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Agenda

Deep Learning (for Computer Vision)2

• CNN building blocks: ReLU, MaxPool, Convolution

• Weight Initialization

• Baby sitting the Learning Process

• Hyperparameter Optimization

• Apply all these to a real world example – Classifying CIFAR-10
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Sources

Deep Learning (for Computer Vision)3

A lot of the material has been shamelessly and gratefully collected from:

• http://cs231n.stanford.edu/
• https://devblogs.nvidia.com/parallelforall/deep-learning-nutshell-history-training/

• https://adeshpande3.github.io/adeshpande3.github.io/The-9-Deep-Learning-Papers-You-Need-To-Know-About.html

• https://research.fb.com/learning-to-segment/

• https://research.fb.com/deep-learning-tutorial-at-cvpr-2014/

• http://code.madbits.com/wiki/doku.php?id=tutorial_morestuff

• https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/practicals/practical4.pdf

• http://torch.ch/docs/developer-docs.html

• https://github.com/torch/nn/blob/31d7d2bc86a914e2a9e6b3874c497c60517dc853/doc/module.md

• https://web.stanford.edu/group/pdplab/pdphandbook/handbookch6.html

• http://neuralnetworksanddeeplearning.com/chap2.html
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Brief History – The First ConvNet

Deep Learning (for Computer Vision)4

• Neocognitron: multiple convolutional and pooling

layers similar to modern networks, but the network 

was trained by using a reinforcement scheme

• Did not still use backpropagation

• Translational invariant

Kunihiko Fukushima
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Brief History – LeNet-5 In Action

Deep Learning (for Computer Vision)5
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Brief History – LeNet-5 In Action

Deep Learning (for Computer Vision)6
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Brief History – The Tipping Point

Deep Learning (for Computer Vision)7

• 2012 ILSVRC: ImageNet Large-Scale Visual Recognition Challenge – Annual World Cup of Computer Vision

• More than a million training images and 1000 categories
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Brief History – The Tipping Point

Deep Learning (for Computer Vision)8

• Reported 15.4% Top 5 error rate. The next best entry achieved an error of 26.2%

• > 8000 citations

• The coming out party for CNNs in the computer vision community

• Shocked the computer vision community. Trained end-to-end on raw pixels, without using any feature 

engineering methods

• From here it was apparent that deep learning would take over computer vision and that other methods would 

not be able to catch up



IIT Bombay, Perceptive Code LLC

Why ConvNets?

Using Convolutional Networks for Human Pose Estimation9
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Used in Speech too!

Deep Learning (for Computer Vision)10

Deep Convolutional Neural Networks for 
LVCSR 
Tara N. Sainath, Abdel-rahman Mohamed, Brian 
Kingsbury, Bhuvana Ramabhadran

Acoustic modelling from the signal domain using 
CNNs 
Pegah Ghahremani, Vimal Manohar, Daniel Povey, 
Sanjeev Khudanpur

Deep Speech 2: End-to-End Speech Recognition 
in English and Mandarin
Amodei et al., Baidu Research



IIT Bombay, Perceptive Code LLC

Brief History – So What Changed (since the 1970s)?

Deep Learning (for Computer Vision)11

• Three things:

• Availability of large amounts of labeled data - 15 million annotated images from a total of over 22,000 

categories

• Compute power – A single NVidia TITAN X card churns of 11 TFLOPS with ~3500 cores 

• Algorithms:

• ReLU - Found to decrease training time

• Dropout – prevent overfitting to the training data
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Deep Learning – Today – Human Computer Interaction

Deep Learning (for Computer Vision)12
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Deep Learning – Today – Lip Reading

Deep Learning (for Computer Vision)14
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Deep Learning – Today – Lip Reading

Deep Learning (for Computer Vision)15
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Linear Classification: CIFAR-10

Deep Learning (for Computer Vision)16

10 labels 
50,000 training images
10,000 test images
each image is an array of size 32 x 32 x 3 = 3072 numbers total
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Example with an Image with 4 Pixels, and 3 Classes (cat/dog/ship)

Deep Learning (for Computer Vision)17



IIT Bombay, Perceptive Code LLCDeep Learning (for Computer Vision)18

We want:

