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Automatic Speech Recognition (CS753)

Lecture 12: Acoustic Feature Extraction for ASR

Instructor: Preethi Jyothi
Feb 13, 2017



Speech Signal Analysis
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Need to focus on short segments of speech (speech frames)
that more or less correspond to a subphone and are stationary

Each speech frame is typically 20-50 ms long

Use overlapping frames with frame shift of around 10 ms



Frame-wise processing
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Speech Signal Analysis
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Generate —
discrete “A frame”
samples

Need to focus on short segments of speech (speech frames)
that more or less correspond to a phoneme and are stationary

Each speech frame is typically 20-50 ms long

Use overlapping frames with frame shift of around 10 ms

Generate acoustic features corresponding to each speech
frame



Acoustic feature extraction for ASR

Desirable feature characteristics:

Capture essential information about underlying phones
Compress information into compact form

Factor out information that’s not relevant to recognition e.g.
speaker-specific information such as vocal-tract length,
channel characteristics, etc.

Would be desirable to find features that can be well-modelled
by known distributions (Gaussian models, for example)

Feature widely used in ASR: Mel-frequency Cepstral
Coefficients (MFCCs)



MFCC Extraction
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Pre-emphasis

Pre-emphasis increases the amount of energy in the high
frequencies compared with lower frequencies

Why? Because of spectral tilt
- In voiced speech, signal has more energy at low frequencies
- Due to the glottal source

Boosting high frequency energy improves phone detection
accuracy
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Image credit: Jurafsky & Martin, Figure 9.9



MFCC Extraction
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Windowing

Speech signal is modelled as a sequence of frames
(assumption: stationary across each frame)

Windowing: multiply the value of the signal at time n, s[n] by
the value of the window at time n, w[n]: y[n] = w[n]s[n]

Rectangular: w|n]

Hamming: w|n|

1 0<n<L-1

0 otherwise

(0.54 —0.46c082%  0<n<L—1

\ 0 otherwise



Windowing: lllustration
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MFCC Extraction
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Discrete Fourier Transform (DFT)

Extract spectral information from the windowed signal:
Compute the DFT of the sampled signal
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Input: windowed signal x[/],...,x[n]
Output: complex number X[k] giving magnitude/phase for the kth frequency component
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Image credit: Jurafsky & Martin, Figure 9.12



MFCC Extraction
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Mel Filter Bank

DFT gives energy at each frequency band

However, human hearing is not sensitive at all frequencies: less
sensitive at higher frequencies

Warp the DFT output to the mel scale: mel is a unit of pitch
such that sounds which are perceptually equidistant in pitch
are separated by the same number of mels



Mels vs Hertz




Mel filterbank

Mel frequency can be computed from the raw frequency f as:

mel(f) = 1127In(1 + %)

10 filters spaced linearly below 1kHz and remaining filters
spread logarithmically above 1kHz
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Image credit: Jurafsky & Martin, Figure 9.13



Mel tilterbank inspired by speech
perception
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Mel filterbank

Mel frequency can be computed from the raw frequency f as:

mel(f) = 1127In(1 + %)

10 filters spaced linearly below 1kHz and remaining filters
spread logarithmically above 1kHz
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Take log of each mel spectrum value 1) human sensitivity to signal
energy is logarithmic 2) log makes features robust to input variations

Image credit: Jurafsky & Martin, Figure 9.13



MFCC Extraction
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Cepstrum: Inverse DFT

Recall speech signals are created when a glottal source of a
particular fundamental frequency passes through the vocal

tract

Most useful information for phone detection is the vocal tract
filter (and not the glottal source)

How do we deconvolve the source and filter to retrieve
information about the vocal tract filter? Cepstrum



Cepstrum

. Cepstrum: spectrum of the log of the spectrum
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Image credit: Jurafsky & Martin, Figure 9.14



Cepstrum

For MFCC extraction, we use the first 12 cepstral values

Variance of the different cepstral coefficients tend to be
uncorrelated

Useful property when modelling using GMMs in the
acoustic model — diagonal covariance matrices will suffice

Cepstrum is formally defined as the inverse DFT of the log
magnitude of the DFT of a signal

N-1 N-1
- 27T - 27T
cln| = E log( E x[n]e N kN ) el W
n=0




MFCC Extraction
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Deltas and double-deltas

From the cepstrum, use 12 cepstral coefficients for each frame

13th feature represents energy from the frame — computed as
sum of the power of the samples in the frame

Also add features related to change in cepstral features over time
to capture speech dynamics

A, — 27]7\,[:1 ”(Ct+n — Ct—n)
t PR
2 25:1 n?

Typical value for N is 2. Static cepstral coefficients are ¢+, and cv.»

Add 13 delta features (At) and 13 double-delta features (A%)



Recap: MFCCs

Motivated by human speech perception and speech production
For each speech frame
»  Compute frequency spectrum and apply Mel binning

» Compute cepstrum using inverse DFT on the log of the mel-
warped spectrum

> 39-dimensional MFCC feature vector: First 12 cepstral
coefficients + energy + 13 delta + 13 double-delta coefficients



Other features

Neural network-based: “Bottleneck features” (saw this in
lecture 10)

Train deep NN using conventional acoustic features

Introduce a narrow hidden layer (e.g. 40 hidden units)
referred to as the bottleneck layer

Force neural network to encode relevant information in the
bottleneck layer

Use hidden unit activations in the bottleneck layer as
features



