
IIT Bombay, Perceptive Code LLC

ConvNets and Babysitting the Learning
Process

Arjun Jain | 10 March 2017

IIT Bombay, Perceptive Code LLC

Agenda

Deep Learning (for Computer Vision)2

• CNN building blocks: ReLU, MaxPool, Convolution

• Weight Initialization

• Baby sitting the Learning Process

• Hyperparameter Optimization

• Apply all these to a real world example – Classifying CIFAR-10

IIT Bombay, Perceptive Code LLC

Sources

Deep Learning (for Computer Vision)3

A lot of the material has been shamelessly and gratefully collected from:

• http://cs231n.stanford.edu/
• https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/

• https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

• https://research.fb.com/learning-to-segment/

• https://research.fb.com/deep-learning-tutorial-at-cvpr-2014/

• http://code.madbits.com/wiki/doku.php?id=tutorial_morestuff

• https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical4.pdf

• http://torch.ch/docs/developer-docs.html

• https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497c60517dc853/doc/module.md

• https://web.stanford.edu/group/pdplab/pdphandbook/handbookch6.html

• http://neuralnetworksanddeeplearning.com/chap2.html

IIT Bombay, Perceptive Code LLC

Brief History – The First ConvNet

Deep Learning (for Computer Vision)4

• Neocognitron: multiple convolutional and pooling

layers similar to modern networks, but the network

was trained by using a reinforcement scheme

• Did not still use backpropagation

• Translational invariant

Kunihiko Fukushima

IIT Bombay, Perceptive Code LLC

Brief History – LeNet-5 In Action

Deep Learning (for Computer Vision)5

IIT Bombay, Perceptive Code LLC

Brief History – LeNet-5 In Action

Deep Learning (for Computer Vision)6

IIT Bombay, Perceptive Code LLC

Brief History – The Tipping Point

Deep Learning (for Computer Vision)7

• 2012 ILSVRC: ImageNet Large-Scale Visual Recognition Challenge – Annual World Cup of Computer Vision

• More than a million training images and 1000 categories

IIT Bombay, Perceptive Code LLC

Brief History – The Tipping Point

Deep Learning (for Computer Vision)8

• Reported 15.4% Top 5 error rate. The next best entry achieved an error of 26.2%

• > 8000 citations

• The coming out party for CNNs in the computer vision community

• Shocked the computer vision community. Trained end-to-end on raw pixels, without using any feature

engineering methods

• From here it was apparent that deep learning would take over computer vision and that other methods would

not be able to catch up

IIT Bombay, Perceptive Code LLC

Why ConvNets?

Using Convolutional Networks for Human Pose Estimation9

IIT Bombay, Perceptive Code LLC

Used in Speech too!

Deep Learning (for Computer Vision)10

Deep Convolutional Neural Networks for
LVCSR
Tara N. Sainath, Abdel-rahman Mohamed, Brian
Kingsbury, Bhuvana Ramabhadran

Acoustic modelling from the signal domain using
CNNs
Pegah Ghahremani, Vimal Manohar, Daniel Povey,
Sanjeev Khudanpur

Deep Speech 2: End-to-End Speech Recognition
in English and Mandarin
Amodei et al., Baidu Research

IIT Bombay, Perceptive Code LLC

Brief History – So What Changed (since the 1970s)?

Deep Learning (for Computer Vision)11

• Three things:

• Availability of large amounts of labeled data - 15 million annotated images from a total of over 22,000

categories

• Compute power – A single NVidia TITAN X card churns of 11 TFLOPS with ~3500 cores

• Algorithms:

• ReLU - Found to decrease training time

• Dropout – prevent overfitting to the training data

IIT Bombay, Perceptive Code LLC

Deep Learning – Today – Human Computer Interaction

Deep Learning (for Computer Vision)12

IIT Bombay, Perceptive Code LLC

IIT Bombay, Perceptive Code LLC

Deep Learning – Today – Lip Reading

Deep Learning (for Computer Vision)14

IIT Bombay, Perceptive Code LLC

Deep Learning – Today – Lip Reading

Deep Learning (for Computer Vision)15

IIT Bombay, Perceptive Code LLC

Linear Classification: CIFAR-10

Deep Learning (for Computer Vision)16

10 labels
50,000 training images
10,000 test images
each image is an array of size 32 x 32 x 3 = 3072 numbers total

