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• Language models 

• provide information about word reordering 

• provide information about the most likely next word

Pr(“she class taught a”) > Pr(“she taught a class”)

Pr(“she taught a class”) > Pr(“she taught a speech”)



Application of language models 

• Speech recognition  

• Pr(“she taught a class”) > Pr(“sheet or tuck lass”) 

• Machine translation 

• Handwriting recognition/Optical character recognition 

• Spelling correction of sentences 

• Summarization, dialog generation, information retrieval, etc.



Popular Language Modelling Toolkits

• SRILM Toolkit:  

http://www.speech.sri.com/projects/srilm/ 

• KenLM Toolkit: 

https://kheafield.com/code/kenlm/ 

• OpenGrm NGram Library: 

http://opengrm.org/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/


Introduction to probabilistic LMs



Probabilistic or Statistical Language 
Models

• Given a word sequence, W = {w1, … , wn},  what is Pr(W)? 

• Decompose Pr(W) using the chain rule:

Pr(w1,w2,…,wn-1,wn) = Pr(w1) Pr(w2|w1) Pr(w3|w1,w2)…Pr(wn|w1,…,wn-1)

• Sparse data with long word contexts: How do we estimate the 
probabilities Pr(wn|w1,…,wn-1)?



Estimating word probabilities

• Accumulate counts of words and word contexts 

• Compute normalised counts to get word probabilities 

• E.g. Pr(“class | she taught a”)  
                               = π(“she taught a class”)  
         
 
        where π(“…”) refers to counts derived  
        from a large English text corpus 

• What is the obvious limitation here?

π(“she taught a”)

We’ll never see enough data



Simplifying Markov Assumption

• Markov chain: 

• Limited memory of previous word history: Only last m words 
are included 

• 2-order language model (or bigram model)  

• 3-order language model (or trigram model)

Pr(w1,w2,…,wn-1,wn) ≅ Pr(w1) Pr(w2|w1) Pr(w3|w2)…Pr(wn|wn-1)

Pr(w1,w2,…,wn-1,wn) ≅ Pr(w1) Pr(w2|w1) Pr(w3|w1,w2)…Pr(wn|wn-2,wn-1)

• Ngram model is an N-1th order Markov model



Estimating Ngram Probabilities
• Maximum Likelihood Estimates 

• Unigram model 

• Bigram model

PrML(w1) =
⇡(w1)P
i ⇡(wi)

PrML(w2|w1) =
⇡(w1, w2)P
i ⇡(w1, wi)

Pr(s = w0, . . . , wn) = PrML(w0)
nY

i=1

PrML(wi|wi�1)



Example

The dog chased a cat 
The cat chased away a mouse  

The mouse eats cheese

What is Pr(“The cat chased a mouse”)?

Pr(“The cat chased a mouse”) = 

Pr(“The”) ⋅ Pr(“cat|The”) ⋅ Pr(“chased|cat”) ⋅ Pr(“a|chased”) ⋅ Pr(“mouse|a”) =  
 
3/15  ⋅ 1/3 ⋅ 1/1 ⋅ 1/2 ⋅ 1/2  = 1/60 
   



Example

The dog chased a cat 
The cat chased away a mouse  

The mouse eats cheese

What is Pr(“The dog eats meat”)?

Pr(“The dog eats meat”) = 

Pr(“The”) ⋅ Pr(“dog|The”) ⋅ Pr(“eats|dog”) ⋅ Pr(“meat|eats”)  =  
 
3/15  ⋅ 1/3 ⋅ 0/1 ⋅ 0/1  = 0! 
   

Due to unseen bigrams

How do we deal with unseen bigrams? We’ll come back to it.



Open vs. closed vocabulary task

• Closed vocabulary task: Use a fixed vocabulary, V. We know all 
the words in advance. 

• More realistic setting, we don’t know all the words in advance. 
Open vocabulary task. Encounter out-of-vocabulary (OOV) 
words during test time. 

