
Instructor: Preethi Jyothi

Hybrid/Tandem models
+ TDNNs + Intro to RNNs

Lecture 8

CS 753

Feedback from in-class quiz 2 (on FSTs)

• Common mistakes

• Forgetting to consider subset of input alphabet

• Not careful about only accepting non-empty strings

• Non-deterministic machines that allow for a larger class of strings than
what was specified

Recap: Feedforward Neural Networks

• Deep feedforward neural networks (referred to as DNNs) consist of  

an input layer, one or more hidden layers and an output layer

• Hidden layers compute non-linear transformations of its inputs.

• Can assume layers are fully connected. Also referred to as affine layers.

• Sigmoid, tanh, ReLU are commonly used activation functions

Feedforward Neural Networks for ASR

• Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use DNNs to
estimate HMM observation probabilities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model

• Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use DNNs to
estimate HMM observation probabilities

2. Tandem system: DNNs used to generate input features
that are fed to an HMM-GMM acoustic model

Feedforward Neural Networks for ASR

Decoding an ASR system

• Recall how we decode the most likely word sequence W for
an acoustic sequence O:

• The acoustic model Pr(O|W) can be further decomposed as
(here, Q,M represent triphone, monophone sequences
resp.):

W
⇤ = argmax

W
Pr(O|W) Pr(W)

Pr(O|W) =
X

Q,M

Pr(O,Q,M |W)

=
X

Q,M

Pr(O|Q,M,W) Pr(Q|M,W) Pr(M |W)

⇡
X

Q,M

Pr(O|Q) Pr(Q|M) Pr(M |W)

Hybrid system decoding

We’ve seen Pr(O|Q) estimated using a Gaussian Mixture Model.  
Let’s use a neural network instead to model Pr(O|Q).

Pr(O|W) ⇡
X

Q,M

Pr(O|Q) Pr(Q|M) Pr(M |W)

Pr(O|Q) =
Y

t

Pr(ot|qt)

Pr(ot|qt) =
Pr(qt|ot) Pr(ot)

Pr(qt)

/ Pr(qt|ot)
Pr(qt)

where ot is the acoustic vector at time t and qt is a triphone HMM state  
Here, Pr(qt|ot) are posteriors from a trained neural network.  
Pr(ot|qt) is then a scaled posterior.

Computing Pr(qt|ot) using a deep NN

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone  
state labels

…39 features
in one frame

… …

How do we get these labels 
in order to train the NN?

Triphone labels
• Forced alignment: Use current acoustic model to find the

most likely sequence of HMM states given a sequence of
acoustic vectors. (Algorithm to help compute this?)

• The “Viterbi paths” for the training data, are also referred to
as forced alignments

…

o1

Triphone
HMMs 

(Viterbi)

o2 oTo3 o4

……

sil1 
/b/ 
aa

sil1 
/b/ 
aa

sil2 
/b/ 
aa

sil2 
/b/ 
aa

………

…

…
ee3 
/k/ 
sil

Training word  
sequence
w1,…,wN

Dictionary
Phone  

sequence
p1,…,pN

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone  
state labels

…39 features
in one frame

… …

How do we get these labels 
in order to train the NN?  
(Viterbi) Forced alignment

Computing Pr(qt|ot) using a deep NN

Computing priors Pr(qt)

• To compute HMM observation probabilities, Pr(ot|qt), we need
both Pr(qt|ot) and Pr(qt)

• The posterior probabilities Pr(qt|ot) are computed using a
trained neural network

• Pr(qt) are relative frequencies of each triphone state as
determined by the forced Viterbi alignment of the training data

Hybrid Networks

• The networks are trained with a minimum cross-entropy criterion

• Advantages of hybrid systems:

1. Fewer assumptions made about acoustic vectors being
uncorrelated: Multiple inputs used from a window of time steps

2. Discriminative objective function used to learn the observation
probabilities

L(y, ŷ) = �
X

i

yi log(ŷi)

Summary of DNN-HMM acoustic models  
Comparison against HMM-GMM on different tasks

IEEE SIGNAL PROCESSING MAGAZINE [92] NOVEMBER 2012

and model-space discriminative training is applied using the
BMMI or MPE criterion.