𝜕𝐿
𝜕𝒐

𝜕𝐿
𝜕𝑾𝟓

Multiple Layers – Back Prop: Chain Rule
𝜕𝐿
𝜕𝒐×

𝜕𝒐
𝜕𝒂(

×
𝜕𝒂𝟒
𝜕𝒂𝟑

𝜕𝐿
𝜕𝒐×

𝜕𝒐
𝜕𝒂𝟒

Now we can compute:

𝜕𝐿
𝜕𝑾𝟑

𝜕𝐿
𝜕𝒐	×

𝜕𝒐
𝜕𝒂𝟒

×
𝜕𝒂𝟒
𝜕𝒂𝟑

×
𝜕𝒂𝟑
𝜕𝑾𝟑

=
𝜕𝐿
𝜕𝑾𝟏

,
𝜕𝐿
𝜕𝑾𝟑

,
𝜕𝐿
𝜕𝑾𝟓

𝜕𝐿
𝜕𝑾𝟑

𝜕𝒐	
𝜕𝒂𝟒

	𝑖𝑠	𝑡ℎ𝑒	𝐽𝑎𝑐𝑜𝑏𝑖𝑎𝑛	𝜖	ℝ<=>	(@	)×<=>	(BC)

𝜕𝐿
𝜕𝒐 	𝑖𝑠	𝑡ℎ𝑒	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡	𝜖	ℝ

G×H
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Multiple Layers – Feed Forward – In Torch7

Deep Learning (for Computer Vision)19

• Example: 3 modules layer1, layer2, layer3
• By hand:

• a1 = layer1:forward(x)
• a2 = layer2:forward(a1)
• o = layer3:forward(a2)

• Using nn.Sequential:
• model = nn.Sequential()
• model:add(layer1)
• model:add(layer2)
• model:add(layer3)
• o = model:forward(x)
(output is returned, but also stored internally)
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• criterion = nn.SomeCriterion()
• loss = criterion:forward(o, y)
• dl_do = criterion:backward(o, y)
• Gradient with respect to input is returned
• Arguments are input and gradient with respect to output
• By hand:

• l3_grad = layer3:backward(a2, dl_do)
• l2_grad = layer2:backward(a1, l3_grad)
• l1_grad = layer1:backward (x, l2_grad)

• Using nn.Sequential:
• l1_grad = model:backward(x, dl_do)

Multiple Layers – Feed Forward – In Torch7

Deep Learning (for Computer Vision)20
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Building Blocks:
Activation Functions

(ReLU)

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/ReLU.ipynb

Deep Learning (for Computer Vision)21
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Building Blocks – ReLU – Activation Function

Deep Learning (for Computer Vision)22

𝒏 ∈ 	ℝK nn.ReLU

𝑚M = max 0, 𝑛M

𝑚M = R
0				𝑖𝑓		𝑛M < 0
𝑛M 		𝑖𝑓		𝑛M > 0

𝒎	 ∈ 	ℝK

𝑚	

𝑚	 = 𝑛	

𝑛	
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Building Blocks – ReLU

Deep Learning (for Computer Vision)23

𝑚M = max 0, 𝑛M

𝑚M = R
0				𝑖𝑓		𝑛M < 0
𝑛M 		𝑖𝑓		𝑛M > 0

𝑚	

𝑚	 = 𝑛	

𝑛	

WXY
WHZ

= WXB[(\,HY)
WHZ

= ]
0			𝑖𝑓		𝑛M < 0
1			𝑖𝑓		𝒏𝒋 > 0 ∈ 	ℝ

K

𝒏 ∈ 	ℝK

𝜕𝒎
𝜕𝒏

∈ 	ℝ<=> X ×<=>	(H) 𝜕𝐿
𝜕𝒎

∈ 	ℝG×<=>	(X)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈	ℝG×<=>	(H)

𝒎	 ∈ 	ℝKnn.ReLU
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Building Blocks – ReLU

Deep Learning (for Computer Vision)24

𝒏 ∈ 	ℝK

𝜕𝒎
𝜕𝒏

∈ 	ℝ<=> X ×<=>	(H) 𝜕𝐿
𝜕𝒎

∈ 	ℝG×<=>	(X)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈	ℝG×<=>	(H)

