Automatic Speech Recognition (CS753)

Lecture 13: Assignment 1 + Revision

Instructor: Preethi Jyothi
Feb 16, 2017
Assignment 1 Solutions

https://www.cse.iitb.ac.in/~pjyothi/cs753/assgmt1_soln.pdf
Revising Tied State HMMs
Tied state HMMs

Four main steps in building a tied state HMM system:

1. Create and train 3-state monophone HMMs with single Gaussian observation probability densities.

2. Clone these monophone distributions to initialise a set of untied triphone models. Train them using Baum-Welch estimation. Transition matrix remains common across all triphones of each phone.

3. For all triphones derived from the same monophone, cluster states whose parameters should be tied together.

4. Number of mixture components in each tied state is increased and models re-estimated using BW.

Four main steps in building a tied state HMM system:

1. Create and train 3-state monophone HMMs with single Gaussian observation probability densities.

2. Clone these monophone distributions to initialise a set of untied triphone models. Train them using Baum-Welch estimation. Transition matrix remains common across all triphones of each phone.

3. For all triphones derived from the same monophone, cluster states whose parameters should be tied together.

4. Number of mixture components in each tied state is increased and models re-estimated using BW.

Which states should be tied together? Use decision trees.

Phonetic Decision Trees (DT)

One tree is constructed for each state of each phone to cluster all the corresponding triphone states.

DT for center state of [ow]
Uses all training data tagged as ow₂[?/?]

Head node
aa/ow/f, aa/ow/s, aa/ow/d, h/ow/p, aa/ow/n, aa/ow/g, ...

Is left ctxt a vowel?
Yes
Is right ctxt a fricative?
Yes
Leaf A
aa/ow/f, aa/ow/s, ...
No
Leaf B
aa/ow/d, aa/ow/g, ...

No
Is right ctxt nasal?
No
Is right ctxt a glide?
Yes
Leaf E
aa/ow/n, aa/ow/m, ...
No
Leaf C
h/ow/l, b/ow/r, ...
Leaf D
h/ow/p, b/ow/k, ...
How do we build these phone DTs?

1. What questions are used?

 Linguistically-inspired binary questions: “Does the left or right phone come from a broad class of phones such as vowels, stops, etc.?” “Is the left or right phone [k] or [m]?”

2. What is the training data for each phone state, p_j? (root node of DT)
Training data for DT nodes

- Align training data, $x_i = (x_{i1}, \ldots, x_{iT_i}) \ i=1\ldots N$ where $x_{it} \in \mathbb{R}^d$, against a set of triphone HMMs
- Use Viterbi algorithm to find the best HMM state sequence corresponding to each x_i
- Tag each x_{it} with ID of current phone along with left-context and right-context

\[
\begin{align*}
\text{sil/b/aa} & \quad \text{b/aa/g} & \quad \text{aa/g/sil} \\
\end{align*}
\]

x_{it} is tagged with ID $aa_2[b/g]$ i.e. x_{it} is aligned with the second state of the 3-state HMM corresponding to the triphone b/aa/g

- For a state j in phone p, collect all x_{it}’s that are tagged with ID $p_j[?/?]$
How do we build these phone DTs?

1. What questions are used?

 Linguistically-inspired binary questions: “Does the left or right phone come from a broad class of phones such as vowels, stops, etc.?” “Is the left or right phone [k] or [m]?”

2. What is the training data for each phone state, p_j? (root node of DT)

 All speech frames that align with the j^{th} state of every triphone HMM that has p as the middle phone

3. What criterion is used at each node to find the best question to split the data on?

 Find the question which partitions the states in the parent node so as to give the maximum increase in log likelihood
Likelihood criterion

Given a phonetic question, let the initial set of untied states S be split into two partitions S_{yes} and S_{no}

Each partition is clustered to form a single Gaussian output distribution with mean μ_{Syes} and covariance Σ_{Syes}

Use the likelihood of the parent state and the subsequent split states to determine which question a node should be split on

Likelihood of a cluster of states

- If a cluster of HMM states, \(S = \{s_1, s_2, \ldots, s_M\} \) consists of \(M \) states and a total of \(K \) acoustic observation vectors are associated with \(S, \{x_1, x_2, \ldots, x_K\} \), then the log likelihood associated with \(S \) is:

\[
\mathcal{L}(S) = \sum_{i=1}^{K} \sum_{s \in S} \log \Pr(x_i; \mu_s, \Sigma_s) \gamma_s(x_i)
\]

- For a question that splits \(S \) into \(S_{yes} \) and \(S_{no} \), compute the following quantity:

\[
\Delta = \mathcal{L}(S_{yes}) + \mathcal{L}(S_{no}) - \mathcal{L}(S)
\]

- Go through all questions, find \(\Delta \) for each and choose the question for which \(\Delta \) is the biggest

