
Instructor: Preethi Jyothi

RNN-based AMs
+ Introduction to Language Modeling

Lecture 9

CS 753

Recall RNN definition

Two main equations govern RNNs:

H, O

xt

yt

ht

unfold

H, O

x1

y1

h0
H, O

x2

y2

h1
H, O

x3

y3

h2
…

 ht = H(Wxt + Vht-1 + b(h))

 yt = O(Uht + b(y))

where W, V, U are matrices of input-hidden weights, hidden-hidden  
weights and hidden-output weights resp; b(h) and b(y) are bias vectors 
and H is the activation function applied to the hidden layer

Training RNNs

• An unrolled RNN is just a very deep feedforward network

• For a given input sequence:

• create the unrolled network

• add a loss function node to the network

• then, use backpropagation to compute the gradients

• This algorithm is known as backpropagation through time
(BPTT) 

Deep RNNs

• RNNs can be stacked in layers to form deep RNNs
• Empirically shown to perform better than shallow RNNs on

ASR [G13]

H, O

x1

y1

h0,1
H, O

x2

y2

h1,1
H, O

x3

y3

h2,1

H, O H, O H, O
h0,2 h1,2 h2,2

[G13] A. Graves, A . Mohamed, G. Hinton, “Speech Recognition with Deep Recurrent Neural Networks”, ICASSP, 2013.

Vanilla RNN Model

ht = H(Wxt + Vht-1 + b(h))

yt = O(Uht + b(y))

H : element wise application of the sigmoid or tanh function

O : the softmax function

Run into problems of exploding and vanishing gradients.

Exploding/Vanishing Gradients

• To address this problem in RNNs, Long Short Term Memory
(LSTM) units were proposed [HS97]

[HS97] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 1997.

• In deep networks, gradients in early layers are computed as the
product of terms from all the later layers

• This leads to unstable gradients:

• If the terms in later layers are large enough, gradients in early
layers (which is the product of these terms) can grow
exponentially large: Exploding gradients

• If the terms are in later layers are small, gradients in early
layers will tend to exponentially decrease: Vanishing gradients

Long Short Term Memory Cells

• Memory cell: Neuron that stores information over long time periods
• Forget gate: When on, memory cell retains previous contents.

Otherwise, memory cell forgets contents.
• When input gate is on, write into memory cell
• When output gate is on, read from the memory cell

Input
Gate

Output
Gate

Memory
Cell

Forget
Gate

⊗ ⊗

⊗

Bidirectional RNNs

• BiRNNs process the data in both directions with two separate hidden layers

• Outputs from both hidden layers are concatenated at each position

Hf, Of

xhello

h0,f
Hf, Of

xworld

h1,f
Hf, Of

x.

h2,f

Hb, Ob
h3,b

Hb, Ob
h2,b

Hb, Ob
h1,b

concat concat concat

y1,f y3,b y2,f y2,b y3,f y1,b

h3,f

h0,b

Forward 
layer

Backward  
layer

ASR with RNNs

• We have seen how neural networks can be used for acoustic
models in ASR systems

• Main limitation: Frame-level training targets derived from HMM-
based alignments

• Goal: Single RNN model that addresses this issues and does not
rely on HMM-based alignments [G14]

[G14] A. Graves, N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks”, ICML, 2014.

RNN-based Acoustic Model

• H was implemented using LSTMs in [G13]. Input: Acoustic feature vectors, one per frame;
Output: Phones + space

• Deep bidirectional LSTM networks were used to do phone recognition on TIMIT
• Trained using the Connectionist Temporal Classification (CTC) loss [covered in later class]

Hf, Of

xt-1

h0,f
Hf, Of

xt

h1,f
Hf, Of

xt+1

h2,f

Hb, Ob
h3,b

Hb, Ob
h2,b

Hb, Ob
h1,b

h3,f

h0,b

yt-1 yt yt+1

[G13] A. Graves, et al., “Speech recognition with deep recurrent neural networks”, ICASSP, 2013.

RNN-based Acoustic Model

[G13] A. Graves, et al., “Speech recognition with deep recurrent neural networks”, ICASSP, 2013.

tends to ‘simplify’ neural networks, in the sense of reducing
the amount of information required to transmit the parame-
ters [23, 24], which improves generalisation.

4. EXPERIMENTS

Phoneme recognition experiments were performed on the
TIMIT corpus [25]. The standard 462 speaker set with all
SA records removed was used for training, and a separate
development set of 50 speakers was used for early stop-
ping. Results are reported for the 24-speaker core test set.
The audio data was encoded using a Fourier-transform-based
filter-bank with 40 coefficients (plus energy) distributed on
a mel-scale, together with their first and second temporal
derivatives. Each input vector was therefore size 123. The
data were normalised so that every element of the input vec-
tors had zero mean and unit variance over the training set. All
61 phoneme labels were used during training and decoding
(so K = 61), then mapped to 39 classes for scoring [26].
Note that all experiments were run only once, so the vari-
ance due to random weight initialisation and weight noise is
unknown.

