A0
%’

Automatic Speech Recognition (CS753)

Lecture 14: Language Models (Part 1)

Instructor: Preethi Jyothi
Feb 27, 2017

So far, acoustic models...

. Acoustic
: Models
Aco_ustlc Triphones
Indices

b+ae+n

b+iy+n

Rraern

Next, language models

Language
Sequence

Words

Language models

provide information about word reordering

Pr(“she class taught a”) > Pr(“she taught a class”)

provide information about the most likely next word

Pr(“she taught a class”) > Pr(“she taught a speech”)

Application of language models

Speech recognition

Pr(“she taught a class”) > Pr("sheet or tuck lass™)
Machine translation
Handwriting recognition/Optical character recognition
Spelling correction of sentences

Summarization, dialog generation, information retrieval, etc.

Popular Language Modelling Toolkits

SRILM Toolkit:
http://www.speech.sri.com/projects/srilm/

KenLM Toolkit:
https://kheafield.com/code/kenlm/

OpenGrm NGram Library:

http://opengrm.org/

http://www.speech.sri.com/projects/srilm/
http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Introduction to probabilistic LMs

Probabilistic or Statistical Language
Models

Given a word sequence, W = {w1, ..., wa}, what is Pr(W)?

Decompose Pr(W) using the chain rule:

Pr(wi,wa,... . Wn.1,wn) = Pr(w1) Pr(wa|w1) Pr(ws|wi,wz).. . Pr(wa|wi,...,Wn-1)

Sparse data with long word contexts: How do we estimate the
probabilities Pr(w,|wi,...,wn-1)?

Estimating word probabilities

Accumulate counts of words and word contexts
Compute normalised counts to get word probabilities

E.g. Pr(“class | she taught a”)
= 71(" she taught a class”)

n(“she taught a”)

where n("..) refers to counts derived
from a large English text corpus

What is the obvious limitation here? We’'ll never see enough data

Simplifying Markov Assumption

Markov chain:

Limited memory of previous word history: Only last m words
are included

2-order language model (or bigram model)

Pr(wi,w2,...,wn1,wn) = Pr(wi) Pr(walwi) Pr(ws|wz)...Pr(wn|wn-1)

3-order language model (or trigram model)

Pr(wi,w2,...,Wn1,wn) = Pr(w1) Pr(wa|w1) Pr(ws|wi,wa).. . Pr(wa|wn-2,Wn-1)

Ngram model is an N-1th order Markov model

Estimating Ngram Probabilities
- Maximum Likelihood Estimates

- Unigram model

P = 55

- Bigram model

'7T(UJ1, wZ)
Pravc(welwl) = S~)

Pr(s = wq,...,wy) = Prasr(wp) HPI‘ML(wZ-\wi_l)
—1

Example

The dog chased a cat
The cat chased away a mouse
The mouse eats cheese

What is Pr("The cat chased a mouse”)?

Pr(“The cat chased a mouse”) =
Pr(ccThe”) . Pl’(“C&t | The”)) Pr(ccchased| Ca;t:”) . Pr(ccal Chased”)) Pr(“mouse | a,,) _

3/15 - 1/3-1/1-1/2-1/2 =1/60

Example

The dog chased a cat
The cat chased away a mouse
The mouse eats cheese

What is Pr("The dog eats meat”)?

Pr("The dog eats meat”) =
Pr("The”) - Pr("dog|The”) - Pr("eats|dog”) - Pr("meat|eats”) =
3/15 - 1/3-0/1-0/1 = 0! Due to unseen bigrams

How do we deal with unseen bigrams? We’ll come back to it.

Open vs. closed vocabulary task

Closed vocabulary task: Use a fixed vocabulary, V. We know all
the words in advance.

More realistic setting, we don’t know all the words in advance.
Open vocabulary task. Encounter out-of-vocabulary (OOV)
words during test time.

Create an unknown word: <UNK>

Estimating <UNK> probabilities: Determine a vocabulary V.
Change all words in the training set not in V to <UNK>

Now train its probabilities like a regular word

At test time, use <UNK> probabilities for words not in
training

Evaluating Language Models

Extrinsic evaluation:

To compare Ngram models A and B, use both within a

specific speech recognition system (keeping all other
components the same)

Compare word error rates (WERs) for A and B

Time-consuming process!

Intrinsic Evaluation

Evaluate the language model in a standalone manner
How likely does the model consider the text in a test set?

How closely does the model approximate the actual (test set)
distribution?

Same measure can be used to address both questions —
perplexity!

Measures of LM quality

How likely does the model consider the text in a test set?

Same measure can be used to address both questions —
perplexity!

Perplexity (1)

How likely does the model consider the text in a test set?

Perplexity(test) = 1/Prmodel[text]
Normalized by text length:

Perplexity(test) = (1/Prmodel[text])"N where N = number of
tokens in test

e.g. If model predicts i.i.d. words from a dictionary of size
L, per word perplexity = (1/(1/L)N)VN =L

Intuition for Perplexity

Shannon’s guessing game builds intuition for perplexity

What is the surprisal factor in predicting the next word?