𝒎	 ∈ 	ℝKnn.ReLU
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Building Blocks – ReLU

Deep Learning (for Computer Vision)25

𝒏 ∈ 	ℝK

𝜕𝒎
𝜕𝒏

∈ 	ℝ<=> X ×<=>	(H) 𝜕𝐿
𝜕𝒎

∈ 	ℝG×<=>	(X)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈	ℝG×<=>	(H)

𝒎	 ∈ 	ℝKnn.ReLU
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Building Blocks – ReLU

Deep Learning (for Computer Vision)26

Expressiveness of Rectifier Networks
Xingyuan Pan, Vivek Srikumar

• Each hidden unit represents one hyperplane 
(parameterized by weight  and bias) that 
bisects the input space into two half spaces.

• By choosing different weights in the hidden 
layer we can obtain arbitrary arrangement of 
n hyperplanes. 

• The theory of hyperplane arrangement 
(Zaslavsky, 1975) tells us that for a general 
arrangement of n hyperplanes in d 
dimensions, the space is divided into 
∑ H

b
K
bc\ regions. 
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Building Blocks – ReLU

Deep Learning (for Computer Vision)27
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Building Blocks:
Convolution

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/Convolution.ipynb

Deep Learning (for Computer Vision)28
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Building Blocks - Convolution

Deep Learning (for Computer Vision)29
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Building Blocks - Convolution

Deep Learning (for Computer Vision)30
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Building Blocks - Convolution

Deep Learning (for Computer Vision)31

Translational Invariance
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Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)32

1 2 3 4I:
1 2 3W:
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Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)33

1 2 3 4I:
1 2 3W:

1 2 3 4
1 2 3

1 2 3 4
1 2 3 Slide
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Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)34

1 2 3 4I:
1 2 3W:

1 2 3 4
1 2 3

1 2 3 4
1 2 3

1 2O: Correlation
OG = IGWG + IfWf + IgWg

Of = IfWG + IgWf + I(Wg

Slide

Dim = Dim(I) – Dim(W) + 1 

OM = h IijMkG

lMX(m)

icG
Wi
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Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)35

1 2 3 4I:
1 2 3W:

1 2 3 4
1 2 3

1 2 3 4
1 2 3

1 2On:

Slide

1 2 3WopMq:																				 = 3 2 1W:

True
Convolution

On
G = IGWG

opMq + IfWf
opMq+IgWg

opMq

On
f = IfWG

opMq + IgWf
opMq+I(Wg

opMq

Dim = Dim(I) – Dim(W) + 1 

OM = h IijMkG

lMX(m)

icG
WlMX m kijG
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Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)36

0 1 2 3 4 0I:
1 2 3W:

1 2 3 4
1 2 3

O: Dim = Dim(I) – Dim(W) + 1 

Half-padding (same size output)

1 2 3 4

⋯0 1 2 3 4 0
1 2 3

0 1 2 3 4 0
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Building Blocks – Convolution (Discrete 1D)

Deep Learning (for Computer Vision)37

0 1 2 3 4 0I:
1 2 3W:

1 2 3 4
1 2 3

O: Dim = Dim(I) – Dim(W)
Stride=2 + 11 2

0 1 2 3 4 0
1 2 3

0 1 2 3 4 0

Half-padding, Stride = 2
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Building Blocks – Convolution – Feed Forward

Deep Learning (for Computer Vision)38

𝒎	 ∈ 	ℝf𝒏 ∈ ℝ( Convolution

				𝑊			 ∈ 	ℝg
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)39

𝒎	 ∈ 	ℝf𝒏 ∈ ℝ( Convolution

				𝑊			 ∈ 	ℝg

𝜕𝒎
𝜕𝒏

∈	ℝf×( 𝜕𝐿
𝜕𝒎

∈ 	ℝG×f
𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈ ℝG×(
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)40

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)41

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)42

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)43

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑾 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑾 = 𝜕𝐿𝑂G×𝐼G + 𝜕𝐿𝑂f×𝐼f 𝜕𝐿𝑂G×𝐼f + 𝜕𝐿𝑂f×𝐼g 𝜕𝐿𝑂G×𝐼g+	𝜕𝐿𝑂f×𝐼(
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)44