As shown in Table 1, nine RNNs were evaluated, vary-
ing along three main dimensions: the training method used
(CTC, Transducer or pretrained Transducer), the number of
hidden levels (1–5), and the number of LSTM cells in each
hidden layer. Bidirectional LSTM was used for all networks
except CTC-3l-500h-tanh, which had tanh units instead of
LSTM cells, and CTC-3l-421h-uni where the LSTM layers
were unidirectional. All networks were trained using stochas-
tic gradient descent, with learning rate 10�4, momentum 0.9
and random initial weights drawn uniformly from [�0.1, 0.1].
All networks except CTC-3l-500h-tanh and PreTrans-3l-250h
were first trained with no noise and then, starting from the
point of highest log-probability on the development set, re-
trained with Gaussian weight noise (� = 0.075) until the
point of lowest phoneme error rate on the development set.
PreTrans-3l-250h was initialised with the weights of CTC-
3l-250h, along with the weights of a phoneme prediction net-
work (which also had a hidden layer of 250 LSTM cells), both
of which were trained without noise, retrained with noise, and
stopped at the point of highest log-probability. PreTrans-3l-
250h was trained from this point with noise added. CTC-3l-
500h-tanh was entirely trained without weight noise because
it failed to learn with noise added. Beam search decoding was
used for all networks, with a beam width of 100.

The advantage of deep networks is immediately obvious,
with the error rate for CTC dropping from 23.9% to 18.4%
as the number of hidden levels increases from one to five.
The four networks CTC-3l-500h-tanh, CTC-1l-622h, CTC-
3l-421h-uni and CTC-3l-250h all had approximately the same
number of weights, but give radically different results. The
three main conclusions we can draw from this are (a) LSTM
works much better than tanh for this task, (b) bidirectional

Table 1. TIMIT Phoneme Recognition Results. ‘Epochs’ is
the number of passes through the training set before conver-
gence. ‘PER’ is the phoneme error rate on the core test set.

NETWORK WEIGHTS EPOCHS PER
CTC-3L-500H-TANH 3.7M 107 37.6%
CTC-1L-250H 0.8M 82 23.9%
CTC-1L-622H 3.8M 87 23.0%
CTC-2L-250H 2.3M 55 21.0%
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%
TRANS-3L-250H 4.3M 112 18.3%
PRETRANS-3L-250H 4.3M 144 17.7%

Fig. 3. Input Sensitivity of a deep CTC RNN. The heatmap
(top) shows the derivatives of the ‘ah’ and ‘p’ outputs printed
in red with respect to the filterbank inputs (bottom). The
TIMIT ground truth segmentation is shown below. Note that
the sensitivity extends to surrounding segments; this may be
because CTC (which lacks an explicit language model) at-
tempts to learn linguistic dependencies from the acoustic data.

LSTM has a slight advantage over unidirectional LSTMand
(c) depth is more important than layer size (which supports
previous findings for deep networks [3]). Although the advan-
tage of the transducer is slight when the weights are randomly
initialised, it becomes more substantial when pretraining is
used.

5. CONCLUSIONS AND FUTURE WORK

We have shown that the combination of deep, bidirectional
Long Short-term Memory RNNs with end-to-end training and
weight noise gives state-of-the-art results in phoneme recog-
nition on the TIMIT database. An obvious next step is to ex-
tend the system to large vocabulary speech recognition. An-
other interesting direction would be to combine frequency-
domain convolutional neural networks [27] with deep LSTM.

6648

TIMIT phoneme recognition results

Acoustic 
Indices

So far, we’ve looked at acoustic models…
Language  

Model Word  
Sequence

Acoustic 
Models

Triphones

Context 
Transducer

Monophones

Pronunciation  
Model

Words

Acoustic 
Indices

Next, language models

Language  
Model Word  

Sequence

Acoustic 
Models

Triphones

Context 
Transducer

Monophones

Pronunciation  
Model

Words

• Language models

• provide information about word reordering

• provide information about the most likely next word

Pr(“she class taught a”) < Pr(“she taught a class”)

Pr(“she taught a class”) > Pr(“she taught a speech”)

Application of language models

• Speech recognition

• Pr(“she taught a class”) > Pr(“sheet or tuck lass”)

• Machine translation

• Handwriting recognition/Optical character recognition

• Spelling correction of sentences

• Summarization, dialog generation, information retrieval, etc.