• Create an unknown word: <UNK>  

• Estimating <UNK> probabilities: Determine a vocabulary V. 
Change all words in the training set not in V to <UNK> 

• Now train its probabilities like a regular word 

• At test time, use <UNK> probabilities for words not in 
training



Evaluating Language Models

• Extrinsic evaluation: 

• To compare Ngram models A and B, use both within a 
specific speech recognition system (keeping all other 
components the same) 

• Compare word error rates (WERs) for A and B 

• Time-consuming process! 



Intrinsic Evaluation

• Evaluate the language model in a standalone manner 

• How likely does the model consider the text in a test set? 

• How closely does the model approximate the actual (test set) 
distribution? 

• Same measure can be used to address both questions — 
perplexity!



Measures of LM quality

• How likely does the model consider the text in a test set? 

• How closely does the model approximate the actual (test set) 
distribution? 

• Same measure can be used to address both questions — 
perplexity!



Perplexity (I)

• How likely does the model consider the text in a test set? 

• Perplexity(test) = 1/Prmodel[text] 

• Normalized by text length: 

• Perplexity(test) = (1/Prmodel[text])1/N where N = number of 
tokens in test 

• e.g. If model predicts i.i.d. words from a dictionary of size 
L, per word perplexity = (1/(1/L)N)1/N = L 



Intuition for Perplexity
• Shannon’s guessing game builds intuition for perplexity 

• What is the surprisal factor in predicting the next word? 

• At the stall, I had tea and _________   biscuits   0.1  
                                                               samosa   0.1 
                                                               coffee     0.01  
                                                               rice        0.001  
                                                               ⋮  
                                                               but   0.00000000001 

• A better language model would assign a higher probability to the  
actual word that fills the blank (and hence lead to lesser 
surprisal/perplexity)                                                            



Measures of LM quality

• How likely does the model consider the text in a test set? 

• How closely does the model approximate the actual (test set) 
distribution? 

• Same measure can be used to address both questions — 
perplexity!



Perplexity (II)

• How closely does the model approximate the actual (test set) 
distribution? 
• KL-divergence between two distributions X and Y 

            DKL(X||Y) = Σσ PrX[σ] log (PrX[σ]/PrY[σ]) 
• Equals zero iff X = Y ; Otherwise, positive 

• How to measure DKL(X||Y)? We don’t know X! 
• DKL(X||Y) = Σσ PrX[σ] log(1/PrY[σ]) - H(X)  

           where H(X) = -Σσ PrX[σ] log PrX[σ]  
• Empirical cross entropy: 

Cross entropy  
between X and Y

1

|test|
X

�2test

log(

1

Pry[�]
)



Perplexity vs. Empirical Cross Entropy

• Empirical Cross Entropy (ECE) 

• Normalized Empirical Cross Entropy = ECE/(avg. length) = 

• How does                                     relate to perplexity?
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Perplexity vs. Empirical Cross-Entropy

log(perplexity) =

1

N
log
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Pr[test]
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log
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Thus, perplexity = 2(normalized cross entropy)

Example perplexities for Ngram models trained on WSJ (80M words):  

Unigram: 962, Bigram: 170, Trigram: 109



Introduction to smoothing of LMs



Recall example

The dog chased a cat 
The cat chased away a mouse  

The mouse eats cheese

What is Pr(“The dog eats meat”)?

Pr(“The dog eats meat”) = 

Pr(“The”) ⋅ Pr(“dog|The”) ⋅ Pr(“eats|dog”) ⋅ Pr(“meat|eats”)  =  
 
3/15  ⋅ 1/3 ⋅ 0/1 ⋅ 0/1  = 0! 
   

Due to unseen bigrams



Unseen Ngrams

• Even with MLE estimates based on counts from large text 
corpora, there will be many unseen bigrams/trigrams that 
never appear in the corpus 

• If any unseen Ngram appears in a test sentence, the sentence 
will be assigned probability 0 

• Problem with MLE estimates: maximises the likelihood of the 
observed data by assuming anything unseen cannot happen 
and overfits to the training data 

• Smoothing methods: Reserve some probability mass to Ngrams 
that don’t occur in the training corpus



Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

becomes

Correct?

PrML(wi|wi�1) =
⇡(wi�1, wi)

⇡(wi�1)

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1)



Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

becomes

No, ΣwiPrLap(wi|wi-1) must equal 1. Change denominator s.t.

