
Instructor: Preethi Jyothi
Feb 6, 2017  

Automatic Speech Recognition (CS753)
Lecture 10: Deep Neural Network(DNN)-based Acoustic Models

Automatic Speech Recognition (CS753)

• Common Mistakes:

• 2(a) Omitting mixture  
weights from parameters

• 2(b) Mistaking  
parameters for hidden/  
observed variables

1 Markov  
model

2a (HMM  
Parameters)

2b (Observed/ 
hidden)

0 15 30 45 60

Correct Incorrect
Quiz 2 Postmortem

Preferred order of topics to be revised:  
HMMs — Tied state triphones, 
HMMs — Training (EM/Baum-Welch)  
WFSTs in ASR systems 
HMMs — Decoding (Viterbi)

Recap: Feedforward Neural Networks

• Input layer, zero or more hidden layers and
an output layer

• Nodes in hidden layers compute non-linear
(activation) functions of a linear
combination of the inputs

• Common activation functions include
sigmoid, tanh, ReLU, etc.

• NN outputs typically normalised by
applying a softmax function to the output
layer

softmax(x1, . . . , xk

) =

e

xi

P
k

j=1 e
xj

v

Recap: Training Neural Networks
• NNs optimized to minimize a loss function,

L, that is a score of the network’s
performance (e.g. squared error, cross
entropy, etc.)

• To minimize L, use (mini-batch) stochastic
gradient descent

• Need to efficiently compute ∂L/∂w (and
hence ∂L/∂u) for all w

• Use backpropagation to compute ∂L/∂u
for every node u in the network

• Key fact backpropagation is based on:
Chain rule of differentiation

L

u

L

Neural Networks for ASR

• Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use NNs to
estimate HMM observation probabilities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model

Neural Networks for ASR

• Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use NNs to
estimate HMM observation probabilities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model

Decoding an ASR system
• Recall how we decode the most likely word sequence W for an

acoustic sequence O:

• The acoustic model Pr(O|W) can be further decomposed as
(here, Q,M represent triphone, monophone sequences resp.):

W ⇤
= argmax

W
Pr(O|W) Pr(W)

Pr(O|W) =
X

Q,M

Pr(O,Q,M |W)

=
X

Q,M

Pr(O|Q,M,W) Pr(Q|M,W) Pr(M |W)

⇡
X

Q,M

Pr(O|Q) Pr(Q|M) Pr(M |W)

Hybrid system decoding

You’ve seen Pr(O|Q) estimated using a Gaussian Mixture Model.  
Let’s use a neural network instead to model Pr(O|Q).

Pr(O|W) ⇡
X

Q,M

Pr(O|Q) Pr(Q|M) Pr(M |W)

Pr(O|Q) =
Y

t

Pr(ot|qt)

Pr(ot|qt) =
Pr(qt|ot) Pr(ot)

Pr(qt)

/ Pr(qt|ot)
Pr(qt)

where ot is the acoustic vector at time t and qt is a triphone HMM state  
Here, Pr(qt|ot) are posteriors from a trained neural network. Pr(ot|qt) is
then a scaled posterior.

Computing Pr(qt|ot) using a deep NN

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone  
state labels

…39 features
in one frame

……

How do we get these labels 
in order to train the NN?

Triphone labels
• Forced alignment: Use current acoustic model to find the most

likely sequence of HMM states given a sequence of acoustic
vectors. (Algorithm to help compute this?)

• The “Viterbi paths” for the training data is referred to as
forced alignment

…

o1

Triphone
HMMs 

(Viterbi)

o2 oTo3 o4

……

sil1  
/b/ 
aa

sil1  
/b/ 
aa

sil2  
/b/ 
aa

sil2  
/b/ 
aa

………

…

…
ee3 
/k/ 
sil

Training word  
sequence
w1,…,wN

Dictionary
Phone  

sequence
p1,…,pN

Computing Pr(qt|ot) using a deep NN

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone  
state labels

…39 features
in one frame

……

How do we get these labels 
in order to train the NN? 
(Viterbi) Forced alignment

Computing priors Pr(qt)

• To compute HMM observation probabilities, Pr(ot|qt), we need
both Pr(qt|ot) and Pr(qt)

• The posterior probabilities Pr(qt|ot) are computed using a trained
neural network

• Pr(qt) are relative frequencies of each triphone state as
determined by the forced Viterbi alignment of the training data

Hybrid Networks

• The hybrid networks are trained with a minimum cross-
entropy criterion

• Advantages of hybrid systems:

1. No assumptions made about acoustic vectors being
uncorrelated: Multiple inputs used from a window of
time steps

2. Discriminative objective function

L(y, ŷ) = �
X

i

yi log(ŷi)

Neural Networks for ASR

• Two main categories of approaches have been explored:

1. Hybrid neural network-HMM systems: Use NNs to
estimate HMM observation probabilities

2. Tandem system: NNs used to generate input features
that are fed to an HMM-GMM acoustic model

Tandem system

• First, train an NN to estimate the posterior probabilities of
each subword unit (monophone, triphone state, etc.)

