RNN-based AMs + Introduction to Language Modeling

Instructor: Preethi Jyothi

Lecture 9

Recall RNN definition

Two main equations govern RNNs:

 $h_t = H(Wx_t + Vh_{t-1} + b^{(h)})$

 $y_t = O(Uh_t + b^{(y)})$

where W, V, U are matrices of input-hidden weights, hidden-hidden weights and hidden-output weights resp; b^(h) and b^(y) are bias vectors and H is the activation function applied to the hidden layer

Training RNNs

- An unrolled RNN is just a very deep feedforward network
- For a given input sequence:
 - create the unrolled network
 - add a loss function node to the network
 - then, use backpropagation to compute the gradients •
- This algorithm is known as backpropagation through time • (BPTT)

- RNNs can be stacked in layers to form deep RNNs •
- ASR [G13]

Deep RNNs

Empirically shown to perform better than shallow RNNs on

- O: the softmax function

Vanilla RNN Model

 $h_t = H(Wx_t + Vh_{t-1} + b^{(h)})$

 $y_t = O(Uh_t + b^{(y)})$

H : element wise application of the sigmoid or tanh function

Run into problems of exploding and vanishing gradients.

Exploding/Vanishing Gradients

- product of terms from all the later layers
- This leads to unstable gradients:
 - exponentially large: Exploding gradients
- (LSTM) units were proposed [HS97]

• In deep networks, gradients in early layers are computed as the

• If the terms in later layers are large enough, gradients in early layers (which is the product of these terms) can grow

• If the terms are in later layers are small, gradients in early layers will tend to exponentially decrease: Vanishing gradients

To address this problem in RNNs, Long Short Term Memory

[HS97] S. Hochreiter and J. Schmidhuber, "Long Short-Term Memory," Neural Computation, 1997.

Long Short Term Memory Cells

- Otherwise, memory cell forgets contents.
- When input gate is on, write into memory cell
- When output gate is on, read from the memory cell

Memory cell: Neuron that stores information over long time periods Forget gate: When on, memory cell retains previous contents.

Bidirectional RNNs

- •
- Outputs from both hidden layers are concatenated at each position •

BiRNNs process the data in both directions with two separate hidden layers

ASR with RNNs

- We have seen how neural networks can be used for acoustic models in ASR systems
 - Main limitation: Frame-level training targets derived from HMMbased alignments
- Goal: Single RNN model that addresses this issues and does not • rely on HMM-based alignments [G14]

[G14] A. Graves, N. Jaitly, "Towards end-to-end speech recognition with recurrent neural networks", ICML, 2014.

- Output: Phones + space
- Deep bidirectional LSTM networks were used to do phone recognition on TIMIT ۲

RNN-based Acoustic Model

H was implemented using LSTMs in [G13]. Input: Acoustic feature vectors, one per frame;

Trained using the Connectionist Temporal Classification (CTC) loss [covered in later class]

[[]G13] A. Graves, et al., "Speech recognition with deep recurrent neural networks", ICASSP, 2013.

RNN-based Acoustic Model

Network	WEIGHTS	Epochs	PER	
CTC-3l-500h-tanh	3.7M	107	37.6%	
СТС-11-250н	0.8M	82	23.9%	
СТС-11-622н	3.8M	87	23.0%	
СТС-21-250н	2.3M	55	21.0%	
CTC-3L-421H-UNI	3.8M	115	19.6%	
СТС-31-250н	3.8M	124	18.6%	
СТС-51-250н	6.8M	150	18.4%	
TIMIT phoneme recognition results				

man phonenic recognition results

So far, we've looked at acoustic models...

Next, language models

- Language models
 - provide information about word reordering •

Pr("she class taught a") < Pr("she taught a class")

provide information about the most likely next word •

Pr("she taught a class") > Pr("she taught a speech")

Application of language models

- Speech recognition
 - Pr("she taught a class") > Pr("sheet or tuck lass")
- Machine translation
- Handwriting recognition/Optical character recognition
- Spelling correction of sentences

• Summarization, dialog generation, information retrieval, etc.

