RNN-based AMs
+ Introduction to Language Modeling

Lecture 9

Instructor Preethl Jyoth|

Recall RNN definition

y! Y1 y2 y3
unfold “
H, O :> — HO — HO — HO —
No N+ ho
ht
Xt X1 X2 X3

Two main equations govern RNNSs:

ht = H(Wxt + Vhi1 + b)
yt = O(Uht + b))

where W, V, U are matrices of input-hidden weights, hidden-hidden
weights and hidden-output weights resp; b and b)) are bias vectors
and H is the activation function applied to the hidden layer

Training RNNs

- An unrolled RNN is just a very deep feedforward network

For a given input sequence:
create the unrolled network
add a loss function node to the network

- then, use backpropagation to compute the gradients

- This algorithm is known as backpropagation through time

(BPTT)

Deep RNNSs

A Y2 V3
— HO —~ HO — HO
ho.o — hio. T ho o T
. HO - HO — HO
ho,1 ‘ ~hi1.1 ‘ h2,1 ‘

X1 X2 X3

RNNs can be stacked in layers to form deep RNNs

Empirically shown to perform better than shallow RNNs on
ASR [G13]

[G13] A. Graves, A . Mohamed, G. Hinton, “Speech Recognition with Deep Recurrent Neural Networks”, ICASSP, 2013.

Vanilla RNN Model

ht = HWxt + Vht.1 + b(h)

yt = O(Uhy + b))

H : element wise application of the sigmoid or tanh function

O : the softmax function

Run into problems of exploding and vanishing gradients.

Exploding/Vanishing Gradients

In deep networks, gradients in early layers are computed as the
product of terms from all the later layers

- This leads to unstable gradients:

If the terms in later layers are large enough, gradients in early
layers (which is the product of these terms) can grow
exponentially large: Exploding gradients

If the terms are Iin later layers are small, gradients in early
layers will tend to exponentially decrease: Vanishing gradients

To address this problem in RNNs, Long Short Term Memory
(LSTM) units were proposed [HS97]

[HS97] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural Computation, 1997.

Long Short Term Memory Cells

Memory cell: Neuron that stores information over long time periods
Forget gate: When on, memory cell retains previous contents.
Otherwise, memory cell forgets contents.

When input gate is on, write into memory cell

When output gate is on, read from the memory cell

Bidirectional RNNs

concat concat concat
Y1 f Yab Ya2f |Y2b Y3 V1.b
Backward
— Hb, O — HV, O — Hb O —
layer N3 b ‘ ‘ N2 b ‘ [Nib ‘ 1 ho,b
Forward — o — H O — H O [
layer ho,f T ‘ h1,f I ‘ hz,f I ‘ 3,f
| | | | | |
Xhello Xworld X

BIRNNSs process the data in both directions with two separate hidden layers

Outputs from both hidden layers are concatenated at each position

ASR with RNNs

We have seen how neural networks can be used for acoustic
models in ASR systems

Main limitation: Frame-level training targets derived from HMM-
based alignments

-+ Goal: Single RNN model that addresses this issues and does not

rely on HMM-based alignments [G14]

[G14] A. Graves, N. Jaitly, “Towards end-to-end speech recognition with recurrent neural networks”, ICML, 2014,

RNN-based Acoustic Model

Yi-1 Vit Vi+
— HbOb ~— Hb O — Hb Ob
N3, ‘ ‘ ’ ha b H N1 ‘ [No,b
— O — [0/ B— i OfF —
o, ki h1 1 7, d ho 1 7,0 N3,
]]]
Xt-1 Xt Xt+1

- H was implemented using LSTMs in [G13]. Input: Acoustic feature vectors, one per frame;

Output: Phones + space
Deep bidirectional LSTM networks were used to do phone recognition on TIMIT

- Trained using the Connectionist Temporal Classification (CTC) loss [covered in later class]

[G13] A. Graves, et al., “Speech recognition with deep recurrent neural networks”, ICASSP, 2013.