Using alignments from a baseline system, [32] trained a
DBN-DNN acoustic model on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora [37]. The
 DBN-DNN was trained with the
best-performing LVCSR features,
specifically the SAT+DT features.
The DBN-DNN architecture con-
sisted of six hidden layers with
1,024 units per layer and a final
softmax layer of 2,220 context-
dependent states. The SAT+DT
feature input into the first layer
used a context of nine frames.
Pretraining was performed fol-
lowing a recipe similar to [42].

Two phases of fine-tuning were performed. During the first
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is
measured on a held-out set and the learning rate is annealed
(i.e., reduced) by a factor of two if the held-out loss has grown
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five
times, the first phase of fine-tuning stops. After weights are
learned via cross entropy, these weights are used as a starting
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes
into account phoneme error rate.

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians,
gave a WER of 18.8% on the EARS Dev-04f set, whereas the
DNN-HMM system gave 17.5% [50].

SUMMARY OF THE MAIN RESULTS FOR
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described
above. It shows that DNN-HMMs consistently outperform
GMM-HMMs that are trained on the same amount of data,
sometimes by a large margin. For some tasks, DNN-HMMs
also outperform GMM-HMMs that are trained on much
more data.

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at
every frame to compute state likelihoods, making it potentially

much slower than a GMM with a
comparable number of parame-
ters. Fortunately, the time that a
DNN-HMM system requires to
recognize 1 s of speech can be
reduced from 1.6 s to 210 ms,
without decreasing recognition
accuracy, by quantizing the
weights down to 8 b and using
the very fast SIMD primitives for
fixed-point computation that are
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to
66 ms by using a graphics processing unit (GPU).

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition
results on TIMIT and subsequently on a variety of LVCSR tasks.
Once it was shown that DBN-DNNs could learn good acoustic
models, further research revealed that they could be trained in
many different ways. It is possible to learn a DNN by starting with
a shallow neural net with a single hidden layer. Once this net has
been trained discriminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output units and
the whole network is again discriminatively trained. This can be
continued until the desired number of hidden layers is reached,
after which full backpropagation fine-tuning is applied.

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping
the discriminative pretraining after a single epoch instead of
multiple epochs as reported in [45]. Discriminative pretraining
has also been found effective for the architectures called “deep
convex network” [51] and “deep stacking network” [52], where
pretraining is accomplished by convex optimization involving
no generative models.

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought,

provided the scales of the initial
weights are set carefully, a large
amount of labeled training data is
available, and minibatch sizes over
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves
test performance, sometimes by a
significant amount.

Layer-by-layer generative pre-
training was originally done
using RBMs, but various types of

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK
HOURS OF
TRAINING DATA DNN-HMM

GMM-HMM
WITH SAME DATA

GMM-HMM
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)

ENGLISH BROADCAST NEWS 50 17.5 18.8

BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE
FOR THE ARCHITECTURES CALLED
“DEEP CONVEX NETWORK” AND

“DEEP STACKING NETWORK,” WHERE
PRETRAINING IS ACCOMPLISHED BY
CONVEX OPTIMIZATION INVOLVING

NO GENERATIVE MODELS.

Table copied from G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”,  
IEEE Signal Processing Magazine, 2012.

Hybrid DNN-HMM systems consistently outperform GMM-HMM
systems (sometimes even when the latter is trained with lots more data)

Neural Networks for ASR

• Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use DNNs to
estimate HMM observation probabilities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model

Tandem system

• First, train a DNN to estimate the posterior probabilities of
each subword unit (monophone, triphone state, etc.)

• In a hybrid system, these posteriors (after scaling) would be
used as observation probabilities for the HMM acoustic
models

• In the tandem system, the DNN outputs are used as
“feature” inputs to HMM-GMM models

Bottleneck Features

Bottleneck Layer

Output Layer

Hidden Layers

Input Layer

Use a low-dimensional bottleneck layer representation to extract features 
 
These bottleneck features are in turn used as inputs to HMM-GMM models

Recap: Hybrid DNN-HMM Systems

• Instead of GMMs, use scaled
DNN posteriors as the HMM
observation probabilities

• DNN trained using triphone
labels derived from a forced
alignment “Viterbi” step.

• Forced alignment: Given a training
utterance {O,W}, find the most
likely sequence of states (and
hence triphone state labels) using
a set of trained triphone HMM
models, M. Here M is constrained
by the triphones in W.