IIT Bombay, Perceptive Code LLC

Example with an Image with 4 Pixels, and 3 Classes (cat/dog/ship)

Deep Learning (for Computer Vision)17

IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)18

We want:

𝜕𝐿
𝜕𝒐

𝜕𝐿
𝜕𝑾𝟓

Multiple Layers – Back Prop: Chain Rule
𝜕𝐿
𝜕𝒐×

𝜕𝒐
𝜕𝒂(

×
𝜕𝒂𝟒
𝜕𝒂𝟑

𝜕𝐿
𝜕𝒐×

𝜕𝒐
𝜕𝒂𝟒

Now we can compute:

𝜕𝐿
𝜕𝑾𝟑

𝜕𝐿
𝜕𝒐	×

𝜕𝒐
𝜕𝒂𝟒

×
𝜕𝒂𝟒
𝜕𝒂𝟑

×
𝜕𝒂𝟑
𝜕𝑾𝟑

=
𝜕𝐿
𝜕𝑾𝟏

,
𝜕𝐿
𝜕𝑾𝟑

,
𝜕𝐿
𝜕𝑾𝟓

𝜕𝐿
𝜕𝑾𝟑

𝜕𝒐	
𝜕𝒂𝟒

	𝑖𝑠	𝑡ℎ𝑒	𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛	𝜖	ℝ<=>	(@)×<=>	(BC)

𝜕𝐿
𝜕𝒐 	𝑖𝑠	𝑡ℎ𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝜖	ℝ

G×H

IIT Bombay, Perceptive Code LLC

Multiple Layers – Feed Forward – In Torch7

Deep Learning (for Computer Vision)19

• Example: 3 modules layer1, layer2, layer3
• By hand:

• a1 = layer1:forward(x)
• a2 = layer2:forward(a1)
• o = layer3:forward(a2)

• Using nn.Sequential:
• model = nn.Sequential()
• model:add(layer1)
• model:add(layer2)
• model:add(layer3)
• o = model:forward(x)
(output is returned, but also stored internally)

IIT Bombay, Perceptive Code LLC

• criterion = nn.SomeCriterion()
• loss = criterion:forward(o, y)
• dl_do = criterion:backward(o, y)
• Gradient with respect to input is returned
• Arguments are input and gradient with respect to output
• By hand:

• l3_grad = layer3:backward(a2, dl_do)
• l2_grad = layer2:backward(a1, l3_grad)
• l1_grad = layer1:backward (x, l2_grad)

• Using nn.Sequential:
• l1_grad = model:backward(x, dl_do)

Multiple Layers – Feed Forward – In Torch7

Deep Learning (for Computer Vision)20

IIT Bombay, Perceptive Code LLC

Building Blocks:
Activation Functions

(ReLU)

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/ReLU.ipynb

Deep Learning (for Computer Vision)21

IIT Bombay, Perceptive Code LLC

Building Blocks – ReLU – Activation Function

Deep Learning (for Computer Vision)22

𝒏 ∈ 	ℝK nn.ReLU

𝑚M = max 0, 𝑛M

𝑚M = R
0				𝑖𝑓		𝑛M < 0
𝑛M 		𝑖𝑓		𝑛M > 0

𝒎	 ∈ 	ℝK

𝑚	

𝑚	 = 𝑛	

𝑛	

IIT Bombay, Perceptive Code LLC

Building Blocks – ReLU

Deep Learning (for Computer Vision)23

𝑚M = max 0, 𝑛M

𝑚M = R
0				𝑖𝑓		𝑛M < 0
𝑛M 		𝑖𝑓		𝑛M > 0

𝑚	

𝑚	 = 𝑛	

𝑛	

WXY
WHZ

= WXB[(\,HY)
WHZ

=]
0			𝑖𝑓		𝑛M < 0
1			𝑖𝑓		𝒏𝒋 > 0 ∈ 	ℝ

K

𝒏 ∈ 	ℝK

𝜕𝒎
𝜕𝒏

∈ 	ℝ<=> X ×<=>	(H) 𝜕𝐿
𝜕𝒎

∈ 	ℝG×<=>	(X)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈	ℝG×<=>	(H)