RNN-based Acoustic Model

NETWORK WEIGHTS EPOCHS PER

CTC-3L-500H-TANH 3.7M 107 37.6%
CTC-1L-250H 0.3M 82 23.9%
CTC-1L-622H 3.8M 37 23.0%
CTC-2L-250H 2.3M 55 21.0%
CTC-3L-421H-UNI 3.8M 115 19.6%
CTC-3L-250H 3.8M 124 18.6%
CTC-5L-250H 6.8M 150 18.4%

TIMIT phoneme recognition results

[G13] A. Graves, et al., “Speech recognition with deep recurrent neural networks”, ICASSP, 2013.

So far, we’ve looked at acoustic models...

| Acoustic
Acoustic Models
Indices

Triphones

Next, language models

| Language ;
Model Word
Sequence

Words

Language models

provide information about word reordering

Pr(“she class taught a”) < Pr(“she taught a class”)

provide information about the most likely next word

Pr(“she taught a class”) > Pr("“she taught a speech”)

Application of language models

Speech recognition

- Pr(“she taught a class”) > Pr(“sheet or tuck lass”)
Machine translation

Handwriting recognition/Optical character recognition
Spelling correction of sentences

Summarization, dialog generation, information retrieval, etc.

Popular Language Modelling Toolkits

- SRILM Toolkit:

http://www.speech.sri.com/projects/srilm/
KenLM Toolkit:

https://kheafield.com/code/kenim/

+ OpenGrm NGram Library:

http://opengrm.org/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Introduction to probabilistic LMs

Probabilistic or Statistical Language Models

-+ Given a word sequence, W ={wi, ..., wn}, what is Pr(W)?

Decompose Pr(W) using the chain rule;

Pr(wi,w2,...,wn-1,wn) = Pr(w1) Pr(wa|lw1) Pr(ws|wi,w2)...Pr(wn|wi,.. ,Wn1)

- Sparse data with long word contexts: How do we estimate

the probabilities Pr(w,lwi,.. ,wn-1)?

Estimating word probabilities

- Accumulate counts of words and word contexts

Compute normalised counts to get next-word probabilities

E.g. Pr(“class | she taught a”)
= 1(“she taught a class”)

n(“she taught a”)

where 11(“...”) refers to counts derived
from a large English text corpus

- What is the obvious limitation here? We'll never see enough data

Simplifying Markov Assumption

Markov chain:

Limited memory of previous word history: Only last m words are included

1-order language model (or bigram model)

Pr(wi,wa,...,wn.1,wn) = Pr(wi|<s>) Pr(wa|w1) Pr(ws|ws)...Pr(wn|wn.1)

- 2-order language model (or trigram model)

Pr(wi,wa,... . Wn-1,wn) = Pr(wa|wi <s>) Pr(ws|lwi,w2).. . Pr(wa|wn2,wn-1)

- Ngram model is an N-1th order Markov model

Estimating Ngram Probabilities

- Maximum Likelihood Estimates

- Unigram model

Prason) = %

- Bigram model

7'('(11]1, wg)
Pranualin) = o

Example

The dog chased a cat
The cat chased away a mouse
The mouse eats cheese

What is Pr("The cat chased a mouse”) using a bigram model?

Pr(“<s> The cat chased a mouse </s>") =

Pr("The|<s>") - Pr(“cat|The”) - Pr("chased|cat’) - Pr(“a|chased”) - Pr("mouse
a’) - Pr("</s>|mouse”) =

33 -1/3-1/2-1/2-1/2 - 1/2 =1/48

Example

The dog chased a cat
The cat chased away a mouse
The mouse eats cheese

What is Pr(“The dog eats cheese”) using a bigram model?
Pr(“<s> The dog eats cheese </s>") =

Pr(*The|<s>") - Pr("dog|The”) - Pr(“eats|dog”) - Pr(“cheesel|eats”) - Pr("</s>|
cheese”) =

3/3 -1/3-0/1 -1/1 - 1/1 = 0! Due to unseen bigrams

How do we deal with unseen bigrams? We’ll come back to it.

Open vs. closed vocabulary task

Closed vocabulary task: Use a fixed vocabulary, V. We know all the words in advance.

More realistic setting, we don’t know all the words in advance. Open vocabulary task.
Encounter out-of-vocabulary (OOV) words during test time.