• In a hybrid system, these posteriors (after scaling) would be
used as observation probabilities for the HMM acoustic
models

• In the tandem system, the NN outputs are used as “feature”
inputs to HMM-GMM models

Bottleneck Features

Bottleneck Layer

Output Layer

Hidden Layers

Input Layer

Use a low-dimensional bottleneck layer representation to extract features 
 
These bottleneck features are in turn used as inputs to HMM-GMM
models

History of Neural Networks in ASR

• Neural networks for speech recognition were explored as early
as 1987

• Deep neural networks for speech

• Beat state-of-the-art on the TIMIT corpus [M09]

• Significant improvements shown on large-vocabulary
systems [D11]

• Dominant ASR paradigm [H12]

[M09] A. Mohamed, G. Dahl, and G. Hinton, “Deep belief networks for phone recognition,” NIPS Workshop on Deep Learning
for Speech Recognition, 2009.
[D11] G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary
Speech Recognition,” TASL 20(1), pp. 30–42, 2012.
[H12] G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”, IEEE Signal Processing
Magazine, 2012.

What’s new?

• Hybrid systems were introduced in the late 80s. Why have  
NN-based systems come back to prominence?

• Important developments

• Vast quantities of data available for ASR training

• Fast GPU-based training

• Improvements in optimization/initialization techniques

• Deeper networks enabled by fast training

• Larger output spaces enabled by fast training and
availability of data

Pretraining

• Use unlabelled data to find good regions of the weight space
that will help model the distribution of inputs

• Generative pretraining:

➡ Learn layers of feature detectors one at a time with states of
feature detector in one layer acting as observed data for
training the next layer.

➡ Provides better initialisation for a discriminative “fine-
tuning phase” that uses backpropagation to adjust the
weights from the “pretraining phase”

Pretraining contd.

• Learn a single layer of feature detectors by fitting a generative
model to the input data: Use Restricted Boltzmann Machines
(RBMs) [H02]

• An RBM is an undirected model: layer of visible  
units connected to a layer of hidden units, but no  
intra-visible or intra-hidden unit connections

[H02] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”  
Neural Comput., 14, 1771–1800, ’02.

E(v,h) = �av � bh� hTWv

where a, b are biases of the visible, hidden units and W is the  
weight matrix between the layers

Pretraining contd.
• Learn the weights and biases of the RBM to minimise the

empirical negative log-likelihood of the training data

• How? Use an efficient learning algorithm called contrastive
divergence [H02]

• RBMs can be stacked to make a “deep belief network”:  
1) Inferred hidden states can be used as data to train a second
RBM 2) repeat this step

[H02] G. E. Hinton, “Training products of experts by minimizing contrastive divergence,”  
Neural Comput., 14, 1771–1800, ’02.

Discriminative fine-tuning
• After learning a DBN by layerwise training of the RBMs, resulting

weights can be used as initialisation for a deep feedforward NN
• Introduce a final softmax layer and train the whole DNN

discriminatively using backpropagation

o1o2o3o4 o5

RBM1(h)

W1

RBM2(v)

RBM2(h)

W2

RBM3(v)

RBM3(h)

W3

RBM3(h)

RBM2(h)

RBM1(h)

o1o2o3o4 o5

W1

W2

W3

DBN

RBM3(h)

RBM2(h)

RBM1(h)

o1o2o3o4 o5

W2

W3

softmax

W4

W1

DNN

Pretraining

• Pretraining is fast as it is done layer-by-layer with contrastive
divergence

• Other pretraining techniques include stacked autoencoders,
greedy discriminative pretraining. (Details not discussed in
this class.)

• Turns out pretraining is not a crucial step for large speech
corpora

Summary of DNN-HMM acoustic models  
Comparison against HMM-GMM on different tasks

IEEE SIGNAL PROCESSING MAGAZINE [92] NOVEMBER 2012

and model-space discriminative training is applied using the
BMMI or MPE criterion.

Using alignments from a baseline system, [32] trained a
DBN-DNN acoustic model on 50 h of data from the 1996 and
1997 English Broadcast News Speech Corpora [37]. The
 DBN-DNN was trained with the
best-performing LVCSR features,
specifically the SAT+DT features.
The DBN-DNN architecture con-
sisted of six hidden layers with
1,024 units per layer and a final
softmax layer of 2,220 context-
dependent states. The SAT+DT
feature input into the first layer
used a context of nine frames.
Pretraining was performed fol-
lowing a recipe similar to [42].