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑾 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑾 = 𝜕𝐿𝑂G×𝐼G + 𝜕𝐿𝑂f×𝐼f 𝜕𝐿𝑂G×𝐼f + 𝜕𝐿𝑂f×𝐼g 𝜕𝐿𝑂G×𝐼g+	𝜕𝐿𝑂f×𝐼(
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)45

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑾 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑾 = 𝜕𝐿𝑂G×𝐼G + 𝜕𝐿𝑂f×𝐼f 𝜕𝐿𝑂G×𝐼f + 𝜕𝐿𝑂f×𝐼g 𝜕𝐿𝑂G×𝐼g+	𝜕𝐿𝑂f×𝐼(

Wx
W𝑾

= Correlation(I, LO)
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)46

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)47

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑰 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑰 =

𝜕𝐿𝑂G×𝑊G 𝜕𝐿𝑂G×𝑊f + 𝜕𝐿𝑂f×𝑊G 𝜕𝐿𝑂G×𝑊g + 𝜕𝐿𝑂f×𝑊f 𝜕𝐿𝑂f×𝑊g
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)48

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑰 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑰 =

𝜕𝐿𝑂G×𝑊G 𝜕𝐿𝑂G×𝑊f + 𝜕𝐿𝑂f×𝑊G 𝜕𝐿𝑂G×𝑊g + 𝜕𝐿𝑂f×𝑊f 𝜕𝐿𝑂f×𝑊g
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Building Blocks – Convolution – Backward

Deep Learning (for Computer Vision)49

𝜕𝑶
𝜕𝑰 =

𝑊G 𝑊f 𝑊g 0
0 𝑊G 𝑊f 𝑊g

𝜕𝑶
𝜕𝑾 = 𝐼G 𝐼f 𝐼g

𝐼f 𝐼g 𝐼(

𝜕𝐿
𝜕𝑶 = 𝜕𝐿𝑂G 𝜕𝐿𝑂f

𝜕𝐿
𝜕𝑰 =

𝜕𝐿
𝜕𝑶×

𝜕𝑶
𝜕𝑰 =

𝜕𝐿𝑂G×𝑊G 𝜕𝐿𝑂G×𝑊f + 𝜕𝐿𝑂f×𝑊G 𝜕𝐿𝑂G×𝑊g + 𝜕𝐿𝑂f×𝑊f 𝜕𝐿𝑂f×𝑊g

Wx
W𝑰
= Correlation(𝑊qBK, LOypMq)
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Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)50
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Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)51
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Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)52
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Building Blocks – Convolution – in Torch7

Deep Learning (for Computer Vision)53
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Building Blocks - Convolution

Deep Learning (for Computer Vision)54

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

				𝑊			∈ 	ℝG×z×|×|
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Building Blocks - Convolution

Deep Learning (for Computer Vision)55

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

				𝑊			∈ 	ℝG×z×|×|

=
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Building Blocks - Convolution

Deep Learning (for Computer Vision)56

𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

				𝑊			
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Building Blocks - Convolution

Deep Learning (for Computer Vision)57

𝒎	 ∈ 	ℝf×g×g𝒏 ∈ ℝf×(×( Convolution

				𝑊			∈ 	ℝf×f×f×f
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Building Blocks - Convolution

Deep Learning (for Computer Vision)58

1 -2 2 2
2 1 3 -2
-2 3 -3 1
-1 2 -4 2

3 0 0 0
-2 -2 1 -1
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Building Blocks – Convolution – in Torch7
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https://github.com/torch/nn/blob/master/SpatialConvolutionMM.lua
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𝒎	 ∈ 	ℝz×Gf×Gf𝒏 ∈ ℝG{×G{ Convolution

𝜕𝑳
𝜕𝒏 =

𝜕𝐿
𝜕𝒎×

𝜕𝒎
𝜕𝒏

(z×Gf×Gf)×(G{×G{)

∈ 	ℝG×(G{×G{)
𝜕𝐿
𝜕𝒎

∈	ℝG×(z×Gf×Gf)

