Hybrid/Tandem models
+ TDNNSs + Intro to RNNs
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Feedback from in-class quiz 2 (on FSTs)

« Common mistakes
* Forgetting to consider subset of input alphabet
* Not careful about only accepting non-empty strings

* Non-deterministic machines that allow for a larger class of strings than
what was specified



Recap: Feedforward Neural Networks

Deep feedforward neural networks (referred to as DNNs) consist of

an input layer, one or more hidden layers and an output layer

Hidden layers compute non-linear transformations of its inputs.

Can assume layers are fully connected. Also referred to as affine layers.

Sigmoid, tanh, ReLU are commonly used activation functions



Feedforward Neural Networks for ASR

- Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use DNNSs to
estimate HMM observation probabillities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model



Feedforward Neural Networks for ASR

- Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use DNNSs to
estimate HMM observation probabillities



Decoding an ASR system

Recall how we decode the most likely word sequence W for
an acoustic sequence O:

W* = arg max Pr(O|W) Pr(W)
7%

- The acoustic model Pr(OlW) can be further decomposed as

(here, O,M represent triphone, monophone sequences
resp.):

Pr(O|W) = Z Pr(O,Q, M|W)

_ Z Pr(0|Q, M, W) Pr(Q|M, W) Pr(M][WV)
Q,M

~ ) Pr(0|Q)Pr(Q|M)Pr(M|W)

Q,M



Hybrid system decoding

Pr(O|W) =~ Z Pr(O|Q) Pr(Q|M) Pr(M|W)

Q,M

We’ve seen Pr(0OIlQ) estimated using a Gaussian Mixture Model.
Let’'s use a neural network instead to model Pr(OIQ).
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where o; Is the acoustic vector at time t and ¢; is a triphone HMM state

Here, Pr(qg:o;) are posteriors from a trained neural network.
Pr(o:q:) is then a scaled posterior.



Computing Pr(gdo;) using a deep NN

How do we get these labels
in order to train the NN?

Triphone
state labels

39 features
iNn one frame

Fixed window of
5 speech frames




Triphone labels

Forced alignment: Use current acoustic model to find the
most likely sequence of HMM states given a sequence of
acoustic vectors. (Algorithm to help compute this?)

The “Viterbi paths” for the training data, are also referred to
as forced alignments
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Computing Pr(qtl0t) using a deep NN

How do we get these labels
In order to train the NN?

(Viterbi) Forced alignment

Triphone
state labels

39 features
iNn one frame

Fixed window of
5 speech frames




Computing priors Pr(q.)

-+ To compute HMM observation probabillities, Pr(odqg:), we need

both Pr(gdo;) and Pr(g;)

- The posterior probabilities Pr(g/lo;) are computed using a

trained neural network

Pr(q;) are relative frequencies of each triphone state as
determined by the forced Viterbi alignment of the training data



Hybrid Networks

The networks are trained with a minimum cross-entropy criterion
L(y,y) = — Zyz log (i)
Advantages of hybrid systems:

1. Fewer assumptions made about acoustic vectors being
uncorrelated: Multiple inputs used from a window of time steps

2. Discriminative objective function used to learn the observation
probabillities



Summary of DNN-HMM acoustic models
Comparison against HMM-GMM on different tasks

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND

GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF GMM-HMM GMM-HMM
TASK TRAINING DATA DNN-HMM WITH SAME DATA WITH MORE DATA
SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)
SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)
ENGLISH BROADCAST NEWS 50 17.5 18.8
BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2
GOOGLE VOICE INPUT 5,870 12.3 16.0 (>> 5,870 H)
YOUTUBE 1,400 47.6 52.3

Hybrid DNN-HMM systems consistently outperform GMM-HMM
systems (sometimes even when the latter is trained with lots more data)

Table copied from G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”,
IEEE Signal Processing Magazine, 2012.



Neural Networks for ASR

- Two main categories of approaches have been explored:

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model



Tandem system

First, train a DNN to estimate the posterior probabillities of
each subword unit (monophone, triphone state, etc.)

In a hybrid system, these posteriors (after scaling) would be
used as observation probabilities for the HMM acoustic

models

In the tandem system, the DNN outputs are used as
“feature” inputs to HMM-GMM models



Bottleneck Features

Output Layer ‘

}&
‘><Q 0>>2:

Use a low-dimensional bottleneck layer representation to extract features

Bottleneck Layer

Hidden Layers

Input Layer

These bottleneck features are in turn used as inputs to HMM-GMM models



Recap: Hybrid DNN-HMM Systems

Triphone state labels
(DNN posteriors)

Instead of GMMs, use scaled
DNN posteriors as the HMM
observation probabilities

DNN trained using triphone
labels derived from a forced
alignment “Viterbi” step. 39 features

INn one frame

Forced alignment: Given a training
utterance {O, W}, find the most
likely sequence of states (and
hence triphone state labels) using
a set of trained triphone HMM
models, M. Here M is constrained e

by the triphones in 7. 5 speech frames




Recap: Tandem DNN-HMM Systems

Neural networks are used as
“feature extractors” to train
HMM-GMM models

Use a low-dimensional
bottleneck layer representation
to extract features from the
bottleneck layer

- These bottleneck features are

subsequently fed to GMM-
HMMs as input

Qutput Layer
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InputLayer




Feedforward DNNs we’ve seen so far...

- Assume independence among the training instances (modulo the context window of frames)

Independent decision made about classifying each individual speech frame

Network state is completely reset after each speech frame is processed

- This independence assumption fails for data like speech which has temporal and

seqguential structure

-+ Two model architectures that capture longer ranges of acoustic context:

1. Time delay neural networks (TDNNs)



- Each layer in a TDNN acts at a

- However, a lot more computation

Time Delay Neural Networks

[ ] Output HMM states
t

Fully connected layer
(TDNN Layer [0])

different temporal resolution TDNN Layer

- Processes a context window
from the previous layer

- Higher layers have a wider
receptive field into the input

needed than DNNSs!
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Time Delay Neural Networks

Model Network Context T 2L AyCTWISE gontext 1 5 TS ta}VEIEWB
DNN-A 7.7 —77 {0} 10} 0 {0} | 221 155
DNN-A. 7.7 7.7 {0} 10} 0} {0} | 21.6 15.1
DNN-B 13,9 ~13,9] {0} 10} 0y {0}y | 223 157
DNN-C 16,9 ~16,9] {0} 10} 0} {0}y | 223 157
TDNN-A —T7,7 —2,2 {—2,2  {-3,4} {0} {0} | 21.2 14.6
TDNN-B —9,7 —2,2 {—-2,2}  {-5,3} {0} {0} | 21.2 14.5
TDNN-C —11,7 —2,2 {—1,1} {-2,2} {-6,2} {0} | 20.9 14.2
TDNN-D —13,9 —2,2 {—1,2} {-3,4} {-7,2} {0} | 20.8 14.0
TDNN-E —16,9 —2,2 {—-2,2} {-5,3} {-7,2} {0} | 2009 14.2




Feedforward DNNs we’ve seen so far...

- Assume independence among the training instances

Independent decision made about classifying each individual speech frame

Network state is completely reset after each speech frame is processed

- This independence assumption fails for data like speech which has temporal and

sequential structure

-+ Two model architectures that capture longer ranges of acoustic context:

1. Time delay neural networks (TDNNs)
2. Recurrent neural networks (RNNs)