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone state labels 
(DNN posteriors)

…
39 features

in one frame

… …

Recap: Tandem DNN-HMM Systems

• Neural networks are used as
“feature extractors” to train
HMM-GMM models

• Use a low-dimensional
bottleneck layer representation
to extract features from the
bottleneck layer

• These bottleneck features are
subsequently fed to GMM-
HMMs as input 

Bottleneck Layer

Output Layer

Input Layer

Feedforward DNNs we’ve seen so far…

• Assume independence among the training instances (modulo the context window of frames)

• Independent decision made about classifying each individual speech frame

• Network state is completely reset after each speech frame is processed

• This independence assumption fails for data like speech which has temporal and  
sequential structure

• Two model architectures that capture longer ranges of acoustic context:

1. Time delay neural networks (TDNNs)
2. Recurrent neural networks (RNNs)

Time Delay Neural Networks

• Each layer in a TDNN acts at a
different temporal resolution

• Processes a context window
from the previous layer

• Higher layers have a wider
receptive field into the input

• However, a lot more computation
needed than DNNs!

Example TDNN Architecture

t-11 t t+11

t+9tt-9

tt-7 t+7

tt-5 t+5

t

t

TDNN Layer
[-2,2]

TDNN Layer
[-2,2]

TDNN Layer
[-2,2]

TDNN Layer
[-5,5]

Fully connected layer
(TDNN Layer [0])

Input Features

Output HMM states

View a TDNN as a 1D

convolutional network

with the transforms for

each hidden unit tied

across time

TDNN layer with context

[-2,2] has 5x as many

weights as a regular DNN

layer

More computation, more

storage required!

ASR Lecture 9 NNs for Acoustic Modelling 3: CD DNNs and TDNNs 12

Time Delay Neural Networks

which does not impose any relationship between the length of
input-context (i.e., unfolding width used during training, in case
of RNNs) and number sequential steps during training. The
TDNN is used for modelling long term temporal dependencies
from short-term speech features i.e., MFCCs.

3. Neural network architecture
When processing a wider temporal context, in a standard DNN,
the initial layer learns an affine transform for the entire temporal
context. However in a TDNN architecture the initial transforms
are learnt on narrow contexts and the deeper layers process the
hidden activations from a wider temporal context. Hence the
higher layers have the ability to learn wider temporal relation-
ships. Each layer in a TDNN operates at a different temporal
resolution, which increases as we go to higher layers of the net-
work.

The transforms in the TDNN architecture are tied across
time steps and for this reason they are seen as a precursor to the
convolutional neural networks. During back-propagation, due
to tying, the lower layers of the network are updated by a gra-
dient accumulated over all the time steps of the input temporal
context. Thus the lower layers of the network are forced to learn
translation invariant feature transforms [2].

t-4

-1 +2

t

t-7 t+2

t-10 t-1 t+5

t-11 t+7

t-13 t+9

-7 +2

-1 +2

-2 +2

-1 +2 -1 +2

-3 +3 -3 +3

t+1 t+4 t-2 t-5 t-8

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the TDNN network are
the input contexts of each layer required to compute an output
activation, at one time step. A sample TDNN network is shown
in Figure 1. The figure shows the time steps at which activations
are computed, at each layer, and dependencies between activa-
tions across layers. It can be seen that the dependencies across
layers are localized in time. Layerwise context specification,
corresponding to this TDNN, is shown in column 2 of Table 1.

Table 1: Context specification of TDNN in Figure 1

Layer Input context Input context with sub-sampling
1 [�2,+2] [�2, 2]
2 [�1, 2] {�1, 2}
3 [�3, 3] {�3, 3}
4 [�7, 2] {�7, 2}
5 {0} {0}

3.1. Sub-sampling

In a typical TDNN, hidden activations are computed at all time
steps. However there are large overlaps between input contexts
of activations computed at neighboring time steps. Under the
assumption that neighboring activations are correlated, they can
be sub-sampled.

Our approach is, rather than splicing together contiguous
temporal windows of frames at each layer, to allow gaps be-
tween the frames. In fact, in the hidden layers of the network,
we generally splice no more than two frames. For instance, the
notation {�7, 2} means we splice together the input at the cur-
rent frame minus 7 and the current frame plus 2. Figure 1 shows
this pictorially.

