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Assignment 1 Solutions

https://www.cse.iitb.ac.in/~pjyothi/cs753/assgmt1_soln.pdf
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Revising Tied State HMMs



Tied state HMMs
Four main steps in building a tied state HMM 
system: 

1. Create and train 3-state monophone 
HMMs with single Gaussian 
observation probability densities 

2. Clone these monophone distributions 
to initialise a set of untied triphone 
models. Train them using Baum-
Welch estimation. Transition matrix 
remains common across all triphones 
of each phone. 

3. For all triphones derived from the 
same monophone, cluster states 
whose parameters should be tied 
together. 

4. Number of mixture components in 
each tied state is increased and 
models re-estimated using BW

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994
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Which states should be tied 
together? Use decision trees.



Phonetic Decision Trees (DT)

Is left ctxt a vowel?

Yes No

Leaf A  
aa/ow/f, 
aa/ow/s, 
… 

DT for center  
state of [ow] 

Is right ctxt a 
fricative?

Is right ctxt nasal?

Yes No

Leaf B  
aa/ow/d, 
aa/ow/g, 
… 

Leaf E  
aa/ow/n, 
aa/ow/m, 
… 

YesNo

Is right ctxt a 
glide?

Leaf C  
h/ow/l, 
b/ow/r, 
… 

Leaf D  
h/ow/p, 
b/ow/k, 
… 

Yes No

Uses all training data  
tagged as ow2[?/?]

One tree is constructed for each state of each phone to cluster all the  
corresponding triphone states

Head node  
aa/ow/f, aa/ow/s, 
aa/ow/d, h/ow/p, 
aa/ow/n, aa/ow/g, 
… 



How do we build these phone DTs?
1. What questions are used?  
 
Linguistically-inspired binary questions: “Does the left or right 
phone come from a broad class of phones such as vowels, stops, 
etc.?” “Is the left or right phone [k] or [m]?” 

2. What is the training data for each phone state, pj? (root node of DT)



Training data for DT nodes
• Align training data, xi = (xi1, …, xiTi) i=1…N where xit ∈ ℝd , 

against a set of triphone HMMs 
• Use Viterbi algorithm to find the best HMM state sequence 

corresponding to each xi 

• Tag each xit  with ID of current phone along with left-context 
and right-context

{ { {xit

sil/b/aa b/aa/g aa/g/sil

xit is tagged with ID aa2[b/g] i.e. xit is aligned with the second state of 
the 3-state HMM corresponding to the triphone b/aa/g

• For a state j in phone p, collect all xit’s  that are tagged with ID pj[?/?]



How do we build these phone DTs?
1. What questions are used?  
 
Linguistically-inspired binary questions: “Does the left or right 
phone come from a broad class of phones such as vowels, stops, 
etc.?” “Is the left or right phone [k] or [m]?” 

2. What is the training data for each phone state, pj? (root node of DT) 
 
All speech frames that align with the jth state of every triphone 
HMM that has p as the middle phone   

3. What criterion is used at each node to find the best question to split 
the data on?  
 
Find the question which partitions the states in the parent node so 
as to give the maximum increase in log likelihood



Likelihood criterion

• Given a phonetic question, let the 
initial set of untied states S be split 
into two partitions Syes and Sno  

• Each partition is clustered to form 
a single Gaussian output 
distribution with mean µSyes and 
covariance ΣSyes  

• Use the likelihood of the parent 
state and the subsequent split 
states to determine which question 
a node should be split on

Image from: Young et al., “Tree-based state tying for high accuracy acoustic modeling”, ACL-HLT, 1994



• If a cluster of HMM states, S = {s1, s2, …, sM} consists of M states 
and a total of K acoustic observation vectors are associated with 
S, {x1, x2 …, xK} , then the log likelihood associated with S is: 

• For a question that splits S into Syes and Sno, compute the 
following quantity: 

• Go through all questions, find Δ for each and choose the 
question for which Δ is the biggest 

• Terminate when: Final Δ is below a threshold or data associated 
with a split falls below a threshold

Likelihood of a cluster of states

L(S) =
KX

i=1

X

s2S

log Pr(xi;µS ,⌃S)�s(xi)

� = L(S
yes

) + L(S
no

)� L(S)



Revising EM and Baum Welch training



Parameter θ determines Pr(x, z; θ) where x is observed and z is hidden 

Observed data: i.i.d samples xi, i=1, …, N 

Goal: Find                      where      

Initial parameters: θ0  

Iteratively compute θl  as follows: 

Recall EM: Fitting Parameters to Data

Q(✓, ✓

`�1
) =

NX

i=1

X

z

Pr(z|xi; ✓
`�1

) log Pr(xi, z; ✓)