Create an unknown word: <UNK>

Estimating <UNK> probabilities: Determine a vocabulary V. Change all words in the
training set not in V to <UNK>

Now train its probabilities like a regular word

- At test time, use <UNK> probabilities for words not in training

Evaluating Language Models

Extrinsic evaluation:

- To compare Ngram models A and B, use both within a

specific speech recognition system (keeping all other
components the same)

Compare word error rates (WERSs) for A and B

- Time-consuming process!

Intrinsic Evaluation

Evaluate the language model in a standalone manner
How likely does the model consider the text in a test set?

How closely does the model approximate the actual (test
set) distribution?

Same measure can be used to address both questions —
perplexity!

Measures of LM quality

How likely does the model consider the text in a test set?

- Same measure can be used to address both questions —
perplexity!

Perplexity (l)

How likely does the model consider the text in a test set?
Perplexity(test) = 1/Prmodel[teXt]
Normalized by text length:

Perplexity(test) = (1/Prmodel[text])N where N = number of
tokens in test

e.g. If model predicts i.i.d. words from a dictionary of
size L, per word perplexity = (1/(1/L)N)1/N = L

Intuition for Perplexity

Shannon’s guessing game builds intuition for perplexity
- What is the surprisal factor in predicting the next word?

- At the stall, | had tea and biscuits 0.1
samosa 0.1
coffee 0.01
rice 0.001

but 0.00000000001

- A better language model would assign a higher probability to the

actual word that fills the blank (and hence lead to lesser
surprisal/perplexity)

Measures of LM quality

How closely does the model approximate the actual (test
set) distribution?

- Same measure can be used to address both questions —
perplexity!

Perplexity (ll)

How closely does the model approximate the actual (test set)
distribution?

KL-divergence between two distributions X and Y
DkL(XIIY) = 26 Prx[o] log (Prx[o]/Pry[o])

Equals zero iff X =Y ; Otherwise, positive

How to measure Dk (XIIY)? We don't know X!. Cross entropy

Dk (XIIY) =(Z Prx[o] log(1/Prv[c]) - H(X) ~ between X and ¥

where H(X) = -2 Prx[o] log Prx[o]
Empirical cross entropy:

1 1
test] 2 log(; o]

o&test Y

Perplexity vs. Empirical Cross Entropy

Empirical Cross Entropy (ECE)

1
I
#sents Z o8

octest

1

Prmodel [0]

)

Normalized Empirical Cross Entropy = ECE/(avg. length) =

1 1 1
l
Hwords [H#sents| |#sents] Z o8 Primodel|0])

octest

where N = #words

1

relate to perplexity?
Prmodel [U])

1
How does Z,: log(

Perplexity vs. Empirical Cross Entropy

1 1
log(perplexity) = ~ log

Thus, perplexity = exp(normalized cross entropy)

Example perplexities for Ngram models trained on WSJ (80M words):

Unigram: 962, Bigram: 170, Trigram: 109

Introduction to smoothing of LMs

Recall example

The dog chased a cat
The cat chased away a mouse
The mouse eats cheese

What is Pr(“The dog eats cheese”)?
Pr("<s> The dog eats cheese </s>") =

Pr(*The|<s>") - Pr("dog|The”) - Pr(“eats|dog”) - Pr(“cheesel|eats”) - Pr("</s>|
cheese”) =

3/3 -1/3-0/1 -1/1 - 1/1 = 0! Due to unseen bigrams

Unseen Ngrams

Even with MLE estimates based on counts from large text
corpora, there will be many unseen bigrams/trigrams that
never appear in the corpus

If any unseen Ngram appears in a test sentence, the
sentence will be assigned probability O

Problem with MLE estimates: maximises the likelihood of the
observed data by assuming anything unseen cannot happen
and overfits to the training data

Smoothing methods: Reserve some probability mass to Ngrams that
don’t occur in the training corpus

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

W(wz’—la wz)

7'('(?1]7;_1)

Prar(wi|lw;—1) =

becomes

W(wi—lvwi) + 1 */
W(wi_l) -+ V

Prrop(wi|lw;—1) =

where V' is the vocabulary size

