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Quiz 2 Postmortem

Common Mistakes: 1 Markov
model

2(a) Omitting mixture

weights from parameters  2a (HMM
Parameters)

2(b) Mistaking
parameters for hidden/
observed variables

2b (Observed/
hidden)

Preferred order of topics to be revised:
HMMs — Tied state triphones,

HMMs — Training (EM/Baum-Welch)
WEFSTs in ASR systems

HMMs — Decoding (Viterbi)

B Correct

15

B Incorrect

30 45

60



Recap: Feedforward Neural Networks

Input layer, zero or more hidden layers and
an output layer

Nodes in hidden layers compute non-linear

(activation) functions of a linear /‘\

combination of the inputs

Common activation functions include

sigmoid, tanh, ReLU, etc. é'z /‘ ’\ f\

NN outputs typlcally normalised by
applying a softmax function to the output
layer
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softmax(xq,...,Tx) =



Recap: Training Neural Networks

NNs optimized to minimize a loss function,

L, that is a score of the network’s

performance (e.g. squared error, cross 1
entropy, etc.) ]

T
To minimize L, use (mini-batch) stochastic /‘\
gradient descent ‘

ke

\Q
3

Need to efficiently compute 0L/0w (and
hence 0L/ou) for all w

Use backpropagation to compute 0L/0u ‘T ‘
for every node u in the network

Key fact backpropagation is based on:
Chain rule of differentiation



Neural Networks for ASR

Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use NNs to
estimate HMM observation probabilities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model



Neural Networks for ASR

Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use NNs to
estimate HMM observation probabilities



Decoding an ASR system

Recall how we decode the most likely word sequence W for an
acoustic sequence O:

W* = arg max Pr(O|W) Pr(W)
14
The acoustic model Pr(O|W) can be further decomposed as

(here, Q,M represent triphone, monophone sequences resp.):

Pr(O|W) = Z Pr(O,Q, M|W)

= Z Pr(0]Q, M, W) Pr(Q|M, W) Pr(M|W)
Q,M

~ Z Pr(O|Q) Pr(Q|M) Pr(M|W)

Q,M



Hybrid system decoding

Pr(O|W) = Z Pr(O|Q) Pr(Q|M) Pr(M|W)

Q,M

You’ve seen Pr(O|Q) estimated using a Gaussian Mixture Model.
Let’s use a neural network instead to model Pr(O|Q).

Pr(0O|Q) = H Pr(o¢|q:)
o) - Pelalo) P
Pr(q:|o¢)
Pr(g: )

where o; is the acoustic vector at time t and ¢ is a triphone HMM state

Here, Pr(q:lo:) are posteriors from a trained neural network. Pr(o/|q;) is
then a scaled posterior.



Computing Pr(g:lo;) using a deep NN

How do we get these labels
in order to train the NN?

Triphone
state labels

39 features
in one frame

@
Fixed window of
5 speech frames




Triphone labels

- Forced alignment: Use current acoustic model to find the most
likely sequence of HMM states given a sequence of acoustic
vectors. (Algorithm to help compute this?)

. The "Viterbi paths” for the training data is referred to as
forced alignment

sil! sill sil’ sil? ee’
/b/ /b/ /b/ b/ /k/
aa aa aa aa sil
Triphone Phone Training word
H_MMS_ sequence Dictionary sequence
(Viterbi) Dl DN Wi, ..., WN

01 02 03 04 oT



Computing Pr(g:o:) using a deep NN

How do we get these labels
in order to train the NN?
(Viterbi) Forced alignment

Triphone
state labels

39 features
in one frame

Fixed window of
5 speech frames




Computing priors Pr(g:)

To compute HMM observation probabilities, Pr(o:g:), we need
both Pr(g:|o:) and Pr(g:)

The posterior probabilities Pr(g:lo;) are computed using a trained
neural network

Pr(q:) are relative frequencies of each triphone state as
determined by the forced Viterbi alignment of the training data



Hybrid Networks

The hybrid networks are trained with a minimum cross-
entropy criterion

L(y,9) = — ) yilog(9:)
Advantages of hybrid systems:

1. No assumptions made about acoustic vectors being
uncorrelated: Multiple inputs used from a window of
time steps

2. Discriminative objective function



Neural Networks for ASR

Two main categories of approaches have been explored:

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model



Tandem system

First, train an NN to estimate the posterior probabilities of
each subword unit (monophone, triphone state, etc.)

In a hybrid system, these posteriors (after scaling) would be
used as observation probabilities for the HMM acoustic
models

In the tandem system, the NN outputs are used as “feature”
inputs to HMM-GMM models



Bottleneck Features

Output Layer ‘ ‘

.
v N
iden Layers x>< ><‘
Input Layer :><C Q><0

Use a low-dimensional bottleneck layer representation to extract features

Bottleneck Layer

These bottleneck features are in turn used as inputs to HMM-GMM
models



History of Neural Networks in ASR

- Neural networks for speech recognition were explored as early
as 1987

- Deep neural networks for speech
- Beat state-of-the-art on the TIMIT corpus [M09]

- Significant improvements shown on large-vocabulary
systems [D11]

- Dominant ASR paradigm [H12]

[IMO9] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition,” NIPS Workshop on Deep Learning

for Speech Recognition, 20009.
[D11] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary

Speech Recognition,” TASL 20(1), pp. 30-42, 2012.
[H12] G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”, IEEE Signal Processing
Magazine, 2012.