At the stall, | had tea and biscuits 0.1

samosa 0.1
coffee 0.01
rice 0.001

but 0.00000000001

A better language model would assign a higher probability to the
actual word that fills the blank (and hence lead to lesser
surprisal/perplexity)

Measures of LM quality

How closely does the model approximate the actual (test set)
distribution?

Same measure can be used to address both questions —
perplexity!

Perplexity (1)

How closely does the model approximate the actual (test set)
distribution?

KL-divergence between two distributions X and Y
DKL(XHY) =5 Pl‘x[G] IOg (Pl’x[G]/PI’Y[G])

Equals zero iff X =Y ; Otherwise, positive

How to measure Dki(X||Y)? We don’tW Cross entropy

Dk(X|[Y) =(ZG Prx[o] Iog(1/Pry[G]))- H(X) between X and Y
where H(X) = -2, Prx[o] Tog Prx|o]

Empirical cross entropy°

2{:: log(I?r

octest y

|t65t\

Perplexity vs. Empirical Cross Entropy

Empirical Cross Entropy (ECE)

Normalized Empirical Cross Entropy = ECE/(avg. length) =

1 1 1
1 _
|H#words /#sents| |#sents| Z o8 Priodel|0])

octest

%Zlog(L

= Prmodel [U]

1 1
How does =7 Zlog(-) relate to perplexity?

Perplexity vs. Empirical Cross-Entropy

1 1
log(perplexity) = — log

Thus perplexity _ 2(normalized cross entropy)
b

Example perplexities for Ngram models trained on WSJ (80M words):

Unigram: 962, Bigram: 170, Trigram: 109

Introduction to smoothing of LMs

Recall example

The dog chased a cat
The cat chased away a mouse
The mouse eats cheese

What is Pr("The dog eats meat”)?

Pr("The dog eats meat”) =
Pr("The”) - Pr("dog|The”) - Pr("eats|dog”) - Pr("meat|eats”) =

3/15 - 1/3-0/1-0/1 = 0! Due to unseen bigrams

Unseen Ngrams

Even with MLE estimates based on counts from large text
corpora, there will be many unseen bigrams/trigrams that
never appear in the corpus

If any unseen Ngram appears in a test sentence, the sentence
will be assigned probability 0

Problem with MLE estimates: maximises the likelihood of the
observed data by assuming anything unseen cannot happen
and overfits to the training data

Smoothing methods: Reserve some probability mass to Ngrams
that don’t occur in the training corpus

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

7T(”w7;—17 wz)

W(wi_l)

Prasp(wi|lw;—1) =

becomes

mT(wi—1,w;) + 1

7'('(’(1]7;_1)

PrLap (wz ’wi— 1) —

Correct?

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

7T(”w7;—17 wz)

W(wi_l)

Prasp(wi|lw;—1) =
becomes

mT(wi—1,w;) + 1 X

Priap(w;|w;—1) = —

No, >v.Prrap(wilwi-1) must equal 1. Change denominator s.t.

Z m(wi—1,w;) +1

=1
W(wi_l) + x

Wy

Solve for x: x = V"where V'is the vocabulary size

Add-one (Laplace) smoothing

Simple idea: Add one to all bigram counts. That means,

7T(”w7;—17 wz)

W(wi_l)

Prasp(wi|lw;—1) =

becomes

W(wi_l,wi) -+ 1 s/
W(wi_l) -+ V

PrLap (wz ’wi— 1) —

where V' is the vocabulary size

Example: Bigram counts

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 S5 1
to 2 0 4 686 2 0 6 211
No eat 0 0 2 0 16 2 42 0
smoothing chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese food Ilunch spend
i 6 828 1 10 1 1 1 3
want 3 1 609 2 7 7 6 2
Laplace to 3 1 5 687 3 1 7 212
(Add-one) eat 1 1 3 1 17 3 43 1
smoothing chinese 2 1 1 1 1 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

Example: Bigram probabilities

No
smoothing

Laplace
(Add-one)

smoothing

i want to eat chinese food lunch spend
i 0.002 033 0 0.0036 O 0) 0 0.00079
want 0.0022 O 0.66 0.0011 0.0065 0.0065 0.0054 0.0011
to 0.00083 0O 0.0017 10.28 0.00083 0O 0.0025 0.087
eat 0) 0 0.0027 0O 0.021 0.0027 0.056 O
chinese 0.0063 0 0) 0) 0 0.52 0.0063 0O
food 0.014 0) 0.014 O 0.00092 0.0037 0O 0)
lunch 0.0059 0O 0) 0) 0 0.0029 0O 0)
spend 0.0036 O 0.0036 0O 0 0) 0) 0)

i want to eat chinese food lunch spend
1 0.0015 0.21 0.00025 0.0025 0.00025 0.00025 0.00025 0.00075
want 0.0013 0.00042 10.26 0.00084 0.0029 0.0029 0.0025 0.00084
to 0.00078 0.00026 0.0013 0.18 0.00078 0.00026 0.0018 0.055
eat 0.00046 0.00046 0.0014 0.00046 0.0078 0.0014 0.02 0.00046
chinese 0.0012 0.00062 0.00062 0.00062 0.00062 0.052 0.0012 0.00062
food 0.0063 0.00039 0.0063 0.00039 0.00079 0.002 0.00039 0.00039
lunch 0.0017 0.00056 0.00056 0.00056 0.00056 0.0011 0.00056 0.00056
spend 0.0012 0.00058 0.0012 0.00058 0.00058 0.00058 0.00058 0.00058