Two phases of fine-tuning were performed. During the first
phase, the cross entropy loss was used. For cross entropy train-
ing, after each iteration through the whole training set, loss is
measured on a held-out set and the learning rate is annealed
(i.e., reduced) by a factor of two if the held-out loss has grown
or improves by less than a threshold of 0.01% from the previ-
ous iteration. Once the learning rate has been annealed five
times, the first phase of fine-tuning stops. After weights are
learned via cross entropy, these weights are used as a starting
point for a second phase of fine-tuning using a sequence crite-
rion [37] that utilizes the MPE objective function, a discrimi-
native objective function similar to MMI [7] but which takes
into account phoneme error rate.

A strong SAT+DT GMM-HMM baseline system, which con-
sisted of 2,220 context-dependent states and 50,000 Gaussians,
gave a WER of 18.8% on the EARS Dev-04f set, whereas the
DNN-HMM system gave 17.5% [50].

SUMMARY OF THE MAIN RESULTS FOR
DBN-DNN ACOUSTIC MODELS ON LVCSR TASKS
Table 3 summarizes the acoustic modeling results described
above. It shows that DNN-HMMs consistently outperform
GMM-HMMs that are trained on the same amount of data,
sometimes by a large margin. For some tasks, DNN-HMMs
also outperform GMM-HMMs that are trained on much
more data.

SPEEDING UP DNNs AT RECOGNITION TIME
State pruning or Gaussian selection methods can be used to
make GMM-HMM systems computationally efficient at recogni-
tion time. A DNN, however, uses virtually all its parameters at
every frame to compute state likelihoods, making it potentially

much slower than a GMM with a
comparable number of parame-
ters. Fortunately, the time that a
DNN-HMM system requires to
recognize 1 s of speech can be
reduced from 1.6 s to 210 ms,
without decreasing recognition
accuracy, by quantizing the
weights down to 8 b and using
the very fast SIMD primitives for
fixed-point computation that are
provided by a modern x86 cen-

tral processing unit [49]. Alternatively, it can be reduced to
66 ms by using a graphics processing unit (GPU).

ALTERNATIVE PRETRAINING METHODS FOR DNNs
Pretraining DNNs as generative models led to better recognition
results on TIMIT and subsequently on a variety of LVCSR tasks.
Once it was shown that DBN-DNNs could learn good acoustic
models, further research revealed that they could be trained in
many different ways. It is possible to learn a DNN by starting with
a shallow neural net with a single hidden layer. Once this net has
been trained discriminatively, a second hidden layer is interposed
between the first hidden layer and the softmax output units and
the whole network is again discriminatively trained. This can be
continued until the desired number of hidden layers is reached,
after which full backpropagation fine-tuning is applied.

This type of discriminative pretraining works well in prac-
tice, approaching the accuracy achieved by generative DBN pre-
training and further improvement can be achieved by stopping
the discriminative pretraining after a single epoch instead of
multiple epochs as reported in [45]. Discriminative pretraining
has also been found effective for the architectures called “deep
convex network” [51] and “deep stacking network” [52], where
pretraining is accomplished by convex optimization involving
no generative models.

Purely discriminative training of the whole DNN from ran-
dom initial weights works much better than had been thought,

provided the scales of the initial
weights are set carefully, a large
amount of labeled training data is
available, and minibatch sizes over
training epochs are set appropri-
ately [45], [53]. Nevertheless, gen-
erative pretraining still improves
test performance, sometimes by a
significant amount.

Layer-by-layer generative pre-
training was originally done
using RBMs, but various types of

[TABLE 3] A COMPARISON OF THE PERCENTAGE WERs USING DNN-HMMs AND
GMM-HMMs ON FIVE DIFFERENT LARGE VOCABULARY TASKS.

TASK
HOURS OF
TRAINING DATA DNN-HMM

GMM-HMM
WITH SAME DATA

GMM-HMM
WITH MORE DATA

SWITCHBOARD (TEST SET 1) 309 18.5 27.4 18.6 (2,000 H)

SWITCHBOARD (TEST SET 2) 309 16.1 23.6 17.1 (2,000 H)

ENGLISH BROADCAST NEWS 50 17.5 18.8

BING VOICE SEARCH
(SENTENCE ERROR RATES) 24 30.4 36.2

GOOGLE VOICE INPUT 5,870 12.3 16.0 (22 5,870 H)

YOUTUBE 1,400 47.6 52.3

DISCRIMINATIVE PRETRAINING
HAS ALSO BEEN FOUND EFFECTIVE
FOR THE ARCHITECTURES CALLED
“DEEP CONVEX NETWORK” AND

“DEEP STACKING NETWORK,” WHERE
PRETRAINING IS ACCOMPLISHED BY
CONVEX OPTIMIZATION INVOLVING

NO GENERATIVE MODELS.