✓` = argmax

✓
Q(✓, ✓`�1

)

L(✓) =
NX

i=1

log Pr(xi; ✓)argmax

✓
L(✓)

L(✓)� L(✓`�1) � Q(✓, ✓`�1)�Q(✓`�1, ✓`�1)

Estimate θl  cannot get worse over iterations because for all θ:

EM is guaranteed to converge to a local optimum [Wu83]



Coin example to illustrate EM

Coin�1 Coin�2 Coin�3

𝜌1 = Pr(H) = 0.3 𝜌2 = Pr(H) = 0.4 𝜌3 = Pr(H) = 0.6 

The following sequence is observed: “HH, TT, HH, TT, HH”

How do you estimate 𝜌1, 𝜌2 and 𝜌3?  

Toss Coin�1�privately  
if it shows H:  
    Toss Coin�2 twice 
else 
    Toss Coin�3 twice

Repeat:



Our observed data is: {HH, TT, HH, TT, HH}

Let’s use EM to estimate θ = (𝜌1, 𝜌2, 𝜌3)

[EM Iteration, E-step] 
Compute quantities involved in 

 
 where 𝛾(z, x) = Pr(z | x ;θl -1)

Q(✓, ✓

`�1
) =

NX

i=1

X

z

�(z, xi) log Pr(xi, z; ✓)

Coin example to illustrate EM

i.e., compute 𝛾(z, xi) for all z and all i

Compute 𝛾(H, HH), 𝛾(H, TT), 𝛾(T, TT) and 𝛾(T, HH)              



E-step
What is 𝛾(H, HH)?               

𝛾(H, HH) = Pr(z=H|x=HH; θl -1) 
                = Pr(x=HH|z=H)Pr(z=H)/(Pr(x=HH|z=H)Pr(z=H) +  
                                                                  Pr(x=HH|z=T)Pr(z=T)) 
            = 𝜌1𝜌22/( 𝜌1𝜌22 + (1 - 𝜌1)𝜌32) 

Similarly compute 𝛾(H, TT), 𝛾(T, TT) and 𝛾(T, HH)  

where Pr(z; ✓) =

(
⇢1 if z = H

1� ⇢1 if z = T

h : number of heads, t : number of tails

Pr(x|z; ✓) =
(
⇢

h
2 (1� ⇢2)

t if z = H

⇢

h
3 (1� ⇢3)

t if z = T

Coin�1
𝜌1 = Pr(H)

Coin�2 Coin�3

𝜌2 =Pr(H) 𝜌3 = Pr(H)



M-step
Our observed data is: {HH, TT, HH, TT, HH}

[EM Iteration, M-step] 
Find θ which maximises 

Q(✓, ✓

`�1
) =

NX

i=1

X

z

�(z, xi) log Pr(xi, z; ✓)

⇢2 =

PN
i=1 �(H, xi)hiPN

i=1 �(H, xi)(hi + ti)

⇢1 =

PN
i=1 �(H, xi)

N

⇢3 =

PN
i=1 �(T, xi)hiPN

i=1 �(T, xi)(hi + ti)

Let’s use EM to estimate θ = (𝜌1, 𝜌2, 𝜌3)



M-step

Let us derive an estimate for 𝜌1 

Q(θ, θl-1) = Σi γ(H,xi)log[𝜌2hi(1-𝜌2)ti𝜌1] + Σi γ(T,xi)log[𝜌3hi(1-𝜌3)ti(1-𝜌1)] 

∂Q/∂𝜌1 = 0 ⇒ Σi γ(H,xi)/𝜌1 - Σi γ(T,xi)/(1 - 𝜌1) = 0 

                  ⇒ (1 - 𝜌1)/𝜌1 = Σi γ(T,xi)/Σi γ(H,xi) 

                  ⇒ 𝜌1 = Σi γ(H,xi)/(Σi γ(H,xi) + Σi γ(T,xi))  

                  ⇒ 𝜌1 = Σi γ(H,xi)/N

Similarly,  estimate 𝜌2 and 𝜌3



Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

Parameters θ : transition matrix A, observation probabilities B  

[EM Iteration, E-step] 
Compute quantities involved in Q(θ,θl -1)  
𝛾i,t (j) = Pr(zt = j | xi ;θl -1)  
𝛏i,t(j,k) = Pr(zt-1 = j, zt = k | xi ;θl -1)

Baum-Welch Algorithm as EM
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The expected number of transitions from state i to state j is then the sum over
all t of x . For our estimate of ai j in Eq. 9.31, we just need one more thing: the total
expected number of transitions from state i. We can get this by summing over all
transitions out of state i. Here’s the final formula for âi j:

âi j =

PT�1
t=1 xt(i, j)