𝒎	 ∈ 	ℝKnn.ReLU

IIT Bombay, Perceptive Code LLC

Building Blocks – ReLU

Deep Learning (for Computer Vision)24

𝒏 ∈ 	ℝK

𝜕𝒎
𝜕𝒏

∈ 	ℝ<=> X ×<=>	(H) 𝜕𝐿
𝜕𝒎

∈ 	ℝG×<=>	(X)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈	ℝG×<=>	(H)

𝒎	 ∈ 	ℝKnn.ReLU

IIT Bombay, Perceptive Code LLC

Building Blocks – ReLU

Deep Learning (for Computer Vision)25

𝒏 ∈ 	ℝK

𝜕𝒎
𝜕𝒏

∈ 	ℝ<=> X ×<=>	(H) 𝜕𝐿
𝜕𝒎

∈ 	ℝG×<=>	(X)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈	ℝG×<=>	(H)

𝒎	 ∈ 	ℝKnn.ReLU

IIT Bombay, Perceptive Code LLC

Building Blocks – ReLU

Deep Learning (for Computer Vision)26

Expressiveness of Rectifier Networks
Xingyuan Pan, Vivek Srikumar

• Each hidden unit represents one hyperplane
(parameterized by weight and bias) that
bisects the input space into two half spaces.

• By choosing different weights in the hidden
layer we can obtain arbitrary arrangement of
n hyperplanes.

• The theory of hyperplane arrangement
(Zaslavsky, 1975) tells us that for a general
arrangement of n hyperplanes in d
dimensions, the space is divided into
∑ H

b
K
bc\ regions.

IIT Bombay, Perceptive Code LLC

Building Blocks – ReLU

Deep Learning (for Computer Vision)27

IIT Bombay, Perceptive Code LLC

Building Blocks:
Convolution

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/Convolution.ipynb

Deep Learning (for Computer Vision)28

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)29

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)30

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)31

Translational Invariance

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)32

1 2 3 4I:
1 2 3W:

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)33

1 2 3 4I:
1 2 3W:

1 2 3 4
1 2 3

1 2 3 4
1 2 3 Slide

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)34

1 2 3 4I:
1 2 3W:

1 2 3 4
1 2 3

1 2 3 4
1 2 3

1 2O: Correlation
OG = IGWG + IfWf + IgWg

Of = IfWG + IgWf + I(Wg

Slide

Dim = Dim(I) – Dim(W) + 1

OM = h IijMkG

lMX(m)

icG
Wi

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)35

1 2 3 4I:
1 2 3W:

1 2 3 4
1 2 3

1 2 3 4
1 2 3

1 2On:

Slide

1 2 3WopMq:																				 = 3 2 1W:

True
Convolution

On
G = IGWG

opMq + IfWf
opMq+IgWg

opMq

On
f = IfWG

opMq + IgWf
opMq+I(Wg

opMq

Dim = Dim(I) – Dim(W) + 1

OM = h IijMkG

lMX(m)

icG
WlMX m kijG

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)36

0 1 2 3 4 0I:
1 2 3W:

1 2 3 4
1 2 3

O: Dim = Dim(I) – Dim(W) + 1

Half-padding (same size output)

1 2 3 4

⋯0 1 2 3 4 0
1 2 3

0 1 2 3 4 0

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)37

0 1 2 3 4 0I:
1 2 3W:

1 2 3 4
1 2 3

O: Dim = Dim(I) – Dim(W)
Stride=2 + 11 2

0 1 2 3 4 0
1 2 3

0 1 2 3 4 0

Half-padding, Stride = 2

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Feed Forward

Deep Learning (for Computer Vision)38

𝒎	 ∈ 	ℝf𝒏 ∈ ℝ(Convolution

				𝑊			 ∈ 	ℝg

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)39

𝒎	 ∈ 	ℝf𝒏 ∈ ℝ(Convolution

				𝑊			 ∈ 	ℝg

𝜕𝒎
𝜕𝒏

∈	ℝf×(𝜕𝐿
𝜕𝒎

∈ 	ℝG×f
𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈ ℝG×(

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)40

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)41

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)42

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)43

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑾 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑾 = 𝜕𝐿𝑂G×𝐼G + 𝜕𝐿𝑂f×𝐼f 𝜕𝐿𝑂G×𝐼f + 𝜕𝐿𝑂f×𝐼g 𝜕𝐿𝑂G×𝐼g+	𝜕𝐿𝑂f×𝐼(

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)44

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑾 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑾 = 𝜕𝐿𝑂G×𝐼G + 𝜕𝐿𝑂f×𝐼f 𝜕𝐿𝑂G×𝐼f + 𝜕𝐿𝑂f×𝐼g 𝜕𝐿𝑂G×𝐼g+	𝜕𝐿𝑂f×𝐼(

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)45

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑾 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑾 = 𝜕𝐿𝑂G×𝐼G + 𝜕𝐿𝑂f×𝐼f 𝜕𝐿𝑂G×𝐼f + 𝜕𝐿𝑂f×𝐼g 𝜕𝐿𝑂G×𝐼g+	𝜕𝐿𝑂f×𝐼(

Wx
W𝑾

= Correlation(I, LO)

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)46

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)47

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑰 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑰 =

𝜕𝐿𝑂G×𝑊G 𝜕𝐿𝑂G×𝑊f + 𝜕𝐿𝑂f×𝑊G 𝜕𝐿𝑂G×𝑊g + 𝜕𝐿𝑂f×𝑊f 𝜕𝐿𝑂f×𝑊g

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)48

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑰 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑰 =

𝜕𝐿𝑂G×𝑊G 𝜕𝐿𝑂G×𝑊f + 𝜕𝐿𝑂f×𝑊G 𝜕𝐿𝑂G×𝑊g + 𝜕𝐿𝑂f×𝑊f 𝜕𝐿𝑂f×𝑊g

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)49

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑰 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑰 =

𝜕𝐿𝑂G×𝑊G 𝜕𝐿𝑂G×𝑊f + 𝜕𝐿𝑂f×𝑊G 𝜕𝐿𝑂G×𝑊g + 𝜕𝐿𝑂f×𝑊f 𝜕𝐿𝑂f×𝑊g

Wx
W𝑰
= Correlation(𝑊qBK, LOypMq)

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)50

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)51

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)52

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)53

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)54

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

				𝑊			∈ 	ℝG×z×|×|

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)55

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

				𝑊			∈ 	ℝG×z×|×|

=

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)56

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

				𝑊			

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)57

𝒎	 ∈ 	ℝf×g×g𝒏 ∈ ℝf×(×(Convolution

				𝑊			∈ 	ℝf×f×f×f

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)58

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

I[1, :, :]

I[2, :, :]

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

Image O = 2 x 3 x 3

O[1, :, :]

O[2, :, :]

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)59

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

I[1, :, :]

I[2, :, :]

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

2

+
1

Image O = 2 x 3 x 3

-3.1
O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)60

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

-5

+
1

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9
O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)61

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

-10

+
-1

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)62

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

7

+
-3

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
4.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)63

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

-13

+
1

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
4.1 -12.9

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)64

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

14

+
2

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
4.1 -12.9 16.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)65