- Terminate when: Final \(\Delta \) is below a threshold or data associated with a split falls below a threshold
Revising EM and Baum Welch training
Recall EM: Fitting Parameters to Data

Parameter θ determines $\Pr(x, z; \theta)$ where x is observed and z is hidden

Observed data: i.i.d samples $x_i, i=1, ..., N$

Goal: Find $\arg\max_{\theta} L(\theta)$ where $L(\theta) = \sum_{i=1}^{N} \log \Pr(x_i; \theta)$

Initial parameters: θ^0

Iteratively compute θ^ℓ as follows:

$$Q(\theta, \theta^{\ell-1}) = \sum_{i=1}^{N} \sum_{z} \Pr(z|x_i; \theta^{\ell-1}) \log \Pr(x_i, z; \theta)$$

$$\theta^\ell = \arg\max_{\theta} Q(\theta, \theta^{\ell-1})$$

Estimate θ^ℓ cannot get worse over iterations because for all θ:

$$L(\theta) - L(\theta^{\ell-1}) \geq Q(\theta, \theta^{\ell-1}) - Q(\theta^{\ell-1}, \theta^{\ell-1})$$

EM is guaranteed to converge to a local optimum [Wu83]
Coin example to illustrate EM

\[\rho_1 = \Pr(H) = 0.3 \quad \rho_2 = \Pr(H) = 0.4 \quad \rho_3 = \Pr(H) = 0.6 \]

Repeat:
 Toss Coin 1 privately
 if it shows H:
 Toss Coin 2 twice
 else
 Toss Coin 3 twice

The following sequence is observed: “HH, TT, HH, TT, HH”

How do you estimate \(\rho_1 \), \(\rho_2 \) and \(\rho_3 \)?
Our observed data is: \{HH, TT, HH, TT, HH\}

Let’s use EM to estimate \(\theta = (\rho_1, \rho_2, \rho_3) \)

[EM Iteration, E-step]

Compute quantities involved in

\[
Q(\theta, \theta^{l-1}) = \sum_{i=1}^{N} \sum_{z} \gamma(z, x_i) \log \Pr(x_i, z; \theta)
\]

where \(\gamma(z, x) = \Pr(z \mid x ; \theta^{l-1}) \)

i.e., compute \(\gamma(z, x_i) \) for all \(z \) and all \(i \)

Compute \(\gamma(H, HH), \gamma(H, TT), \gamma(T, TT) \) and \(\gamma(T, HH) \)
E-step

What is $\gamma(H, HH)$?

$\gamma(H, HH) = \Pr(z=H|x=HH; \theta^{e-1})$

$$= \frac{\Pr(x=HH|z=H)\Pr(z=H)}{\Pr(x=HH|z=H)\Pr(z=H) + \Pr(x=HH|z=T)\Pr(z=T)}$$

$$= \frac{\rho_1 \rho_2^2}{\rho_1 \rho_2^2 + (1 - \rho_1) \rho_3^2}$$

Similarly compute $\gamma(H, TT)$, $\gamma(T, TT)$ and $\gamma(T, HH)$

where $\Pr(z; \theta) = \begin{cases}
\rho_1 & \text{if } z = H \\
1 - \rho_1 & \text{if } z = T
\end{cases}$

$\Pr(x|z; \theta) = \begin{cases}
\rho_2^h (1 - \rho_2)^t & \text{if } z = H \\
\rho_3^h (1 - \rho_3)^t & \text{if } z = T
\end{cases}$

h : number of heads, t : number of tails
M-step

Our observed data is: \{HH, TT, HH, TT, HH\}

Let’s use EM to estimate $\theta = (\rho_1, \rho_2, \rho_3)$

[EM Iteration, M-step]
Find θ which maximises

$$Q(\theta, \theta^{\ell-1}) = \sum_{i=1}^{N} \sum_{z} \gamma(z, x_i) \log \Pr(x_i, z; \theta)$$

\[
\rho_1 = \frac{\sum_{i=1}^{N} \gamma(H, x_i)}{N}
\]
\[
\rho_2 = \frac{\sum_{i=1}^{N} \gamma(H, x_i) h_i}{\sum_{i=1}^{N} \gamma(H, x_i) (h_i + t_i)}
\]
\[
\rho_3 = \frac{\sum_{i=1}^{N} \gamma(T, x_i) h_i}{\sum_{i=1}^{N} \gamma(T, x_i) (h_i + t_i)}
\]
\textbf{M-step}