Table copied from G. Hinton, et al., “Deep Neural Networks for Acoustic Modeling in Speech Recognition”,  
IEEE Signal Processing Magazine, 2012.

Hybrid DNN-HMM systems consistently outperform GMM-
HMM systems (sometimes even when the latter is trained with
lots more data)

Multilingual Training  
(Hybrid DNN/HMM System)

Image/Table from Ghoshal et al., “Multilingual training of deep neural networks”, ICASSP, 2013.

DNN finetuned
on CZ

Stacked RBMs
trained on PL

DNN finetuned
on DE

DNN finetuned
on PT

DNN finetuned
on PL

Fig. 1. Multilingual training of deep neural networks.

does not require retraining any previously trained models for
other languages. Ideally, one would like the hidden layers
to converge to an optimized set of feature extractors that can
be reused across domains and languages. However, such a
study is inherently empirical, and variations of the techniques
reported here are currently under investigation.

4. EXPERIMENTS

We used the GlobalPhone corpus [25] for our experiments.
The corpus consists of recordings of speakers reading news-
papers in their native language. There are 19 languages from
a variety of geographical locations: Asia (Chinese, Japanese,
Korean), Middle East (Arabic, Turkish), Africa (Hausa), Eu-
rope (French, German, Polish), and Americas (Costa Rican
Spanish, Brazilian Portuguese). Recordings are made under
relatively quiet conditions using close-talking microphones;
however acoustic conditions may vary within a language and
between languages.

In this work we use seven languages from three differ-
ent language families: Germanic, Romance, and Slavic. The
languages used are: Czech, French, German, Polish, Brazil-
ian Portuguese, Russian and Costa Rican Spanish. Each lan-
guage has roughly 20 hours of speech for training and two
hours each for development and evaluation sets, from a total
of about 100 speakers. The detailed statistics for each of the
languages is shown in Table 1.

4.1. Baseline systems

For each language, we built standard maximum-likelihood
(ML) trained GMM-HMM systems, using 39-dimensional
MFCC features (C0-C12, with delta and acceleration coeffi-
cients), using the Kaldi speech recognition toolkit [26]. The
number of context-dependent triphone states for each lan-
guage is 3100 with a total of 50K Gaussians (an average of
roughly 16 Gaussians per state). The development set word
error rates (WER) for the different languages are presented
in Table 2. The results reported here are better than those in
our earlier work [13] because we used better LMs obtained

Table 1. Statistics of the subset of GlobalPhone languages
used in this work: the amounts of speech data for training,
development, and evaluation sets are in hours.

Language #Phones #Spkrs Train Dev Eval
Czech (CZ) 41 102 26.8 2.4 2.7
French (FR) 38 100 22.8 2.1 2.0
German (DE) 41 77 14.9 2.0 1.5
Polish (PL) 36 99 19.4 2.9 2.3
Portuguese (PT) 45 101 22.8 1.6 1.8
Russian (RU) 48 115 19.8 2.5 2.4
Spanish (SP) 40 100 17.6 2.0 1.7

from the authors of [3, 27]. We must stress that the ML
baseline results are presented here to serve as a point of ref-
erence, and not for direct comparison with the DNN results.
The scripts needed to replicate the GMM-HMM results are
publicly available as a part of the Kaldi toolkit2.

4.2. DNN configuration and results

For training DNNs, our tools utilize the Theano library [28],
which supports transparent computation using both CPUs and
GPUs. We train the networks on the same 39-dimensional
MFCCs as the GMM-HMM baseline. The features are glob-
ally normalised to zero mean and unit variance, and 9 frames
(4 on each side of the current frame) are used as the input to
the networks. All the networks used here are 7 layers deep,
with 2000 neurons per hidden layer. The initial weights for
the softmax layer were chosen uniformly at random: w ⇠
U [�r, r], where r = 4

p
6/(nl�1 + nl) and nl is the num-

ber of units in layer l. Fine-tuning is done using stochastic
gradient descent on 256-frame mini-batches and an exponen-
tially decaying schedule, learning at a fixed rate (0.08) un-
til improvement in accuracy on cross-validation set between
two successive epochs falls below 0.5%. The learning rate is
then halved at each epoch until the overall accuracy fails to
increase by 0.5% or more, at which point the algorithm ter-
minates. While learning, the gradients were smoothed with

2Available from: http://kaldi.sf.net

Table 2. Development set results: vocabulary size is the intersection between LM and pronunciation dictionary vocabularies;
perplexity (PPL) figures are obtained considering sentence beginning and ending markers; and for multilingual DNNs we show
the order of the languages used to train the networks.