PT�1
t=1

PN
k=1 xt(i,k)

(9.38)

We also need a formula for recomputing the observation probability. This is the
probability of a given symbol vk from the observation vocabulary V , given a state j:
b̂ j(vk). We will do this by trying to compute

b̂ j(vk) =
expected number of times in state j and observing symbol vk

expected number of times in state j
(9.39)

For this, we will need to know the probability of being in state j at time t, which
we will call gt( j):

gt( j) = P(qt = j|O,l ) (9.40)

Once again, we will compute this by including the observation sequence in the
probability:

gt( j) =
P(qt = j,O|l )

P(O|l ) (9.41)

ot+1

αt(j)

ot-1 ot

sj

βt(j)

Figure 9.15 The computation of gt( j), the probability of being in state j at time t. Note
that g is really a degenerate case of x and hence this figure is like a version of Fig. 9.14 with
state i collapsed with state j. After Rabiner (1989) which is c�1989 IEEE.

As Fig. 9.15 shows, the numerator of Eq. 9.41 is just the product of the forward
probability and the backward probability:

gt( j) =
at( j)bt( j)

P(O|l ) (9.42)

We are ready to compute b. For the numerator, we sum gt( j) for all time steps
t in which the observation ot is the symbol vk that we are interested in. For the



Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

Parameters θ : transition matrix A, observation probabilities B  

[EM Iteration, E-step] 
Compute quantities involved in Q(θ,θl -1)  
𝛾i,t (j) = Pr(zt = j | xi ;θl -1)  
𝛏i,t(j,k) = Pr(zt-1 = j, zt = k | xi ;θl -1)

Baum-Welch Algorithm as EM

      𝛾i,t (j)  = Pr(zt = j | xi ;θl -1)  
                 = αt(j)βt(j)/Pr(xi ;θl -1)  
       
      ξi,t (j, k) = Pr(zt-1 = j, zt = k | xi ;θl -1)  
               = αt(j)ajkbk(xit+1)βt+1(k)/Pr(xi ;θl -1)  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xt(i, j) = P(qt = i,qt+1 = j|O,l ) (9.32)

To compute xt , we first compute a probability which is similar to xt , but differs
in including the probability of the observation; note the different conditioning of O
from Eq. 9.32:

not-quite-xt(i, j) = P(qt = i,qt+1 = j,O|l ) (9.33)

ot+2ot+1

αt(i)

ot-1 ot

aijbj(ot+1) 

si sj

βt+1(j)

Figure 9.14 Computation of the joint probability of being in state i at time t and state j at
time t + 1. The figure shows the various probabilities that need to be combined to produce
P(qt = i,qt+1 = j,O|l ): the a and b probabilities, the transition probability ai j and the
observation probability b j(ot+1). After Rabiner (1989) which is c�1989 IEEE.

Figure 9.14 shows the various probabilities that go into computing not-quite-xt :
the transition probability for the arc in question, the a probability before the arc, the
b probability after the arc, and the observation probability for the symbol just after
the arc. These four are multiplied together to produce not-quite-xt as follows:

not-quite-xt(i, j) = at(i)ai jb j(ot+1)bt+1( j) (9.34)

To compute xt from not-quite-xt , we follow the laws of probability and divide
by P(O|l ), since

P(X |Y,Z) = P(X ,Y |Z)
P(Y |Z) (9.35)

The probability of the observation given the model is simply the forward proba-
bility of the whole utterance (or alternatively, the backward probability of the whole
utterance), which can thus be computed in a number of ways:

P(O|l ) = aT (qF) = bT (q0) =
NX

j=1

at( j)bt( j) (9.36)

So, the final equation for xt is

xt(i, j) =
at(i)ai jb j(ot+1)bt+1( j)

aT (qF)
(9.37)



BW for Gaussian Mixture Model

Parameters θ : transition matrix A, observation prob. B = {(µjm,Σjm,cjm)} for all j,m    
Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

B = {(µjm,Σjm,cjm)} for all j,m

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)  

µjm =

PN
i=1

PTi

t=1 �i,t(j,m)xitPN
i=1

PTi

t=1 �i,t(j,m)

⌃jm =

PN
i=1

PTi

t=1 �i,t(j,m)(xit � µjm)(xit � µjm)T
PN

i=1

PTi

t=1 �i,t(j,m)

cjm =

PN
i=1

PTi

t=1 �i,t(j,m)
PN

i=1

PTi

t=1 �i,t(j)

Aj,k =

PN
i=1

PTi

t=2 ⇠i,t(j, k)PN
i=1

PTi

t=2

P
k0 ⇠i,t(j, k0)

Mixing 
 probabilities

γi,t(j,m)  
= γi,t(j)cil bil(xit) / bi(xit)


