
Instructor: Preethi Jyothi
Feb 9, 2017  

Automatic Speech Recognition (CS753)
Lecture 11: Recurrent Neural Network (RNN) Models for ASR
Automatic Speech Recognition (CS753)

Recap: Hybrid DNN-HMM Systems

• Instead of GMMs, use scaled
DNN posteriors as the HMM
observation probabilities

• DNN trained using triphone
labels derived from a forced
alignment “Viterbi” step.
• Forced alignment: Given a training

utterance {O,W}, find the most
likely sequence of states (and
hence triphone state labels) using
a set of trained triphone HMM
models, M. Here M is constrained
by the triphones in W.

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone state labels 
(DNN posteriors)

…
39 features
in one frame

……

Recap: Tandem DNN-HMM Systems

• Neural network outputs are
used as “features” to train
HMM-GMM models

• Use a low-dimensional
bottleneck layer representation
to extract features from the
bottleneck layer 

Bottleneck Layer

Output Layer

Input Layer

Feedforward DNNs we’ve seen so far…

• Assume independence among the training instances

• Independent decision made about classifying each
individual speech frame

• Network state is completely reset after each speech  
frame is processed

• This independence assumption fails for data like speech which
has temporal and sequential structure

Recurrent Neural Networks

• Recurrent Neural Networks (RNNs) work naturally with
sequential data and process it one element at a time

• HMMs also similarly attempt to model time dependencies.
How’s it different?

• HMMs are limited by the size of the state space. Inference
becomes intractable if the state space grows very large!

• What about RNNs?

RNN definition

Two main equations govern RNNs:

H, O

xt

yt

ht

unfold

H, O

x1

y1

h0
H, O

x2

y2

h1
H, O

x3

y3

h2
…

ht = H(Wxt + Vht-1 + b(h))

yt = O(Uht + b(y))

where W, V, U are matrices of input-hidden weights, hidden-hidden 
weights and hidden-output weights resp; b(y) and b(y) are bias vectors

Recurrent Neural Networks

• Recurrent Neural Networks (RNNs) work naturally with
sequential data and process it one element at a time

• HMMs also similarly attempt to model time dependencies.
How’s it different?

• HMMs are limited by the size of the state space. Inference
becomes intractable if the state space grows very large!

• What about RNNs? RNNs are designed to capture long-
range dependencies unlike HMMs: Network state is
exponential in the number of nodes in a hidden layer

Training RNNs

• An unrolled RNN is just a very deep feedforward network

• For a given input sequence:

• create the unrolled network

• add a loss function node to the network

• then, use backpropagation to compute the gradients

• This algorithm is known as backpropagation through time
(BPTT) 

Deep RNNs

• RNNs can be stacked in layers to form deep RNNs
• Empirically shown to perform better than shallow RNNs on

ASR [G13]

H, O

x1

y1

h0,1
H, O

x2

y2

h1,1
H, O

x3

y3

h2,1

H, O H, O H, O
h0,2 h1,2 h2,2

[G13] A. Graves, A . Mohamed, G. Hinton, “Speech Recognition with Deep Recurrent
Neural Networks”, ICASSP, 2013.

Vanilla RNN Model

ht = H(Wxt + Vht-1 + b(h))

yt = O(Uht + b(y))

H : element wise application of the sigmoid or tanh function

O : the softmax function

Run into problems of exploding and vanishing gradients.

Exploding/Vanishing Gradients

• To address this problem in RNNs, Long Short Term Memory
(LSTM) units were proposed [HS97]

[HS97] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,”  
Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

• In deep networks, gradients in early layers is computed as the
product of terms from all the later layers

• This leads to unstable gradients:

• If the terms in later layers are large enough, gradients in early
layers (which is the product of these terms) can grow
exponentially large: Exploding gradients

• If the terms are in later layers are small, gradients in early
layers will tend to exponentially decrease: Vanishing gradients

Long Short Term Memory Cells

• Memory cell: Neuron that stores information over long time
periods

• Forget gate: When on, memory cell retains previous contents.
Otherwise, memory cell forgets contents.