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

-4

+
0

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)66

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

1

+
-1

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)67

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

5

+
4

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)68

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

7

+
-8

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)69

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

4

+
4

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)70

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

2

+
-4

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2 6.2

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)71

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

9

+
-4

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2 6.2
5.2

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)72

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

6

+
12

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2 6.2
5.2 18.2

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)73

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

3

+
4

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2 6.2
5.2 18.2 7.2

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)74

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

-1

+
-8

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2 6.2
5.2 18.2 7.2
-8.8

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)75

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

2

+
0

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

-0.8 8.2 6.2
5.2 18.2 7.2
-8.8 2.2

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

-0.8 8.2 6.2
5.2 18.2 7.2
-8.8 2.2 -7.8

-3.1 -3.9 -10.9
4.1 -12.9 16.1
-3.9 .1 9.1

Building Blocks - Convolution

Deep Learning (for Computer Vision)76

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
2 -1 3 1
5 -2 0 1

Image I = 2 x 4 x 4

1 -2
-2 1

Weights W = 2 x 2 x 2 x 2
(nOutputPlane x nInputPlane x kH x kW)

1 0
0 1

W[1, 1, :, :]

W[1, 2, :, :]

Bias b = 2
(nOutputPlane)

3 1
2 2

0 0
0 4

W[2, 1, :, :]

W[2, 2, :, :]

0.1
0.2

-12

+
4

I[1, :, :]

I[2, :, :]

Image O = 2 x 3 x 3

O[1, :, :]

O[2, :, :]

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)77

IIT Bombay, Perceptive Code LLC

Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)78

https://github.com/torch/nn/blob/master/SpatialConvolutionMM.lua

IIT Bombay, Perceptive Code LLC

Building Blocks - Convolution

Deep Learning (for Computer Vision)79

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

𝜕𝑳
𝜕𝒏 =

𝜕𝐿
𝜕𝒎×

𝜕𝒎
𝜕𝒏

(z×Gf×Gf)×(G{×G{)

∈ 	ℝG×(G{×G{)
𝜕𝐿
𝜕𝒎

∈	ℝG×(z×Gf×Gf)

				𝑊			

Wx
Wm

= Wx
W𝒎
	× W𝒎

Wm
∈	ℝG×z×|×|

IIT Bombay, Perceptive Code LLC

Aside: Dilated Convolution

Deep Learning (for Computer Vision)80

IIT Bombay, Perceptive Code LLC

Aside: Dilated Convolution

Deep Learning (for Computer Vision)81

Multi-Scale Context Aggregation by Dilated Convolutions
Fisher Yu, Vladlen Koltun

module = nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH], [dilationW], [dilationH])

IIT Bombay, Perceptive Code LLC

Everything is a Convolution!

Deep Learning (for Computer Vision)82

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ(𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

IIT Bombay, Perceptive Code LLC

Everything is a Convolution!

Deep Learning (for Computer Vision)83

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ(𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution

IIT Bombay, Perceptive Code LLC

Everything is a Convolution!

Deep Learning (for Computer Vision)84

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ(𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution
𝒑	 ∈ ℝg×G×G

𝑊 ∈	ℝG×g×f×f

Convolution

Each output channel (W[:, I, :, :])
corresponds to a row I of the matrix

IIT Bombay, Perceptive Code LLC

Everything is a Convolution!

Deep Learning (for Computer Vision)85

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ(𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution
𝒑	 ∈ ℝg×G×G 𝒒	 ∈ ℝf×G×G

𝑊 ∈	ℝG×g×f×f

Convolution

𝑊 ∈ 	ℝg×f×G×G

Convolution

IIT Bombay, Perceptive Code LLC

Building Blocks:
Max Pooling

Deep Learning (for Computer Vision)86

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/Max-Pool.ipynb

IIT Bombay, Perceptive Code LLC

Building Blocks – Pooling (Max Pooling)

Deep Learning (for Computer Vision)87

Max
Pooling 𝒎	 ∈ 	ℝf×f𝒏 ∈ 	 ℝ(×(

IIT Bombay, Perceptive Code LLC

Building Blocks – Pooling (Max Pooling)

Deep Learning (for Computer Vision)88

𝒎	 ∈ 	ℝf×f𝒏 ∈ 	 ℝ(×(Max
Pooling

𝜕𝒎
𝜕𝒏

∈	ℝ(f×f)×((×()
𝜕𝐿
𝜕𝒎

∈	ℝG×(f×f)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈ ℝG×((×()

IIT Bombay, Perceptive Code LLC

Building Blocks – Pooling (Max Pooling) – in Torch7

Deep Learning (for Computer Vision)89

Max
Pooling 𝒎	 ∈ 	ℝf×f𝒏 ∈ 	 ℝ(×(

𝜕𝒎
𝜕𝒏

∈	ℝ(f×f)×((×()
𝜕𝐿
𝜕𝒎

∈	ℝG×(f×f)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈ ℝG×((×()

IIT Bombay, Perceptive Code LLC

Other Pooling Layers

Deep Learning (for Computer Vision)90

• Average Pooling

• No Pooling? Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas
Brox, Martin Riedmiller

IIT Bombay, Perceptive Code LLC

Weight Initialization

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/Weight-init.ipynb

Deep Learning (for Computer Vision)91

IIT Bombay, Perceptive Code LLC

What happens when W=0 init is used?

𝒏	 ∈ 	ℝ(𝒎 ∈ 	ℝ(

Input Layer Output Layer

Hidden Layer

IIT Bombay, Perceptive Code LLC
93

- First idea: Small random numbers
(normal distribution between -0.01 to 0.01)

IIT Bombay, Perceptive Code LLC

- First idea: Small random numbers
(normal distribution between -0.01 to 0.01)

Works ~okay for small networks (like our one layer cifar-
10 classifier), but can lead to non-homogeneous
distributions of activations across the layers of a network.

IIT Bombay, Perceptive Code LLC

Lets look at
some
activation
statistics

E.g. 10-layer net with 500 neurons on each layer,
using tanh non-linearities, and initializing as
described in last slide.

IIT Bombay, Perceptive Code LLC

Lets look at
some
activation
statistics

IIT Bombay, Perceptive Code LLC

All activations
become zero!

Q: think about the
backward pass. What
do the gradients look
like?

Hint: think about backward
pass, the W update.

IIT Bombay, Perceptive Code LLC

Almost all neurons
completely saturated,
either -1 and 1.
Gradients will be all
zero.

*1.0 instead of *0.01

IIT Bombay, Perceptive Code LLC

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

IIT Bombay, Perceptive Code LLC

but when using the ReLU
nonlinearity it breaks.

IIT Bombay, Perceptive Code LLC

He et al., 2015
(note additional /2)

IIT Bombay, Perceptive Code LLC

He et al., 2015
(note additional /2)

IIT Bombay, Perceptive Code LLC

https://github.com/e-lab/torch-toolbox/blob/master/Weight-init/weight-init.lua

IIT Bombay, Perceptive Code LLC

Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks
by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks
by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks
by Krähenbühl et al., 2015

All you need is a good init
by Mishkin and Matas, 2015

…

IIT Bombay, Perceptive Code LLC

Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

IIT Bombay, Perceptive Code LLC

Babysitting the Learning Process

IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)107

Step 1: Data Preprocessing

• Assume X [NxD] is data matrix, each example in a row
• So, in our case we have 10 examples, each 4D

IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)108

Step 1: Data Preprocessing

• Assume X [NxD] is data matrix, each example in a row
• So, in our case we have 10 examples, each 4D

IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)109

Step 1: Data Preprocessing

• Assume X [NxD] is data matrix, each example in a row
• So, in our case we have 10 examples, each 4D

IIT Bombay, Perceptive Code LLC

Notebook

IIT Bombay, Perceptive Code LLC

Step 2: Choose the architecture:
say we start with single layer network:

input
layer

output layer

CIFAR-10
images, 3072
numbers

10 output
neurons, one
per class

IIT Bombay, Perceptive Code LLC

Notebook

IIT Bombay, Perceptive Code LLC

Notebook

Initialize model, create the state variables for the Linear Layer

IIT Bombay, Perceptive Code LLC

Notebook
The training and test function.

It does no_iterations on data based on
lr and lambda and returns the accuracy
of the classifier.