Empirically we found that what seems to work best is to
splice together increasingly wide context as we go to higher
layers of the network. The configuration in Figure 1, which is
fairly typical, splices together frames t� 2 through t+ 2 at the
input layer (which we could write as context {�2,�1, 0, 1, 2}
or more compactly as [�2, 2]); and then at three hidden layers
we splice frames at offsets {�1, 2}, {�3, 3} and {�7, 2}. Ta-
ble 1 tabulates these contexts (on the right), and compares with
a hypothetical setup without sub-sampling. The fact that the dif-
ferences between the offsets at the hidden layers were chosen to
all be multiples of 3 is not a coincidence. We designed it this
way in order to ensure that for each output frame, we need to
evaluate a small number of hidden layer activations. The frames
in red in Figure 1 are the ones we need to evaluate.

With the current sub-sampling scheme the overall necessary
computation is reduced during the forward pass and backprop-
agation, due to selective computation of time steps. The train-
ing time of TDNN in Figure 1, without sub-sampling, is ⇠10x
compared to that of DNN with same number of layers. With
proposed sub-sampling it is ⇠2x the training time of DNN.
Thus the sub-sampling process speeds up the TDNN training
by ⇠5x. Another advantage of using sub-sampling is the reduc-
tion in the model size. Splicing contiguous frames at hidden
layers would require us to either have a very large number of
parameters, or reduce the hidden-layer size significantly.

Sub-sampling at the middle of the network was also used in
stacked bottle-neck networks [14]. In this architecture bottle-
neck features were spliced across non-contiguous time steps
and used as an input to a second neural network. However the
bottle-neck network was not trained jointly with the final neural
network.

We use asymmetric input contexts, with more context to
the left, as this reduces the latency of the neural network in on-
line decoding, and also because this seems to be more optimal
from a WER perspective. Asymmetric context windows of up
to 16 frames in past and 9 frames in the future were explored
in this paper. It was observed that further extension of con-
text on either side was detrimental to word recognition accu-
racies, though the frame recognition accuracies improved (this
phenomenon is widely known).

A major difference in the current architecture compared to
[2] is the use of the p-norm nonlinearity [15], which is a di-
mension reducing non-linearity. p-norm units with group size
of 10 and p = 2 were used across all neural networks in our
experiments, based on the observations made in [15] 1.

1More recent experiments in our TDNN framework show that that
ReLU nonlinearity may actually perform better in this context than p-
norm, but the full details were not ready in time for this paper and these
results are not presented here.

• Large overlaps between
input contexts computed at
neighbouring time steps

• Assuming neighbouring
activations are correlated,
how do we exploit this?

• Subsample by allowing
gaps between frames.

• Splice increasingly wider
context in higher layers.

which does not impose any relationship between the length of
input-context (i.e., unfolding width used during training, in case
of RNNs) and number sequential steps during training. The
TDNN is used for modelling long term temporal dependencies
from short-term speech features i.e., MFCCs.

3. Neural network architecture
When processing a wider temporal context, in a standard DNN,
the initial layer learns an affine transform for the entire temporal
context. However in a TDNN architecture the initial transforms
are learnt on narrow contexts and the deeper layers process the
hidden activations from a wider temporal context. Hence the
higher layers have the ability to learn wider temporal relation-
ships. Each layer in a TDNN operates at a different temporal
resolution, which increases as we go to higher layers of the net-
work.

The transforms in the TDNN architecture are tied across
time steps and for this reason they are seen as a precursor to the
convolutional neural networks. During back-propagation, due
to tying, the lower layers of the network are updated by a gra-
dient accumulated over all the time steps of the input temporal
context. Thus the lower layers of the network are forced to learn
translation invariant feature transforms [2].

t-4

-1 +2

t

t-7 t+2

t-10 t-1 t+5

t-11 t+7

t-13 t+9

-7 +2

-1 +2

-2 +2

-1 +2 -1 +2

-3 +3 -3 +3

t+1 t+4 t-2 t-5 t-8

Layer 4

Layer 3

Layer 2

Layer 1

Figure 1: Computation in TDNN with sub-sampling (red) and
without sub-sampling (blue+red)

The hyper-parameters which define the TDNN network are
the input contexts of each layer required to compute an output
activation, at one time step. A sample TDNN network is shown
in Figure 1. The figure shows the time steps at which activations
are computed, at each layer, and dependencies between activa-
tions across layers. It can be seen that the dependencies across
layers are localized in time. Layerwise context specification,
corresponding to this TDNN, is shown in column 2 of Table 1.