PrML(wi|wi�1) =
⇡(wi�1, wi)

⇡(wi�1)

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1)

X

wi

⇡(wi�1, wi) + 1

⇡(wi�1) + x

= 1

Solve for x: x = V where V is the vocabulary size

x



Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

becomes

PrML(wi|wi�1) =
⇡(wi�1, wi)

⇡(wi�1)

where V is the vocabulary size

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1) + V
✓



Example: Bigram counts6 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning
of sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format

14 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P⇤
Laplace(wn|wn�1) =

C(wn�1wn)+1
C(wn�1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(4.22)

i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.
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i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
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chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
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Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning
of sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format

Example: Bigram probabilities
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i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P⇤
Laplace(wn|wn�1) =

C(wn�1wn)+1
C(wn�1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(4.22)

i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.
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Laplace smoothing moves too much probability mass to unseen events!



Add-α Smoothing

Instead of 1, add α < 1 to each count

Pr↵(wi|wi�1) =
⇡(wi�1, wi) + ↵

⇡(wi�1) + ↵V

Choosing α: 

• Train model on training set using different values of α 

• Choose the value of α that minimizes cross entropy on the 
development set



Smoothing or discounting
• Smoothing can be viewed as discounting (lowering) some 

probability mass from seen Ngrams and redistributing 
discounted mass to unseen events  

• i.e. probability of a bigram with Laplace smoothing 

• can be written as 

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1) + V

⇡⇤(wi�1, wi) = (⇡(wi�1, wi) + 1)
⇡(wi�1)

⇡(wi�1) + V

PrLap(wi|wi�1) =
⇡⇤(wi�1, wi)

⇡(wi�1)

• where discounted count 



Example: Bigram adjusted counts6 CHAPTER 4 • LANGUAGE MODELING WITH N-GRAMS

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Figure 4.1 Bigram counts for eight of the words (out of V = 1446) in the Berkeley Restau-
rant Project corpus of 9332 sentences. Zero counts are in gray.

i want to eat chinese food lunch spend
i 0.002 0.33 0 0.0036 0 0 0 0.00079
want 0.0022 0 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0 0.0017 0.28 0.00083 0 0.0025 0.087
eat 0 0 0.0027 0 0.021 0.0027 0.056 0
chinese 0.0063 0 0 0 0 0.52 0.0063 0
food 0.014 0 0.014 0 0.00092 0.0037 0 0
lunch 0.0059 0 0 0 0 0.0029 0 0
spend 0.0036 0 0.0036 0 0 0 0 0

Figure 4.2 Bigram probabilities for eight words in the Berkeley Restaurant Project corpus
of 9332 sentences. Zero probabilities are in gray.

Now we can compute the probability of sentences like I want English food or
I want Chinese food by simply multiplying the appropriate bigram probabilities to-
gether, as follows:

P(<s> i want english food </s>)
= P(i|<s>)P(want|i)P(english|want)

P(food|english)P(</s>|food)
= .25⇥ .33⇥ .0011⇥0.5⇥0.68
= = .000031

We leave it as Exercise 4.2 to compute the probability of i want chinese food.
What kinds of linguistic phenomena are captured in these bigram statistics?

Some of the bigram probabilities above encode some facts that we think of as strictly
syntactic in nature, like the fact that what comes after eat is usually a noun or an
adjective, or that what comes after to is usually a verb. Others might be a fact about
the personal assistant task, like the high probability of sentences beginning with
the words I. And some might even be cultural rather than linguistic, like the higher
probability that people are looking for Chinese versus English food.

Some practical issues: Although for pedagogical purposes we have only described
bigram models, in practice it’s more common to use trigram models, which con-trigram

dition on the previous two words rather than the previous word, or 4-gram or even4-gram

5-gram models, when there is sufficient training data. Note that for these larger N-5-gram

grams, we’ll need to assume extra context for the contexts to the left and right of the
sentence end. For example, to compute trigram probabilities at the very beginning
of sentence, we can use two pseudo-words for the first trigram (i.e., P(I|<s><s>).