• When input gate is on, write into memory cell
• When output gate is on, read from the memory cell

Input
Gate

Output
Gate

Memory
Cell

Forget
Gate

⊗ ⊗

⊗

Bidirectional RNNs

• BiRNNs process the data in both directions with two separate  
hidden layers

• Outputs from both hidden layers are concatenated at each
position

Hf, Of

xhello

h0,f
Hf, Of

xworld

h1,f
Hf, Of

x.

h2,f

Hb, Ob
h3,b

Hb, Ob
h2,b

Hb, Ob
h1,b

concat concat concat

y1,f y3,b y2,f y2,b y3,f y1,b

h3,f

h0,b

Forward 
layer

Backward  
layer

CS 753
Feb 9, 2017  

Automatic Speech Recognition (CS753)RNN-based ASR system

ASR with RNNs

• Neural networks in ASR systems are typically a single component
(aka acoustic models) in a complex pipeline

• Limitations:

1. Frame-level training targets derived from HMM-based
alignments

2. Objective function optimized in NNs is very different from the
final evaluation metric

• Goal: Single RNN model that addresses these issues and replaces as
much of the speech pipeline as possible [G14]

[G14] A. Graves, N. Jaitly, “Towards end-to-end speech recognition with recurrent neural
networks”, ICML, 2014.

RNN Architecture

• H was implemented using LSTMs in [G14]. Input: Acoustic
feature vectors, one per frame; Output: Characters + space

• Deep bidirectional LSTM networks were used

Hf, Of

xt-1

h0,f
Hf, Of

xt

h1,f
Hf, Of

xt+1

h2,f

Hb, Ob
h3,b

Hb, Ob
h2,b

Hb, Ob
h1,b

h3,f

h0,b

yt-1 yt yt+1

[G14] A. Graves, N. Jaitly, “Towards end-to-end speech recognition with recurrent neural
networks”, ICML, 2014.

Connectionist Temporal
Classification (CTC)

• For an input sequence x of length T, Eqn (1) gives the probability of an
output transcription y; a is a CTC alignment of y

• Given a target transcription y*, the CTC objective function to be minimised is
given in Eqn (2)

• Modify loss function as shown in Eqn (3) to be a better match to the final test
criteria; here, is a transcription loss function

• needs to be minimised: Use a Monte-carlo sampling-based algorithm

Pr(y|x) =
X

a2B�1(y)

Pr(a|x) where Pr(a|x) =
TY

t=1

Pr(at, t|x) … (1)

For a target y

⇤
, CTC(x) = � log Pr(y

⇤|x) … (2)

L(x) =
X

y

Pr(y|x)L(x, y) =
X

a

Pr(a|x)L(x,B(a)) … (3)

L(x) =
X

y

Pr(y|x)L(x, y) =
X

a

Pr(a|x)L(x,B(a))
L(x) =

X

y

Pr(y|x)L(x, y) =
X

a

Pr(a|x)L(x,B(a))

Decoding

• First approximation: For a given test input sequence x, pick the
most probable output at each time step

• More accurate decoding uses a search algorithm that also
makes use of a dictionary and a language model. (Decoding
search algorithms will be discussed in detail in later lectures.)

argmax

y
Pr(y|x) ⇡ B(argmax

a
Pr(a|x))

WER results

System LM WER

RNN-CTC Dictionary only 24.0

RNN-CTC Bigram 10.4

RNN-CTC Trigram 8.7

RNN-WER Dictionary only 21.9

RNN-WER Bigram 9.8

RNN-WER Trigram 8.2

Baseline Bigram 9.4

Baseline Trigram 7.8

[G14] A. Graves, N. Jaitly, “Towards end-to-end speech recognition with recurrent neural
networks”, ICML, 2014.

Some erroneous examples produced
by the end-to-end RNN

Target: “There’s unrest but we’re not going to lose them to Dukakis”

Output: “There’s unrest but we’re not going to lose them to Dekakis”

Target: “T. W. A. also plans to hang its boutique shingle in airports at
Lambert Saint”

Output: “T. W. A. also plans tohing its bootik single in airports at
Lambert Saint”