Popular Language Modelling Toolkits

• SRILM Toolkit:

http://www.speech.sri.com/projects/srilm/

KenLM Toolkit:

https://kheafield.com/code/kenlm/

• OpenGrm NGram Library:

http://opengrm.org/

Introduction to probabilistic LMs

Probabilistic or Statistical Language Models

- •
- Decompose Pr(W) using the chain rule: •

 $Pr(w_1, w_2, \dots, w_{n-1}, w_n) = Pr(w_1) Pr(w_2|w_1) Pr(w_3|w_1, w_2) \dots Pr(w_n|w_1, \dots, w_{n-1})$

• the probabilities $Pr(w_n|w_1,...,w_{n-1})$?

Given a word sequence, $W = \{w_1, \dots, w_n\}$, what is Pr(W)?

Sparse data with long word contexts: How do we estimate

Estimating word probabilities

- Accumulate counts of words and word contexts
- Compute normalised counts to get next-word probabilities
- E.g. Pr("class I she taught a") = π ("she taught a class")
 - π("she taught a")
 - where $\pi("...")$ refers to counts derived from a large English text corpus
- What is the obvious limitation here? We'll never see enough data

Simplifying Markov Assumption

- Markov chain: •
 - Limited memory of previous word history: Only last *m* words are included •
- 1-order language model (or bigram model) •

$$\Pr(w_1, w_2, \ldots, w_{n-1}, w_n) \cong \Pr(w_1 | \cdots \mid w_n)$$

2-order language model (or trigram model) •

$$Pr(w_1, w_2, \ldots, w_{n-1}, w_n) \cong Pr(w_1, w_2, \ldots, w_{n-1}, w_n)$$

• Ngram model is an N-1th order Markov model

 $<s>) Pr(w_2|w_1) Pr(w_3|w_2)...Pr(w_n|w_{n-1})$

 $(w_2|w_1, <s>) \Pr(w_3|w_1, w_2) \dots \Pr(w_n|w_{n-2}, w_{n-1})$

Estimating Ngram Probabilities

- Maximum Likelihood Estimates
 - Unigram model

 $\Pr_{ML}(u)$

Bigram model •

 $\Pr_{ML}(w_2|w_2|)$

$$v_1) = \frac{\pi(w_1)}{\sum_i \pi(w_i)}$$

$$w_1) = \frac{\pi(w_1, w_2)}{\sum_i \pi(w_1, w_i)}$$

The dog chased a cat The cat chased away a mouse The mouse eats cheese

Pr("<s> The cat chased a mouse </s>") =

a") \cdot Pr("</s>|mouse") =

 $3/3 \cdot 1/3 \cdot 1/2 \cdot 1/2 \cdot 1/2 \cdot 1/2 = 1/48$

Example

What is Pr("The cat chased a mouse") using a bigram model?

Pr("The|<s>") · Pr("cat|The") · Pr("chased|cat") · Pr("a|chased") · Pr("mouse|

The dog chased a cat The cat chased away a mouse The mouse eats cheese

Pr("<s> The dog eats cheese </s>") =

cheese") =

 $3/3 \cdot 1/3 \cdot 0/1 \cdot 1/1 \cdot 1/1 = 0!$ Due to unseen bigrams

How do we deal with unseen bigrams? We'll come back to it.

Example

What is Pr("The dog eats cheese") using a bigram model?

Pr("The | <s>") · Pr("dog | The") · Pr("eats | dog") · Pr("cheese | eats") · Pr("</s>|

Open vs. closed vocabulary task

- - Encounter out-of-vocabulary (OOV) words during test time.
- Create an unknown word: <UNK> •
 - training set not in V to <UNK>
 - Now train its probabilities like a regular word
 - At test time, use $\langle UNK \rangle$ probabilities for words not in training

Closed vocabulary task: Use a fixed vocabulary, V. We know all the words in advance.

• More realistic setting, we don't know all the words in advance. Open vocabulary task.

Estimating <UNK> probabilities: Determine a vocabulary V. Change all words in the

Evaluating Language Models

- Extrinsic evaluation:
 - components the same)
 - Compare word error rates (WERs) for A and B •
 - Time-consuming process! •

• To compare Ngram models A and B, use both within a specific speech recognition system (keeping all other

Intrinsic Evaluation

- Evaluate the language model in a standalone manner
- How likely does the model consider the text in a test set?
- How closely does the model approximate the actual (test set) distribution?
 - Same measure can be used to address both questions perplexity!

Measures of LM quality

- set) distribution?
 - perplexity!

• How likely does the model consider the text in a test set?