Popular Language Modelling Toolkits

• SRILM Toolkit:

http://www.speech.sri.com/projects/srilm/

• KenLM Toolkit:

https://kheafield.com/code/kenlm/

• OpenGrm NGram Library:

http://opengrm.org/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Introduction to probabilistic LMs

Probabilistic or Statistical Language Models

• Given a word sequence, W = {w1, … , wn}, what is Pr(W)?

• Decompose Pr(W) using the chain rule:

Pr(w1,w2,…,wn-1,wn) = Pr(w1) Pr(w2|w1) Pr(w3|w1,w2)…Pr(wn|w1,…,wn-1)

• Sparse data with long word contexts: How do we estimate
the probabilities Pr(wn|w1,…,wn-1)?

Estimating word probabilities

• Accumulate counts of words and word contexts

• Compute normalised counts to get next-word probabilities

• E.g. Pr(“class | she taught a”)  
 = π(“she taught a class”) 
  
 
 where π(“…”) refers to counts derived  
 from a large English text corpus

• What is the obvious limitation here?

π(“she taught a”)

We’ll never see enough data

Simplifying Markov Assumption

• Markov chain:

• Limited memory of previous word history: Only last m words are included

• 1-order language model (or bigram model)

• 2-order language model (or trigram model)

Pr(w1,w2,…,wn-1,wn) ≅ Pr(w1|<s>) Pr(w2|w1) Pr(w3|w2)…Pr(wn|wn-1)

Pr(w1,w2,…,wn-1,wn) ≅ Pr(w2|w1,<s>) Pr(w3|w1,w2)…Pr(wn|wn-2,wn-1)

• Ngram model is an N-1th order Markov model

Estimating Ngram Probabilities

• Maximum Likelihood Estimates

• Unigram model

• Bigram model

PrML(w1) =
⇡(w1)P
i ⇡(wi)

PrML(w2|w1) =
⇡(w1, w2)P
i ⇡(w1, wi)

Example

The dog chased a cat 
The cat chased away a mouse 

The mouse eats cheese

What is Pr(“The cat chased a mouse”) using a bigram model?

Pr(“<s> The cat chased a mouse </s>”) = 

Pr(“The|<s>”) ⋅ Pr(“cat|The”) ⋅ Pr(“chased|cat”) ⋅ Pr(“a|chased”) ⋅ Pr(“mouse|
a”) ⋅ Pr(“</s>|mouse”) =  
 
3/3 ⋅ 1/3 ⋅ 1/2 ⋅ 1/2 ⋅ 1/2 ⋅ 1/2 = 1/48  

Example

The dog chased a cat 
The cat chased away a mouse 

The mouse eats cheese

What is Pr(“The dog eats cheese”) using a bigram model?

Pr(“<s> The dog eats cheese </s>”) = 

Pr(“The|<s>”) ⋅ Pr(“dog|The”) ⋅ Pr(“eats|dog”) ⋅ Pr(“cheese|eats”) ⋅ Pr(“</s>|
cheese”) =  
 
3/3 ⋅ 1/3 ⋅ 0/1 ⋅ 1/1 ⋅ 1/1 = 0! 

Due to unseen bigrams

How do we deal with unseen bigrams? We’ll come back to it.

Open vs. closed vocabulary task

• Closed vocabulary task: Use a fixed vocabulary, V. We know all the words in advance.

• More realistic setting, we don’t know all the words in advance. Open vocabulary task.
Encounter out-of-vocabulary (OOV) words during test time.

• Create an unknown word: <UNK>

• Estimating <UNK> probabilities: Determine a vocabulary V. Change all words in the
training set not in V to <UNK>

• Now train its probabilities like a regular word

• At test time, use <UNK> probabilities for words not in training

Evaluating Language Models

• Extrinsic evaluation:

• To compare Ngram models A and B, use both within a
specific speech recognition system (keeping all other
components the same)

• Compare word error rates (WERs) for A and B

• Time-consuming process!

Intrinsic Evaluation

• Evaluate the language model in a standalone manner

• How likely does the model consider the text in a test set?

• How closely does the model approximate the actual (test
set) distribution?

• Same measure can be used to address both questions —
perplexity!

Measures of LM quality

• How likely does the model consider the text in a test set?

• How closely does the model approximate the actual (test
set) distribution?

• Same measure can be used to address both questions —
perplexity!

Perplexity (I)

• How likely does the model consider the text in a test set?

• Perplexity(test) = 1/Prmodel[text]

• Normalized by text length:

• Perplexity(test) = (1/Prmodel[text])1/N where N = number of
tokens in test

• e.g. If model predicts i.i.d. words from a dictionary of
size L, per word perplexity = (1/(1/L)N)1/N = L

Intuition for Perplexity
• Shannon’s guessing game builds intuition for perplexity

• What is the surprisal factor in predicting the next word?

