Decision Tree (DT)

Is left ctxt a vowel?

Yes No

Leaf A
aa/ow2/f, 
aa/ow2/s,
…

DT for center  
state of [ow]

Is right ctxt a
fricative? Is right ctxt nasal?

Yes No

Leaf B
aa/ow2/d, 
aa/ow2/g,
…

Leaf E
aa/ow2/n,  
aa/ow2/m,
…

YesNo

Is right ctxt a
glide?

Leaf C
h/ow2/l, 
b/ow2/r,
…

Leaf D
h/ow2/p, 
b/ow2/k,
…

Yes No

Uses all training data  
tagged as ow2[?/?]

One tree is constructed for each state of each phone to cluster all the  
corresponding triphone states

Head node
aa/ow2/f, aa/ow2/s, 
aa/ow2/d, h/ow2/p,
aa/ow2/n, aa/ow2/g,
…

For an unseen triphone at test time

• Transition Matrix:

• All triphones of a given phoneme use the same
transition matrix common to all triphones of a phoneme

• State observation densities:

• Use the triphone identity to traverse all the way to a leaf
of the decision tree

• Use the state observation probabilities associated with
that leaf

That’s a wrap on HMM-based acoustic models

Acoustic 
Indices

Language  
Model Word  

Sequence

Acoustic 
Models

Triphones

Context 
Transducer

Monophones

Pronunciation  
Model

Words

H

a/a_b

b/a_b

.

.

.
x/y_z

One 3-state  
HMM for  

each  
tied-state  
triphone;

parameters estimated  
using Baum-Welch  

algorithm

f1:ε

} FST Union +
Closure

Resulting
FST

H

f2:ε

f3:ε f4:ε f5:ε

f4:ε f6:εf0:a:a_b

DNN-based acoustic models?

Acoustic 
Indices

Language  
Model Word  

Sequence

Acoustic 
Models

Triphones

Context 
Transducer

Monophones

Pronunciation  
Model

Words

H

Can we use
deep neural networks 
instead of HMMs to  

learn mappings  
between acoustics  

and phones?

} Resulting
FST

H

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Phone posteriors

Brief Introduction to Neural Networks

Hidden  
Layer

Feed-forward Neural Network

Input  
Layer

Output  
Layer

Feed-forward Neural Network 
Brain Metaphor

g
(activation 
function)

wi yi

yi=g(Σi wi xi)

xi

Single neuron

Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

Feed-forward Neural Network 
Parameterized Model

1

2

3

4

5

w24

w13

w14 w23

w35

w45

a5

a5 = g(w35 ⋅ a3 + w45 ⋅ a4)
= g(w35 ⋅ (g(w13 ⋅ a1 + w23 ⋅ a2)) +  

 w45 ⋅ (g(w14 ⋅ a1 + w24 ⋅ a2)))
If x is a 2-dimensional vector and the layer above it is a 2-dimensional
vector h, a fully-connected layer is associated with:

 h = xW + b
where wij in W is the weight of the connection between ith neuron in the
input row and jth neuron in the first hidden layer and b is the bias vector

Parameters of  
the network: all wij  
(and biases not 
shown here)

x1

x2

A 1-layer feedforward neural network has the form:
MLP(x) = g(xW1 + b1) W2 + b2

1

2

3

4

5

w24

w13

w14 w23

w35

w45

a5

x1

x2

a5 = g(w35 ⋅ a3 + w45 ⋅ a4)
= g(w35 ⋅ (g(w13 ⋅ a1 + w23 ⋅ a2)) +  

 w45 ⋅ (g(w14 ⋅ a1 + w24 ⋅ a2)))
The simplest neural network is the perceptron:

 Perceptron(x) = xW + b

Feed-forward Neural Network 
Parameterized Model

Common Activation Functions (g)

sigmoid

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nonlinear activation functions

x

ou
tp
ut

Sigmoid: σ(x) = 1/(1 + e-x)

sigmoid

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

nonlinear activation functions

x

ou
tp
ut

tanh

Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2x + 1)
Sigmoid: σ(x) = 1/(1 + e-x)