Language Vocab PPL ML-GMM DNN Multilingual DNN
WER(%) WER(%) Languages WER(%)

CZ 29K 823 18.5 15.8 — —
DE 36K 115 13.9 11.2 CZ!DE 9.4
FR 16K 341 25.8 22.6 CZ!DE!FR 22.6
SP 17K 134 26.3 22.3 CZ!DE!FR!SP 21.2
PT 52K 184 24.1 19.1 CZ!DE!FR!SP!PT 18.9
RU 24K 634 32.5 27.5 CZ!DE!FR!SP!PT!RU 26.3
PL 29K 705 20.0 17.4 CZ!DE!FR!SP!PT!RU!PL 15.9

Fig. 2. Mono- and multi-lingual DNN results on Polish. The
languages are added left-to-right starting with Czech and end-
ing with Polish. Hence ‘+FR’ corresponds to the schedule CZ
!DE!FR!PL.

a first-order low-pass momentum (0.5). For the multilingual
DNNs, an initial learning rate of 0.04 is used.

A comparison of the WERs obtained by the monolingual
and multilingual DNNs for the different languages in Table 2
supports our hypotheses: the hidden layers are indeed trans-
ferable between languages, and training them with more lan-
guages, by and large, makes them better suited for the target
languages. These trends are shown in greater detail for Polish
(in Figure 2) and Russian (in Table 3).

It is important to note that the different systems do not
control for the amount of data; a system with more languages
is trained on more data and some of the performance gains
may well be attributed to that. However, we also notice that
just adding more data may not always improve results. For
example, in Figure 2 we see worse performance by adding
Portuguese, and the Czech data did not lower WER for either
Polish or Russian. This may indicate a need for better cross-
corpus normalization, for example, using speaker adaptive
training. Conversely, this may also indicate that the sequential
training protocol followed here is suboptimal. In fact, for the
systems shown in Figure 2, training on Russian after Spanish

Table 3. Mono- and multi-lingual DNN results on Russian.

Languages Dev Eval
RU 27.5 24.3
CZ!RU 27.5 24.6
CZ!DE!FR!SP!RU 26.6 23.8
CZ!DE!FR!SP!PT!RU 26.3 23.6

and then on Polish leads to similar WER as when Portuguese
is used for finetuning after Spanish. These issues are currently
under investigation.

5. DISCUSSION

We presented experiments with multilingual training of hy-
brid DNN-HMM systems showing that training the hidden
layers using data from multiple languages leads to improved
recognition accuracy. The results are very promising and
point to areas of future work: for instance, determining if the
number of layers in the network has an effect on these results.
The notion of deep neural networks performing a cascade of
feature extraction, from lower-level to higher-level features,
provides both an explanation for the observed effect, as well
as the inkling that the effect may be more pronounced for
deeper structures. There are also practical engineering issues
to consider: checking whether a simultaneous training, where
the randomization of observations is done across all lan-
guages in consideration, improves on the current sequential
protocol; experimenting with transformations of the feature
space as well as with discriminative features, some of which
may enhance or mitigate this effect; and experimenting with
a broader set of languages.

6. ACKNOWLEDGMENTS

This research was supported by EPSRC Programme Grant grant, no.
EP/I031022/1 (Natural Speech Technology). We would also like to
thank Tanja Schultz and Ngoc Thang Vu for making the Global-
Phone language models available to us, and Miloš Janda for help
with the baseline systems.

 Monolingual and multilingual DNN results on Russian

Vesely et al., “The language-independent bottleneck features”, SLT, 2012.

Multilingual Training  
(Tandem System)

⋮
Language-independent  

hidden layers

bottleneck 
layer

softmax layer for language 1

softmax layer for language 2

softmax layer for language N

Language Czech English
h

German Portugese Spanish Russian Turkish Vietnamese
HMM 22.6 16.8 26.6 27.0 23.0 33.5 32.0 27.3

mono-BN 19.7 15.9 25.5 27.2 23.2 32.5 30.4 23.4
1-Softmax 19.4 15.5 24.8 25.6 23.2 32.5 30.3 25.9
8-Softmax 19.3 14.7 24.0 25.2 22.6 31.5 29.4 24.3

 Monolingual/multilingual BN feature-based results