Laplace smoothing moves too much probability mass to unseen events!

Add-a Smoothing

Instead of 1, add o < 1 to each count

m(w;_1,w;) + «
W(wi_l) —+ CMV

Pl‘a (wz \wi_l) —

Choosing a:
Train model on training set using different values of a

Choose the value of a that minimizes cross entropy on the
development set

Smoothing or discounting

Smoothing can be viewed as discounting (lowering) some
probability mass from seen Ngrams and redistributing
discounted mass to unseen events

i.e. probability of a bigram with Laplace smoothing

m(wi—1,w;) + 1
7T(U)Z'_1) -+ V

Prrap(w;|w;—1) =

can be written as
T (w1, w;)

W(wi_l)

Prrap(wi|w;—1) =

7T(w7;_1)

' “(wim1, ws) = i—1,w;) + 1
where discounted count 7" (w;—1,w;) = (7(w;—1,w;) +)w(wi_1)+V

Example: Bigram adjusted counts

i want to eat chinese food lunch spend
i 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 S5 1
to 2 0 4 686 2 0 6 211
No eat 0 0 2 0 16 2 42 0
smoothing chinese 1 0 0 0 0 82 1 0
food 15 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0
i want to eat chinese food Ilunch spend
1 3.8 527 0.64 6.4 0.64 0.64 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
Laplace to 1.9 0.63 3.1 430 1.9 0.63 44 133
(Add-one) ¢4 034 034 1 0.34 5.8 1 15 0.34
smoothing hinece 02 0.098 0.098 0.098 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57 0.19 0.19 0.19 0.19 0.38 0.19 0.19

spend 0.32 0.16 0.32 0.16 0.16 0.16 0.16 0.16

Backoft and Interpolation

General idea: It helps to use lesser context to generalise for
contexts that the model doesn’t know enough about

Backoff:
Use trigram probabilities if there is sufficient evidence
Else use bigram or unigram probabilities
Interpolation

Mix probability estimates combining trigram, bigram and
unigram counts

Backoff

In a backoff model, if the Ngram has zero counts, we backoff
to the (N-1)gram or lower order Ngram models

Katz Backofft:

. P*(wal Wy 1), if C(wy_n41) >0
BO(Wn\Wn N+1) OC(Wn_N+1)PBO(W”‘Wn N +2) otherwise.

where P*(w,|w'”\.,) is the discounted probability and o’s
are appropriately normalised backoff weights

Interpolation

Linear interpolation: Linear combination of different Ngram
models

p(wnlwn—2wn—l) —)LIP(Wn’Wn—ZWn—l)
M P(wy|wy—1)
——7L3P(Wn)

where A1 + Ay + A3 =1

Instead of a fixed value, 4’s could also be conditioned on the
context

p(wn‘wn—2wn—1) — Al (WZ:%)P(Wn’Wn—2Wn—1)
‘|‘A2(WZ:%)P(Wn‘Wn—1)
+ A3 (WZ:é)P(Wn)

How to set the A’s?

Interpolation

Linear interpolation: Linear combination of different Ngram
models

p(wnlwn—2wn—l) —)LIP(Wn’Wn—ZWn—l)
M P(wy|wy—1)
——7L3P(Wn)

where A1 + Ay + A3 =1

Instead of a fixed value, 4’s could also be conditioned on the
context

p(wn‘wn—2wn—1) — Al (WZ:%)P(Wn’Wn—2Wn—1)
‘|‘A2(WZ:%)P(Wn‘Wn—1)
+ A3 (WZ:é)P(Wn)

Estimate N-gram probabilities on a training set. Then, search for 4’s
that maximise the probability of a held-out set, X, log P(wu|w-1)

Smoothing for Web-scale N-grams

“Stupid backoff” [B07]

Don’t apply any discounting and instead directly use relative
counts

Works well on very large web-scale datasets

count(w’ . ,—
(’l’l‘”) if count(w,_,,)>0
S(w. lw—,,)=1 count(w,,,
0.4S(w, lw,",, otherwise
count(w:,
S(w,) = W)
N

[BO7]: Brants et al., “Large Language Models in Machine Translation”, ACL, 2007

Next class: Advanced Smoothing &
Beyond Ngram LMs