Common Activation Functions (g)

sigmoid
tanh
ReLU

−10 −5 0 5 10

0
2

4
6

8
10

nonlinear activation functions

x

ou
tp
ut

Rectified Linear Unit (ReLU): RELU(x) = max(0, x)
Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2x + 1)
Sigmoid: σ(x) = 1/(1 + e-x)

Common Activation Functions (g)

Optimization Problem

• To train a neural network, define a loss function L(y,ỹ):  
a function of the true output y and the predicted output ỹ

• L(y,ỹ) assigns a non-negative numerical score to the neural
network’s output, ỹ

• The parameters of the network are set to minimise L over
the training examples (i.e. a sum of losses over different
training samples)

• L is typically minimised using a gradient-based method

Stochastic Gradient Descent (SGD)

Inputs:  
 Function NN(x; θ), Training examples, x1 … xn and  
 outputs, y1 … yn and Loss function L.

do until stopping criterion  
 Pick a training example xi, yi  
 Compute the loss L(NN(xi; θ), yi) 
 Compute gradient of L, ∇L with respect to θ 
 θ ← θ - η ∇L  
done

Return: θ

SGD Algorithm

Training a Neural Network

Define the Loss function to be minimised as a node L

Goal: Learn weights for the neural network which minimise L

Gradient Descent: Find ∂L/∂w for every weight w, and update it as  
w ← w - η ∂L/ ∂w

How do we efficiently compute ∂L/∂w for all w?

Will compute ∂L/∂u for every node u in the network!

 ∂L/∂w = ∂L/∂u ⋅ ∂u/∂w where u is the node which uses w

Training a Neural Network

New goal: compute ∂L/∂u for every node u in the network

Simple algorithm: Backpropagation

Key fact: Chain rule of differentiation

If L can be written as a function of variables v1,…, vn, which in turn
depend (partially) on another variable u, then

∂L/∂u = Σi ∂L/∂vi ⋅ ∂vi/∂u

Backpropagation
If L can be written as a function of variables v1,…, vn, which in turn
depend (partially) on another variable u, then

∂L/∂u = Σi ∂L/∂vi ⋅ ∂vi/∂u

Then, the chain rule gives
∂L/∂u = Σv ∈ Γ(u) ∂L/∂v ⋅ ∂v/∂u

u

L
Consider v1,…, vn as the
layer  
above u, Γ(u) v

Backpropagation

u

L

v

∂L/∂u = Σv ∈ Γ(u) ∂L/∂v ⋅ ∂v/∂u

Backpropagation
Base case: ∂L/∂L = 1
For each u (top to
bottom):
For each v ∈ Γ(u):

Inductively, have 
computed ∂L/∂v
Directly compute ∂v/∂u

Compute ∂L/∂u

Forward Pass
First, in a forward
pass, compute
values of all nodes
given an input 
(The values of each node
will be needed during
backprop)

Compute ∂L/∂w  
where ∂L/∂w = ∂L/∂u ⋅ ∂u/∂w Where values computed in the

forward pass may be needed

History of Neural Networks in ASR

• Neural networks for speech recognition were explored as
early as 1987

• Deep neural networks for speech

• Beat state-of-the-art on the TIMIT corpus [M09]

• Significant improvements shown on large-vocabulary
systems [D11]

• Dominant ASR paradigm [H12]

[M09] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition,” NIPS Workshop on Deep Learning for Speech Recognition, 2009.

[D11] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition,” TASL 20(1), pp. 30–42, 2012.

[H12] G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”, IEEE Signal Processing Magazine, 2012.

What’s new?

• Why have NN-based systems come back to prominence?

• Important developments

• Vast quantities of data available for ASR training

• Fast GPU-based training

• Improvements in optimization/initialization techniques

• Deeper networks enabled by fast training

• Larger output spaces enabled by fast training and
availability of data