We always represent and compute language model probabilities in log format
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(Add-one) 
smoothing
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i want to eat chinese food lunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
to 3 1 5 687 3 1 7 212
eat 1 1 3 1 17 3 43 1
chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Figure 4.5 Add-one smoothed bigram counts for eight of the words (out of V = 1446) in
the Berkeley Restaurant Project corpus of 9332 sentences. Previously-zero counts are in gray.

For add-one smoothed bigram counts, we need to augment the unigram count by
the number of total word types in the vocabulary V :

P⇤
Laplace(wn|wn�1) =

C(wn�1wn)+1
C(wn�1)+V

(4.21)

Thus, each of the unigram counts given in the previous section will need to be
augmented by V = 1446. The result is the smoothed bigram probabilities in Fig. 4.6.

i want to eat chinese food lunch spend
i 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 0.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Figure 4.6 Add-one smoothed bigram probabilities for eight of the words (out of V = 1446) in the BeRP
corpus of 9332 sentences. Previously-zero probabilities are in gray.

It is often convenient to reconstruct the count matrix so we can see how much a
smoothing algorithm has changed the original counts. These adjusted counts can be
computed by Eq. 4.22. Figure 4.7 shows the reconstructed counts.

c⇤(wn�1wn) =
[C(wn�1wn)+1]⇥C(wn�1)

C(wn�1)+V
(4.22)

i want to eat chinese food lunch spend
i 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63 4.4 133
eat 0.34 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19
spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Figure 4.7 Add-one reconstituted counts for eight words (of V = 1446) in the BeRP corpus
of 9332 sentences. Previously-zero counts are in gray.



Backoff and Interpolation
• General idea: It helps to use lesser context to generalise for 

contexts that the model doesn’t know enough about 

• Backoff:  

• Use trigram probabilities if there is sufficient evidence 

• Else use bigram or unigram probabilities 

• Interpolation 

• Mix probability estimates combining trigram, bigram and 
unigram counts



Backoff

• In a backoff model, if the Ngram has zero counts, we backoff 
to the (N-1)gram or lower order Ngram models 

• Katz Backoff: 
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In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
the interpolation. Equation 4.26 shows the equation for interpolation with context-
conditioned weights:

P̂(wn|wn�2wn�1) = l1(wn�1
n�2)P(wn|wn�2wn�1)

+l2(wn�1
n�2)P(wn|wn�1)

+l3(wn�1
n�2)P(wn) (4.26)

How are these l values set? Both the simple interpolation and conditional inter-
polation l s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus that we use to set hyperparameters like these l values, by choosing
the l values that maximize the likelihood of the held-out corpus. That is, we fix
the N-gram probabilities and then search for the l values that—when plugged into
Eq. 4.24—give us the highest probability of the held-out set. There are various ways
to find this optimal set of l s. One way is to use the EM algorithm defined in Chap-
ter 9, which is an iterative learning algorithm that converges on locally optimal l s
(Jelinek and Mercer, 1980).

In a backoff N-gram model, if the N-gram we need has zero counts, we approx-
imate it by backing off to the (N-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order N-grams to save some probability mass for the lowerdiscount

order N-grams. Just as with add-one smoothing, if the higher-order N-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as
we replaced an N-gram which has zero probability with a lower-order N-gram, we
would be adding probability mass, and the total probability assigned to all possible
strings by the language model would be greater than 1! In addition to this explicit
discount factor, we’ll need a function a to distribute this probability mass to the
lower order N-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P⇤ if we’ve seen this N-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff N-gram PBO is
thus computed as follows:

PBO(wn|wn�1
n�N+1) =

8
<

:

P⇤(wn|wn�1
n�N+1), if C(wn

n�N+1)> 0

a(wn�1
n�N+1)PBO(wn|wn�1

n�N+2), otherwise.

(4.27)
Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P⇤ and a values.