Same measure can be used to address both questions —

Perplexity (I)

- How likely does the model consider the text in a test set?
 - Perplexity(test) = $1/Pr_{model}$ [text]
 - Normalized by text length:
 - Perplexity(test) = $(1/Pr_{model}[text])^{1/N}$ where N = number of tokens in test
 - e.g. If model predicts i.i.d. words from a dictionary of size L, per word perplexity = $(1/(1/L)^N)^{1/N}$ =

- Shannon's guessing game builds intuition for perplexity •
 - - At the stall, I had tea and •

surprisal/perplexity)

Intuition for Perplexity

What is the surprisal factor in predicting the next word?

d	biscuits	0.1
	samos	a 0.1
	coffee	0.01
	rice	0.001
	• •	
	but 0.	0000000001

 A better language model would assign a higher probability to the actual word that fills the blank (and hence lead to lesser

Measures of LM quality

- set) distribution?
 - perplexity!

• How likely does the model consider the text in a test set?

How closely does the model approximate the actual (test

Same measure can be used to address both questions —

Perplexity (II)

- How closely does the model approximate the actual (test set) distribution?
 - KL-divergence between two distributions X and Y $D_{KL}(XIIY) = \Sigma_{\sigma} Pr_{X}[\sigma] \log (Pr_{X}[\sigma]/Pr_{Y}[\sigma])$
 - Equals zero iff X = Y; Otherwise, positive
- How to measure $D_{KL}(XIIY)$? We don't know X! Cross entropy • between X and Y
 - $D_{KL}(XIIY) = \sum_{\sigma} Pr_X[\sigma] \log(1/Pr_Y[\sigma]) H(X)$ where $H(X) = -\sum_{\sigma} Pr_X[\sigma] \log Pr_X[\sigma]$
 - Empirical cross entropy: •

 $\frac{1}{|test|} \sum_{\sigma \in \mathcal{I}}$

$$\sum_{test} \log(\frac{1}{\Pr_y[\sigma]})$$

Perplexity vs. Empirical Cross Entropy

Empirical Cross Entropy (ECE)

$$\frac{1}{|\#words/\#sents|} \frac{1}{|\#sents|} \sum_{\sigma \in test} \log(\frac{1}{\Pr_{model}[\sigma]})$$
$$= \frac{1}{N} \sum_{\sigma} \log(\frac{1}{\Pr_{model}[\sigma]})$$
where $N = \#words$

• How does
$$\frac{1}{N} \sum_{\sigma} \log(\frac{1}{\Pr_{model}[\sigma]})$$
 relate to perplexity?

$$\sum_{test} \log(\frac{1}{\Pr_{model}[\sigma]})$$

Normalized Empirical Cross Entropy = ECE/(avg. length) =

Perplexity vs. Empirical Cross Entropy

Example perplexities for Ngram models trained on WSJ (80M words):

Unigram: 962, Bigram: 170, Trigram: 109

Thus, perplexity = exp^(normalized cross entropy)

Introduction to smoothing of LMs

Recall example

The dog chased a cat The cat chased away a mouse The mouse eats cheese

What is Pr("The dog eats cheese")?

Pr("<s> The dog eats cheese </s>") =

cheese") =

 $3/3 \cdot 1/3 \cdot 0/1 \cdot 1/1 \cdot 1/1 = 0!$ Due to unseen bigrams

Pr("The | <s>") · Pr("dog | The") · Pr("eats | dog") · Pr("cheese | eats") · Pr("</s>|

Unseen Ngrams

- never appear in the corpus
- If any unseen Ngram appears in a test sentence, the sentence will be assigned probability 0
- and overfits to the training data
 - don't occur in the training corpus

• Even with MLE estimates based on counts from large text corpora, there will be many unseen bigrams/trigrams that

 Problem with MLE estimates: maximises the likelihood of the observed data by assuming anything unseen cannot happen

Smoothing methods: Reserve some probability mass to Ngrams that

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

 $\Pr_{ML}(w_i|w_i)$

becomes

 $\Pr_{Lap}(w_i|w_{i-1})$

where *V* is the vocabulary size

$$(i-1) = \frac{\pi(w_{i-1}, w_i)}{\pi(w_{i-1})}$$

$$_{1}) = \frac{\pi(w_{i-1}, w_{i}) + 1}{\pi(w_{i-1}) + V}$$