What’s new?

Hybrid systems were introduced in the late 80s. Why have
NN-based systems come back to prominence?

Important developments
Vast quantities of data available for ASR training
Fast GPU-based training
Improvements in optimization/initialization techniques
Deeper networks enabled by fast training

Larger output spaces enabled by fast training and
availability of data



Pretraining

Use unlabelled data to find good regions of the weight space
that will help model the distribution of inputs

Generative pretraining:

= Learn layers of feature detectors one at a time with states of
feature detector in one layer acting as observed data for
training the next layer.

= Provides better initialisation for a discriminative “fine-
tuning phase” that uses backpropagation to adjust the
weights from the “pretraining phase”



Pretraining contd.

Learn a single layer of feature detectors by fitting a generative
model to the input data: Use Restricted Boltzmann Machines
(RBMs) [HO2]

An RBM is an undirected model: layer of visible
units connected to a layer of hidden units, but no
intra-visible or intra-hidden unit connections

E(v,h) = —av — bh — h' Wy

where a, b are biases of the visible, hidden units and W is the
weight matrix between the layers

[HO2] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural Comput., 14, 1771-1800, '02.



Pretraining contd.

Learn the weights and biases of the RBM to minimise the
empirical negative log-likelihood of the training data

How? Use an efficient learning algorithm called contrastive
divergence [H02]

RBMs can be stacked to make a “deep belief network”:
1) Inferred hidden states can be used as data to train a second

RBM 2) repeat this step

[HO2] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”
Neural Comput., 14, 1771-1800, '02.



Discriminative fine-tuning

After learning a DBN by layerwise training of the RBMs, resulting
weights can be used as initialisation for a deep feedforward NN

Introduce a final softmax layer and train the whole DNN
discriminatively using backpropagation

DNN
softmax
DBN Aw.
RBMas(h) RBMs(h) RBMs(h)
Ws Ws A v
RBMz(h) RBM;3(v) RBMaz(h) RBM:z(h)
Wo Wo A W
RBM1(h) RBMa(v) RBM1(h) RBMi(h)
W W AW,

0102030405 0102030405 0102030405



Pretraining

Pretraining is fast as it is done layer-by-layer with contrastive
divergence

Other pretraining techniques include stacked autoencoders,
greedy discriminative pretraining. (Details not discussed in

this class.)

Turns out pretraining is not a crucial step for large speech
corpora



Summary of DNN-HMM acoustic models
Comparison against HMM-GMM on different tasks

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND

GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

HOURS OF
TASK

SWITCHBOARD (TEST SET 1) 309
SWITCHBOARD (TEST SET 2) 309
ENGLISH BROADCAST NEWS 50
BING VOICE SEARCH

(SENTENCE ERROR RATES) 24
GOOGLE VOICE INPUT 5,870
YOUTUBE 1,400

TRAINING DATA DNN-HMM

18.5
16.1
17.5

30.4
12.3
47.6

GMM-HMM GMM-HMM
WITH SAME DATA WITH MORE DATA
27.4 18.6 (2,000 H)
23.6 17.1 (2,000 H)
18.8
36.2
16.0 (>> 5,870 H)
52.3

ots more data)

Hybrid DNN-HMM systems consistently outperform GMM-
HMM systems (sometimes even when the latter is trained with

Table copied from G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”,

IEEE Signal Processing Magazine, 2012.



Multilingual Training
(Hybrid DNN/HMM System)

i Stacked RBMs : i DNN finetuned : i DNN finetuned i i DNN finetuned l i DNN finetuned
' trainedonPL | on CZ i | on DE i | on PT i | on PL
u:\:::::::;;‘ i':\:\:::::::/::.‘ *::\:::::::/::J
\ S~ - / ) S~ - / \ -~ < - /
~~<_ | b T~ ! - /

Languages Dev | Eval
RU 27.5 | 24.3
CZ —RU 27.5 | 24.6
CZ —DE —FR —SP —RU 26.6 | 23.8
CZ —DE —FR —SP —PT —RU | 26.3 | 23.6

Monolingual and multilingual DNN results on Russian

Image/Table from Ghoshal et al., “Multilingual training of deep neural networks”, ICASSP, 2013.



Multilingual Training
(Tandem System)

/ softmax layer for language 1

/ bottleneck
Iaye/ softmax layer for language 2

Language-independent\ softmax layer for language N
hidden layers

Language Czech English German Portugese Spanish Russian Turkish Viethamese

HMM 22.6 16.8 26.6 27.0 23.0 33.5 32.0 27.3
mono-BN 19.7 15.9 20.5 27.2 23.2 32.5 30.4 23.4
1-Softmax 19.4 15.5 24.8 25.6 23.2 32.5 30.3 25.9
8-Softmax 193 14.7 24.0 25.2 22.6 31.5 29.4 24.3

Monolingual/multilingual BN feature-based results

Vesely et al., “The language-independent bottleneck features”, SLT, 2012.