• where                          is the discounted probability and α’s  
are appropriately normalised backoff weights
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order N-grams. Just as with add-one smoothing, if the higher-order N-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as
we replaced an N-gram which has zero probability with a lower-order N-gram, we
would be adding probability mass, and the total probability assigned to all possible
strings by the language model would be greater than 1! In addition to this explicit
discount factor, we’ll need a function a to distribute this probability mass to the
lower order N-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P⇤ if we’ve seen this N-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff N-gram PBO is
thus computed as follows:
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Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P⇤ and a values.
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• Linear interpolation: Linear combination of different Ngram 

models 

• Instead of a fixed value, λ’s could also be conditioned on the 
context
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In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
the interpolation. Equation 4.26 shows the equation for interpolation with context-
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n�2)P(wn) (4.26)

How are these l values set? Both the simple interpolation and conditional inter-
polation l s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus that we use to set hyperparameters like these l values, by choosing
the l values that maximize the likelihood of the held-out corpus. That is, we fix
the N-gram probabilities and then search for the l values that—when plugged into
Eq. 4.24—give us the highest probability of the held-out set. There are various ways
to find this optimal set of l s. One way is to use the EM algorithm defined in Chap-
ter 9, which is an iterative learning algorithm that converges on locally optimal l s
(Jelinek and Mercer, 1980).

In a backoff N-gram model, if the N-gram we need has zero counts, we approx-
imate it by backing off to the (N-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order N-grams to save some probability mass for the lowerdiscount

order N-grams. Just as with add-one smoothing, if the higher-order N-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as
we replaced an N-gram which has zero probability with a lower-order N-gram, we
would be adding probability mass, and the total probability assigned to all possible
strings by the language model would be greater than 1! In addition to this explicit
discount factor, we’ll need a function a to distribute this probability mass to the
lower order N-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P⇤ if we’ve seen this N-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff N-gram PBO is
thus computed as follows:

PBO(wn|wn�1
n�N+1) =

8
<

:

P⇤(wn|wn�1
n�N+1), if C(wn

n�N+1)> 0

a(wn�1
n�N+1)PBO(wn|wn�1

n�N+2), otherwise.

(4.27)
Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P⇤ and a values.
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Note that add-one smoothing has made a very big change to the counts. C(want to)
changed from 608 to 238! We can see this in probability space as well: P(to|want)
decreases from .66 in the unsmoothed case to .26 in the smoothed case. Looking at
the discount d (the ratio between new and old counts) shows us how strikingly the
counts for each prefix word have been reduced; the discount for the bigram want to
is .39, while the discount for Chinese food is .10, a factor of 10!

The sharp change in counts and probabilities occurs because too much probabil-
ity mass is moved to all the zeros.

4.4.2 Add-k smoothing
One alternative to add-one smoothing is to move a bit less of the probability mass
from the seen to the unseen events. Instead of adding 1 to each count, we add a frac-
tional count k (.5? .05? .01?). This algorithm is therefore called add-k smoothing.add-k

P⇤
Add-k(wn|wn�1) =

C(wn�1wn)+ k
C(wn�1)+ kV

(4.23)

Add-k smoothing requires that we have a method for choosing k; this can be
done, for example, by optimizing on a devset. Although add-k is useful for some
tasks (including text classification), it turns out that it still doesn’t work well for
language modeling, generating counts with poor variances and often inappropriate
discounts (Gale and Church, 1994).

4.4.3 Backoff and Interpolation
The discounting we have been discussing so far can help solve the problem of zero
frequency N-grams. But there is an additional source of knowledge we can draw
on. If we are trying to compute P(wn|wn�2wn�1) but we have no examples of a
particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
P(wn|wn�1), we can look to the unigram P(wn).

In other words, sometimes using less context is a good thing, helping to general-
ize more for contexts that the model hasn’t learned much about. There are two ways
to use this N-gram “hierarchy”. In backoff, we use the trigram if the evidence isbackoff

sufficient, otherwise we use the bigram, otherwise the unigram. In other words, we
only “back off” to a lower-order N-gram if we have zero evidence for a higher-order
N-gram. By contrast, in interpolation, we always mix the probability estimatesinterpolation

from all the N-gram estimators, weighing and combining the trigram, bigram, and
unigram counts.

In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
by mixing together the unigram, bigram, and trigram probabilities, each weighted
by a l :

P̂(wn|wn�2wn�1) = l1P(wn|wn�2wn�1)

+l2P(wn|wn�1)

+l3P(wn) (4.24)

such that the l s sum to 1: X

i

li = 1 (4.25)

where λ1 + λ2  + λ3 = 1

How to set the λ’s?