IIT Bombay, Perceptive Code LLC

Double check that the loss is reasonable:

Print Loss

disable regularization

loss ~2.3.
“correct ” for
10 classes

Run for single iteration,
print loss

IIT Bombay, Perceptive Code LLC

Double check that the loss is reasonable:

Print Loss

Crank it way up regularization

loss went up, good. (sanity check)

Run for single iteration,
print loss

IIT Bombay, Perceptive Code LLC

Lets try to train now…

Tip: Make sure that you
can overfit very small
portion of the training
data

In the code here:
- take the first 20 examples from

CIFAR-10
- turn off regularization (reg = 0.0)
- use vanilla ‘sgd’

IIT Bombay, Perceptive Code LLC

Lets try to train now…

Tip: Make sure that you
can overfit very small
portion of the training
data

Very small loss,
train accuracy 100,
nice!

IIT Bombay, Perceptive Code LLC

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

IIT Bombay, Perceptive Code LLC

Loss barely changing: Learning rate is
probably too low

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

Loss barely changing

IIT Bombay, Perceptive Code LLC

Loss barely changing: Learning rate is
probably too low

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low

Loss barely changing

IIT Bombay, Perceptive Code LLC

Loss barely changing: Learning rate is
probably too low

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low

Loss barely changing

Notice train/val accuracy goes to 17%
though, what’s up with that? (remember this
is softmax)

IIT Bombay, Perceptive Code LLC

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could possibly go
wrong?

IIT Bombay, Perceptive Code LLC

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Okay now lets try learning rate 1e6. What could possibly go
wrong?

cost: NaN almost always
means high learning
rate...

IIT Bombay, Perceptive Code LLC

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is somewhere
[1e-3 … 1e-7]

Lets try to train now…

I like to start with small
regularization and find
learning rate that makes
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

IIT Bombay, Perceptive Code LLC

Hyperparameter Optimization

IIT Bombay, Perceptive Code LLC

Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

IIT Bombay, Perceptive Code LLC

For example: run coarse search for 2000 iterations

Nice, 34% with only
2000 iterations

note it’s best to optimize in
log space!

IIT Bombay, Perceptive Code LLC

Now run finer search...
adjust range

37% - relatively good
for a 1-layer neural net
and only 2000
iterations (we are
getting see only
2000/50000 = 4% of
our training data!

IIT Bombay, Perceptive Code LLC

Now run finer search...

37% - relatively good
for a 1-layer neural net
and only 2000
iterations

Make sure the best
ones are not on the
boundary

adjust range

IIT Bombay, Perceptive Code LLC

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

IIT Bombay, Perceptive Code LLC

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function

IIT Bombay, Perceptive Code LLC

Karpathy’s cross-
validation “command
center”

IIT Bombay, Perceptive Code LLC

My cross-validation
“command center”

IIT Bombay, Perceptive Code LLC

My cross-validation
“command center”

IIT Bombay, Perceptive Code LLC

My cross-validation
“command center”

IIT Bombay, Perceptive Code LLC

Monitor and visualize the loss curve

IIT Bombay, Perceptive Code LLC

Loss

time

IIT Bombay, Perceptive Code LLC

Loss

time

Bad initialization
a prime suspect

IIT Bombay, Perceptive Code LLC

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

IIT Bombay, Perceptive Code LLC

Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates:
want this to be somewhere around 0.001 or so

IIT Bombay, Perceptive Code LLC

Visualize Features

Deep Learning (for Computer Vision)142

• Visualize features (feature maps need to be uncorrelated) and have high variance.

Good training: hidden units are sparse
across samples and across features.

Bad training: many hidden units ignore
the input and/or exhibit strong
correlations.

IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)143

• Good training: learned filters exhibit structure and are uncorrelated.

Visualize Weights (Conv Layer)

IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)144

Visualize Weights (Fully Connected Layer)

• Sparsity is natural in deep learning

• Visualization of the first FC layer’s sparsity pattern of LeNet

• It has a banded structure repeated 28 times (why? Hint: images are 28x28)

IIT Bombay, Perceptive Code LLC

Thank you!