				𝑊			

Wx
Wm

= Wx
W𝒎
	× W𝒎

Wm
∈	ℝG×z×|×|



IIT Bombay, Perceptive Code LLC

Aside: Dilated Convolution

Deep Learning (for Computer Vision)80



IIT Bombay, Perceptive Code LLC

Aside: Dilated Convolution

Deep Learning (for Computer Vision)81

Multi-Scale Context Aggregation by Dilated Convolutions
Fisher Yu, Vladlen Koltun

module = nn.SpatialDilatedConvolution(nInputPlane, nOutputPlane, kW, kH, [dW], [dH], [padW], [padH], [dilationW], [dilationH])
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𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ( 𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g
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𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ( 𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution
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𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ( 𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution
𝒑	 ∈ ℝg×G×G

𝑊 ∈	ℝG×g×f×f

Convolution

Each output channel (W[:, I, :, :]) 
corresponds to  a row I of the matrix 
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𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution Flatten

𝒐	 ∈ 	ℝ( 𝒑	 ∈ 	ℝg
𝒒	 ∈ 	ℝf

Linear Linear

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

g×(

𝑊 = 	
	 ⋯ 	
⋮ ⋱ ⋮
	 ⋯ 	

f×g

𝒎	 ∈ 	ℝG×f×f

𝒏 ∈ ℝg×g

𝑊 ∈	ℝG×G×f×f

Convolution
𝒑	 ∈ ℝg×G×G 𝒒	 ∈ ℝf×G×G

𝑊 ∈	ℝG×g×f×f

Convolution

𝑊 ∈ 	ℝg×f×G×G

Convolution



IIT Bombay, Perceptive Code LLC

Building Blocks:
Max Pooling

Deep Learning (for Computer Vision)86

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/Max-Pool.ipynb
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Max
Pooling 𝒎	 ∈ 	ℝf×f𝒏 ∈ 	 ℝ(×(
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𝒎	 ∈ 	ℝf×f𝒏 ∈ 	 ℝ(×( Max
Pooling

𝜕𝒎
𝜕𝒏

∈	ℝ(f×f)×((×()
𝜕𝐿
𝜕𝒎

∈	ℝG×(f×f)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈ ℝG×((×()
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Max
Pooling 𝒎	 ∈ 	ℝf×f𝒏 ∈ 	 ℝ(×(

𝜕𝒎
𝜕𝒏

∈	ℝ(f×f)×((×()
𝜕𝐿
𝜕𝒎

∈	ℝG×(f×f)𝜕𝐿
𝜕𝒎 `

𝜕𝒎
𝜕𝒏

∈ ℝG×((×()
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Other Pooling Layers

Deep Learning (for Computer Vision)90

• Average Pooling

• No Pooling? Striving for Simplicity: The All Convolutional Net
Jost Tobias Springenberg, Alexey Dosovitskiy, Thomas 
Brox, Martin Riedmiller
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Weight Initialization

https://github.com/stencilman/CS763_Spring2017/blob/master/Notebooks/Weight-init.ipynb

Deep Learning (for Computer Vision)91
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What happens when W=0 init is used?

𝒏	 ∈ 	ℝ( 𝒎 ∈ 	ℝ(

Input Layer Output Layer

Hidden Layer
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- First idea: Small random numbers 
(normal distribution between -0.01 to 0.01)
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- First idea: Small random numbers 
(normal distribution between -0.01 to 0.01)

Works ~okay for small networks (like our one layer cifar-
10 classifier), but can lead to non-homogeneous 
distributions of activations across the layers of a network.
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Lets look at 
some 
activation 
statistics

E.g. 10-layer net with 500 neurons on each layer, 
using tanh non-linearities, and initializing as 
described in last slide.
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Lets look at 
some 
activation 
statistics
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All activations 
become zero!

Q: think about the 
backward pass. What 
do the gradients look 
like?

Hint: think about backward 
pass, the W update.
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Almost all neurons 
completely saturated, 
either -1 and 1. 
Gradients will be all 
zero.