Interpolation
• Linear interpolation: Linear combination of different Ngram 

models 

• Instead of a fixed value, λ’s could also be conditioned on the 
context
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particular trigram wn�2wn�1wn, we can instead estimate its probability by using
the bigram probability P(wn|wn�1). Similarly, if we don’t have counts to compute
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In simple linear interpolation, we combine different order N-grams by linearly
interpolating all the models. Thus, we estimate the trigram probability P(wn|wn�2wn�1)
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In a slightly more sophisticated version of linear interpolation, each l weight is
computed in a more sophisticated way, by conditioning on the context. This way,
if we have particularly accurate counts for a particular bigram, we assume that the
counts of the trigrams based on this bigram will be more trustworthy, so we can
make the l s for those trigrams higher and thus give that trigram more weight in
the interpolation. Equation 4.26 shows the equation for interpolation with context-
conditioned weights:

P̂(wn|wn�2wn�1) = l1(wn�1
n�2)P(wn|wn�2wn�1)

+l2(wn�1
n�2)P(wn|wn�1)

+l3(wn�1
n�2)P(wn) (4.26)

How are these l values set? Both the simple interpolation and conditional inter-
polation l s are learned from a held-out corpus. A held-out corpus is an additionalheld-out

training corpus that we use to set hyperparameters like these l values, by choosing
the l values that maximize the likelihood of the held-out corpus. That is, we fix
the N-gram probabilities and then search for the l values that—when plugged into
Eq. 4.24—give us the highest probability of the held-out set. There are various ways
to find this optimal set of l s. One way is to use the EM algorithm defined in Chap-
ter 9, which is an iterative learning algorithm that converges on locally optimal l s
(Jelinek and Mercer, 1980).

In a backoff N-gram model, if the N-gram we need has zero counts, we approx-
imate it by backing off to the (N-1)-gram. We continue backing off until we reach a
history that has some counts.

In order for a backoff model to give a correct probability distribution, we have
to discount the higher-order N-grams to save some probability mass for the lowerdiscount

order N-grams. Just as with add-one smoothing, if the higher-order N-grams aren’t
discounted and we just used the undiscounted MLE probability, then as soon as
we replaced an N-gram which has zero probability with a lower-order N-gram, we
would be adding probability mass, and the total probability assigned to all possible
strings by the language model would be greater than 1! In addition to this explicit
discount factor, we’ll need a function a to distribute this probability mass to the
lower order N-grams.

This kind of backoff with discounting is also called Katz backoff. In Katz back-Katz backoff

off we rely on a discounted probability P⇤ if we’ve seen this N-gram before (i.e., if
we have non-zero counts). Otherwise, we recursively back off to the Katz probabil-
ity for the shorter-history (N-1)-gram. The probability for a backoff N-gram PBO is
thus computed as follows:

PBO(wn|wn�1
n�N+1) =

8
<

:

P⇤(wn|wn�1
n�N+1), if C(wn

n�N+1)> 0

a(wn�1
n�N+1)PBO(wn|wn�1

n�N+2), otherwise.

(4.27)
Katz backoff is often combined with a smoothing method called Good-Turing.Good-Turing

The combined Good-Turing backoff algorithm involves quite detailed computation
for estimating the Good-Turing smoothing and the P⇤ and a values.

where λ1 + λ2  + λ3 = 1

Estimate N-gram probabilities on a training set. Then, search for λ’s  
that maximise the probability of a held-out set, Σn log P̂(wn|wn-1) 



Smoothing for Web-scale N-grams

• “Stupid backoff” [B07] 
• Don’t apply any discounting and instead directly use relative 

counts 
• Works well on very large web-scale datasets

Dan*Jurafsky

Smoothing'for'WebMscale'NMgrams

• “Stupid*backoff”*(Brants et#al.*2007)
• No*discounting,*just*use*relative*frequencies*
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[B07]: Brants et al., “Large Language Models in Machine Translation”, ACL, 2007



Next class: Advanced Smoothing &  
Beyond Ngram LMs