Let us derive an estimate for ρ_1

$$Q(\theta, \theta^{l-1}) = \sum_i \gamma(H,x_i)\log[\rho_2^{hi}(1-\rho_2)^{ti}\rho_1] + \sum_i \gamma(T,x_i)\log[\rho_3^{hi}(1-\rho_3)^{ti}(1-\rho_1)]$$

$$\frac{\partial Q}{\partial \rho_1} = 0 \Rightarrow \frac{\sum_i \gamma(H,x_i)}{\rho_1} - \frac{\sum_i \gamma(T,x_i)}{1 - \rho_1} = 0$$

$$\Rightarrow (1 - \rho_1)/\rho_1 = \frac{\sum_i \gamma(T,x_i)}{\sum_i \gamma(H,x_i)}$$

$$\Rightarrow \rho_1 = \frac{\sum_i \gamma(H,x_i)}{\left(\sum_i \gamma(H,x_i) + \sum_i \gamma(T,x_i)\right)}$$

$$\Rightarrow \rho_1 = \frac{\sum_i \gamma(H,x_i)}{N}$$

Similarly, estimate ρ_2 and ρ_3
Baum-Welch Algorithm as EM

Observed data: \(N \) sequences, \(x_i = (x_{i1}, \ldots, x_{iT_i}), i=1\ldots N \) where \(x_{it} \in \mathbb{R}^d \)

Parameters \(\theta \): transition matrix \(A \), observation probabilities \(B \)

[EM Iteration, E-step]
Compute quantities involved in \(Q(\theta, \theta^{\ell-1}) \)

\[
\gamma_{i,t}(j) = \Pr(z_t = j | x_i ; \theta^{\ell-1})
\]

\[
\xi_{i,t}(j,k) = \Pr(z_{t-1} = j, z_t = k | x_i ; \theta^{\ell-1})
\]
Baum-Welch Algorithm as EM

Observed data: N sequences, $x_i = (x_{i1}, \ldots, x_{iT_i})$, $i=1\ldots N$ where $x_{it} \in \mathbb{R}^d$

Parameters θ: transition matrix A, observation probabilities B

[EM Iteration, E-step]
Compute quantities involved in $Q(\theta, \theta^{\ell-1})$

$\gamma_{i,t}(j) = \Pr(z_t = j \mid x_i ; \theta^{\ell-1})$

$\xi_{i,t}(j,k) = \Pr(z_{t-1} = j, z_t = k \mid x_i ; \theta^{\ell-1})$

$\gamma_{i,t}(j) = \Pr(z_t = j \mid x_i ; \theta^{\ell-1})$

$= \alpha_t(j) \beta_t(j) / \Pr(x_i ; \theta^{\ell-1})$
Baum-Welch Algorithm as EM

Observed data: \(N \) sequences, \(x_i = (x_{i1}, \ldots, x_{iT_i}), i=1 \ldots N \) where \(x_{it} \in \mathbb{R}^d \)

Parameters \(\theta \): transition matrix \(A \), observation probabilities \(B \)

[EM Iteration, E-step]
Compute quantities involved in \(Q(\theta, \theta^{\ell-1}) \)

\[
\gamma_{i,t} (j) = \Pr(z_t = j \mid x_i; \theta^{\ell-1}) \\
= \alpha_t(j)\beta_t(j)/\Pr(x_i; \theta^{\ell-1})
\]

\[
\xi_{i,t}(j,k) = \Pr(z_{t-1} = j, z_t = k \mid x_i; \theta^{\ell-1}) \\
= \alpha_t(j)a_{jk}b_{k}(x_{it+1})\beta_{t+1}(k)/\Pr(x_i; \theta^{\ell-1})
\]
BW for Gaussian Mixture Model

Observed data: N sequences, $x_i = (x_{i1}, \ldots, x_{iT_i})$, $i=1\ldots N$ where $x_{it} \in \mathbb{R}^d$

Parameters θ: transition matrix A, observation prob. $B = \{ (\mu_{jm}, \Sigma_{jm}, c_{jm}) \}$ for all j, m

[EM Iteration, M-step]
Find θ which maximises $Q(\theta, \theta^{t-1})$

$$
A_{j,k} = \frac{\sum_{i=1}^{N} \sum_{t=2}^{T_i} \xi_{i,t}(j,k)}{\sum_{i=1}^{N} \sum_{t=2}^{T_i} \sum_{k'} \xi_{i,t}(j,k')}
$$

$$
\mu_{jm} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j,m)x_{it}}{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j,m)}
$$

$$
\Sigma_{jm} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j,m)(x_{it} - \mu_{jm})(x_{it} - \mu_{jm})^T}{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j,m)}
$$

$$
\gamma_{i,t}(j,m) = \frac{\gamma_{i,t}(j)c_{il}b_{il}(x_{it})}{b_i(x_{it})}
$$

$$
c_{jm} = \frac{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j,m)}{\sum_{i=1}^{N} \sum_{t=1}^{T_i} \gamma_{i,t}(j)}
$$

Mixing probabilities