*1.0 instead of *0.01
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“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation 
assumes linear activations)
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but when using the ReLU
nonlinearity it breaks.
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He et al., 2015
(note additional /2)
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He et al., 2015
(note additional /2)
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https://github.com/e-lab/torch-toolbox/blob/master/Weight-init/weight-init.lua
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Proper initialization is an active area of research…

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks 
by Saxe et al, 2013

Random walk initialization for training very deep feedforward networks
by Sussillo and Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks
by Krähenbühl et al., 2015

All you need is a good init
by Mishkin and Matas, 2015

…
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Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]
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Babysitting the Learning Process
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Step 1: Data Preprocessing

• Assume X [NxD] is data matrix, each example in a row
• So, in our case we have 10 examples, each 4D 
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Step 1: Data Preprocessing

• Assume X [NxD] is data matrix, each example in a row
• So, in our case we have 10 examples, each 4D 
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Step 1: Data Preprocessing

• Assume X [NxD] is data matrix, each example in a row
• So, in our case we have 10 examples, each 4D 
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Notebook 
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Step 2: Choose the architecture:
say we start with single layer network:

input 
layer

output layer

CIFAR-10 
images, 3072 
numbers

10 output 
neurons, one 
per class
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Notebook 
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Notebook

Initialize model, create the state variables for the Linear Layer
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Notebook 
The training and test function.

It does no_iterations on data based on 
lr and lambda and returns the accuracy 
of the classifier.
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Double check that the loss is reasonable:

Print Loss

disable regularization

loss ~2.3.
“correct ” for 
10 classes

Run for single iteration, 
print loss
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Double check that the loss is reasonable:

Print Loss

Crank it way up regularization

loss went up, good. (sanity check)

Run for single iteration, 
print loss
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Lets try to train now…  

Tip: Make sure that you 
can overfit very small 
portion of the training 
data

In the code here:
- take the first 20 examples from 

CIFAR-10
- turn off regularization (reg = 0.0)
- use vanilla ‘sgd’
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Lets try to train now…  

Tip: Make sure that you 
can overfit very small 
portion of the training 
data

Very small loss, 
train accuracy 100, 
nice!
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Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.
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Loss barely changing: Learning rate is 
probably too low

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.

Loss barely changing 
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Loss barely changing: Learning rate is 
probably too low

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.

loss not going down:
learning rate too low

Loss barely changing 
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Loss barely changing: Learning rate is 
probably too low

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.

loss not going down:
learning rate too low

Loss barely changing 

Notice train/val accuracy goes to 17% 
though, what’s up with that? (remember this 
is softmax)
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Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could possibly go 
wrong?
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Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

Okay now lets try learning rate 1e6. What could possibly go 
wrong?

cost: NaN almost always 
means high learning 
rate...
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3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we 
should be cross-validating is somewhere 
[1e-3 … 1e-7]

Lets try to train now…  

I like to start with small 
regularization and find 
learning rate that makes 
the loss go down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high
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Hyperparameter Optimization
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Cross-validation strategy

I like to do coarse -> fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver: 
If the cost is ever > 3 * original cost, break out early
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For example: run coarse search  for 2000 iterations

Nice, 34% with only 
2000 iterations

note it’s best to optimize in 
log space!
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Now run finer search...
adjust range

37% - relatively good 
for a 1-layer neural net
and only 2000 
iterations (we are 
getting see only 
2000/50000 = 4% of 
our training data!
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Now run finer search...

37% - relatively good 
for a 1-layer neural net
and only 2000 
iterations

Make sure the best 
ones are not on the 
boundary

adjust range
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Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012
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Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks practitioner
music = loss function
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Karpathy’s cross-
validation “command 
center”
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My cross-validation 
“command center”
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My cross-validation 
“command center”
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My cross-validation 
“command center”
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Monitor and visualize the loss curve
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Loss

time
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Loss

time

Bad initialization
a prime suspect
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Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?
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Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates:
want this to be somewhere around 0.001 or so



IIT Bombay, Perceptive Code LLC

Visualize Features 

Deep Learning (for Computer Vision)142

• Visualize features (feature maps need to be uncorrelated) and have high variance. 

Good training: hidden units are sparse 
across samples and across features. 

Bad training: many hidden units ignore 
the input and/or exhibit strong 
correlations. 
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• Good training: learned filters exhibit structure and are uncorrelated.

Visualize Weights (Conv Layer)
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Visualize Weights (Fully Connected Layer)

• Sparsity is natural in deep learning

• Visualization of the first FC layer’s sparsity pattern of LeNet

• It has a banded structure repeated 28 times (why? Hint: images are 28x28)
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Thank you!