• At the stall, I had tea and _________ biscuits 0.1  
 samosa 0.1  
 coffee 0.01  
 rice 0.001  
 ⋮ 
 but 0.00000000001 

• A better language model would assign a higher probability to the  
actual word that fills the blank (and hence lead to lesser
surprisal/perplexity)

Measures of LM quality

• How likely does the model consider the text in a test set?

• How closely does the model approximate the actual (test
set) distribution?

• Same measure can be used to address both questions —
perplexity!

Perplexity (II)

• How closely does the model approximate the actual (test set)
distribution?

• KL-divergence between two distributions X and Y 
 DKL(X||Y) = Σσ PrX[σ] log (PrX[σ]/PrY[σ])

• Equals zero iff X = Y ; Otherwise, positive

• How to measure DKL(X||Y)? We don’t know X!
• DKL(X||Y) = Σσ PrX[σ] log(1/PrY[σ]) - H(X)  

 where H(X) = -Σσ PrX[σ] log PrX[σ]
• Empirical cross entropy:

Cross entropy  
between X and Y

1

|test|
X

�2test

log(
1

Pry[�]
)

Perplexity vs. Empirical Cross Entropy

• Empirical Cross Entropy (ECE)

• Normalized Empirical Cross Entropy = ECE/(avg. length) =

 
 
 where N = #words

• How does relate to perplexity?

1

|#sents|
X

�2test

log(
1

Prmodel[�]
)

1

|#words/#sents|
1

|#sents|
X

�2test

log(
1

Prmodel[�]
) =

1

N

X

�

log(
1

Prmodel[�]
)

1

|#words/#sents|
1

|#sents|
X

�2test

log(
1

Prmodel[�]
) =

1

N

X

�

log(
1

Prmodel[�]
)=

1

N

X

�

log(
1

Prmodel[�]
)

<latexit sha1_base64="AIY5XO73eXFCg3d/A28Ewf2L2VQ=">AAACJ3icbVBNa9tAFFwlTes4Tesmx16WmoB7MZJTaC8tIb3kFFyoP8ASYrV6shfvasXuU6kR+je55K/kUmhLSY/5J11/HFq7AwvDzDzevkkKKSz6/m9vb//RweMnjcPm0dPjZ89bL06GVpeGw4Brqc04YRakyGGAAiWMCwNMJRJGyfzj0h99AWOFzj/jooBIsWkuMsEZOilufXgfZobx4JqGtlRxFVoxVawOpZ521k4V9o3TEb5ipXQKsq4n61RUv45bbb/rr0B3SbAhbbJBP259D1PNSwU5csmsnQR+gVHFDAouoW6GpYWC8TmbwsTRnCmwUbW6s6ZnTklppo17OdKV+vdExZS1C5W4pGI4s9veUvyfNykxexdVIi9KhJyvF2WlpKjpsjSaCgMc5cIRxo1wf6V8xlw76KptuhKC7ZN3ybDXDc67vU9v2heXmzoa5CV5RTokIG/JBbkifTIgnNyQO/KD/PRuvW/eL+9+Hd3zNjOn5B94D38A4++nOA==</latexit>

Perplexity vs. Empirical Cross Entropy

log(perplexity) =
1

N
log

1

Pr[test]

=
1

N
log

Y

�

(
1

Prmodel[�]
)

=
1

N

X

�

log(
1

Prmodel[�]
)

Thus, perplexity = exp(normalized cross entropy)

Example perplexities for Ngram models trained on WSJ (80M words):  

Unigram: 962, Bigram: 170, Trigram: 109

Introduction to smoothing of LMs

Recall example

The dog chased a cat 
The cat chased away a mouse 

The mouse eats cheese

What is Pr(“The dog eats cheese”)?

Pr(“<s> The dog eats cheese </s>”) = 

Pr(“The|<s>”) ⋅ Pr(“dog|The”) ⋅ Pr(“eats|dog”) ⋅ Pr(“cheese|eats”) ⋅ Pr(“</s>|
cheese”) =  
 
3/3 ⋅ 1/3 ⋅ 0/1 ⋅ 1/1 ⋅ 1/1 = 0! 

Due to unseen bigrams

Unseen Ngrams

• Even with MLE estimates based on counts from large text
corpora, there will be many unseen bigrams/trigrams that
never appear in the corpus

• If any unseen Ngram appears in a test sentence, the
sentence will be assigned probability 0

• Problem with MLE estimates: maximises the likelihood of the
observed data by assuming anything unseen cannot happen
and overfits to the training data

• Smoothing methods: Reserve some probability mass to Ngrams that
don’t occur in the training corpus

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

becomes

PrML(wi|wi�1) =
⇡(wi�1, wi)

⇡(wi�1)

where V is the vocabulary size

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1) + V
✓