Table 1: Context specification of TDNN in Figure 1

Layer Input context Input context with sub-sampling
1 [�2,+2] [�2, 2]
2 [�1, 2] {�1, 2}
3 [�3, 3] {�3, 3}
4 [�7, 2] {�7, 2}
5 {0} {0}

3.1. Sub-sampling

In a typical TDNN, hidden activations are computed at all time
steps. However there are large overlaps between input contexts
of activations computed at neighboring time steps. Under the
assumption that neighboring activations are correlated, they can
be sub-sampled.

Our approach is, rather than splicing together contiguous
temporal windows of frames at each layer, to allow gaps be-
tween the frames. In fact, in the hidden layers of the network,
we generally splice no more than two frames. For instance, the
notation {�7, 2} means we splice together the input at the cur-
rent frame minus 7 and the current frame plus 2. Figure 1 shows
this pictorially.

Empirically we found that what seems to work best is to
splice together increasingly wide context as we go to higher
layers of the network. The configuration in Figure 1, which is
fairly typical, splices together frames t� 2 through t+ 2 at the
input layer (which we could write as context {�2,�1, 0, 1, 2}
or more compactly as [�2, 2]); and then at three hidden layers
we splice frames at offsets {�1, 2}, {�3, 3} and {�7, 2}. Ta-
ble 1 tabulates these contexts (on the right), and compares with
a hypothetical setup without sub-sampling. The fact that the dif-
ferences between the offsets at the hidden layers were chosen to
all be multiples of 3 is not a coincidence. We designed it this
way in order to ensure that for each output frame, we need to
evaluate a small number of hidden layer activations. The frames
in red in Figure 1 are the ones we need to evaluate.

With the current sub-sampling scheme the overall necessary
computation is reduced during the forward pass and backprop-
agation, due to selective computation of time steps. The train-
ing time of TDNN in Figure 1, without sub-sampling, is ⇠10x
compared to that of DNN with same number of layers. With
proposed sub-sampling it is ⇠2x the training time of DNN.
Thus the sub-sampling process speeds up the TDNN training
by ⇠5x. Another advantage of using sub-sampling is the reduc-
tion in the model size. Splicing contiguous frames at hidden
layers would require us to either have a very large number of
parameters, or reduce the hidden-layer size significantly.

Sub-sampling at the middle of the network was also used in
stacked bottle-neck networks [14]. In this architecture bottle-
neck features were spliced across non-contiguous time steps
and used as an input to a second neural network. However the
bottle-neck network was not trained jointly with the final neural
network.

We use asymmetric input contexts, with more context to
the left, as this reduces the latency of the neural network in on-
line decoding, and also because this seems to be more optimal
from a WER perspective. Asymmetric context windows of up
to 16 frames in past and 9 frames in the future were explored
in this paper. It was observed that further extension of con-
text on either side was detrimental to word recognition accu-
racies, though the frame recognition accuracies improved (this
phenomenon is widely known).

A major difference in the current architecture compared to
[2] is the use of the p-norm nonlinearity [15], which is a di-
mension reducing non-linearity. p-norm units with group size
of 10 and p = 2 were used across all neural networks in our
experiments, based on the observations made in [15] 1.

1More recent experiments in our TDNN framework show that that
ReLU nonlinearity may actually perform better in this context than p-
norm, but the full details were not ready in time for this paper and these
results are not presented here.

Time Delay Neural Networks
Table 2: Performance comparison of DNN and TDNN with various temporal contexts

Model Network Context Layerwise Context WER
1 2 3 4 5 Total SWB

DNN-A [�7, 7] [�7, 7] {0} {0} {0} {0} 22.1 15.5
DNN-A2 [�7, 7] [�7, 7] {0} {0} {0} {0} 21.6 15.1
DNN-B [�13, 9] [�13, 9] {0} {0} {0} {0} 22.3 15.7
DNN-C [�16, 9] [�16, 9] {0} {0} {0} {0} 22.3 15.7

TDNN-A [�7, 7] [�2, 2] {�2, 2} {�3, 4} {0} {0} 21.2 14.6
TDNN-B [�9, 7] [�2, 2] {�2, 2} {�5, 3} {0} {0} 21.2 14.5
TDNN-C [�11, 7] [�2, 2] {�1, 1} {�2, 2} {�6, 2} {0} 20.9 14.2
TDNN-D [�13, 9] [�2, 2] {�1, 2} {�3, 4} {�7, 2} {0} 20.8 14.0
TDNN-E [�16, 9] [�2, 2] {�2, 2} {�5, 3} {�7, 2} {0} 20.9 14.2

Table 3: Results on SWBD LVCSR task with data augmentation and enhanced lexicon

Acoustic Model + Language Model WER
Total SWB

TDNN - D + pp 21.9 14.8
TDNN - D + pp + fg 20.4 13.6
TDNN - D + pp + fg + sp + vp 19.2 12.9
TDNN - D + pp + fg + sp + vp + silp 19.0 12.7
TDNN - D + pp + fg + sp + vp + sequence training 17.6 11.4
TDNN - D + pp + fg + sp + vp + sequence training + pa 17.1 11
unfolded RNN + fMLLR features + iVectors [13] - 12.7
unfolded RNN + fMLLR features + iVectors + sequence training [13] - 11.3
CNN/DNN joint training + fMLLR features + iVectors [25] - 12.1
CNN/DNN joint training + fMLLR features + iVectors + sequence training[25] - 10.4

pp : pronunciation probabilities sp : speed perturbation
fg : 4-gram LM rescoring vp : volume perturbation
silp : word position dependent silence probabilities pa : prior adjustment

5.1. Performance of TDNNs on various LVCSR tasks

Table 4: Baseline vs TDNN on various LVCSR tasks with dif-
ferent amount of training data

Database Size WER Rel.
DNN TDNN Change

Res. Management 3h hrs 2.27 2.30 -1.3
Wall Street Journal 80 hrs 6.57 6.22 5.3

Tedlium 118 hrs 19.3 17.9 7.2
Switchboard 300 hrs 15.5 14.0 9.6
Librispeech 960 hrs 5.19 4.83 6.9

Fisher English 1800 hrs 22.24 21.03 5.4

Experiments were done using Kaldi speech recognition
toolkit [27] on Resource Management [28], Wall Street Journal
[29], Tedlium [30], Switchboard [7], Librispeech [31] and the
english portion of Fisher corpora [32]. The amount of training
data available for acoustic modeling varies from 3-1800 hours
across the setups mentioned. The recipes for these experiments
are available in the Kaldi code repository [27] 2.

An average relative improvement 5.52% was observed over
the baseline DNN architecture through the use of TDNN archi-
tecture to process wider contexts. It is to be noted that the num-

2e.g. https://svn.code.sf.net/p/kaldi/code/
trunk/egs/swbd/s5c/local/online/run_nnet2_ms.sh
in revision 5125

ber of parameters in the system are not matched between DNN
and TDNN architectures. However the individual systems were
tuned for best performance, given the architecture.

In the Resource Management medium-vocabulary task, we
did not see gains from TDNNs. This could be due to the slight
increase in parameters in the TDNN architecture when process-
ing larger input contexts.

6. Conclusion
The effectiveness of TDNNs in processing wider context inputs
was shown in small and large data scenarios. An input temporal
context of [t � 13, t + 9] was found to be optimal. Further us-
ing efficient selection of sub-sampling indices speed-ups were
be obtained during training. An average relative improvement
of 6% was reported across 6 different LVCSR tasks, compared
with our previous DNN configuration. Our results are also 2.6%
relative better than a previously reported result from the litera-
ture using an unfolded RNN architecture operating on speaker
adapted features [13]. Our future work involves switching from
the p-norm nonlinearity to ReLU, which according to some pre-
liminary experiments seems to work better in the TDNN frame-
work.

7. Acknowledgements
The authors would like to thank Pegah Ghahrmani for dis-
cussing results on comparison of p-norm and ReLU layers, in
the context of TDNNs.

Feedforward DNNs we’ve seen so far…

• Assume independence among the training instances

• Independent decision made about classifying each individual speech frame

• Network state is completely reset after each speech frame is processed

• This independence assumption fails for data like speech which has temporal and
sequential structure

• Two model architectures that capture longer ranges of acoustic context:

1. Time delay neural networks (TDNNs)
2. Recurrent neural networks (RNNs)

