

Automatic Speech Recognition (CS753) Lecture 15: Language Models (Part II)

Instructor: Preethi Jyothi Mar 2, 2017

Recap

- Ngram language models are popularly used in various ML applications
- Language models are evaluated using the *perplexity* (normalized per-word cross-entropy) measure.
 - For a uniform unigram model over L words, perplexity = L.
- MLE estimates for Ngram models assume there are no unseen Ngrams
- Smoothing algorithms: Discount some probability mass from seen Ngrams and redistribute discounted mass to unseen events
 - Two different kinds of smoothing that combine higher-order and lowerorder Ngram models: Backoff and Interpolation

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation
- Kneser-Ney Smoothing

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation
- Kneser-Ney Smoothing

Recall add-1/add-α smoothing (also viewed as discounting)

- Smoothing can be viewed as discounting (lowering) some probability mass from seen Ngrams and redistributing discounted mass to unseen events
- i.e. probability of a bigram with Laplace (add-1) smoothing

$$\Pr_{Lap}(w_i|w_{i-1}) = \frac{\pi(w_{i-1}, w_i) + 1}{\pi(w_{i-1}) + V}$$

• can be written as

$$\Pr_{Lap}(w_i|w_{i-1}) = \frac{\pi^*(w_{i-1}, w_i)}{\pi(w_{i-1})}$$

• where discounted count $\pi^*(w_{i-1}, w_i) = (\pi(w_{i-1}, w_i) + 1) \frac{\pi(w_{i-1})}{\pi(w_{i-1}) + V}$

Problems with Add- α Smoothing

- What's wrong with add- α smoothing?
- Assigns too much probability mass away from seen Ngrams to unseen events
- Does not discount high counts and low counts correctly
- Also, α is tricky to set
- Is there a more principled way to do this smoothing?
 A solution: Good-Turing estimation

Good-Turing estimation (uses held-out data)

r	Nr	True r*	add-1 r*
1	2 × 10 ⁶	0.448	2.8x10 ⁻¹¹
2	4 × 10 ⁵	1.25	4.2x10 ⁻¹¹
3	2 × 10 ⁵	2.24	5.7x10 ⁻¹¹
4	1 × 10 ⁵	3.23	7.1x10 ⁻¹¹
5	7 × 10 ⁴	4.21	8.5x10 ⁻¹¹

r = Count in a large corpus & N_r is the number of bigrams with r counts True r* is estimated on a *different* held-out corpus

- Add-1 smoothing hugely overestimates fraction of unseen events
- Good-Turing estimation uses held-out data to predict how to go from r to the true r*

Good-Turing Estimation

- Intuition for Good-Turing estimation using leave-one-out validation:
- Let N_r be the number of word types that occur *r* times in the entire corpus
- Split a given set of N word tokens into a training set of (N-1) samples + 1 sample as the held-out set; repeat this process N times so that all N samples appear in the held-out set
- In what fraction of these N trials is the held-out word unseen during training? $$N_1\!/N$$
- In what fraction of these N trials is the held-out word seen exactly k times during training? $(k+1)N_{k+1}/N$
- There are (\cong)N_k words with training count k. Each should occur with probability: (k+1)N_{k+1}/(N × N_k)
- Expected count of each of the N_k words: $\mathbf{k}^* = \theta(\mathbf{k}) = (\mathbf{k}+1) N_{\mathbf{k}+1}/N_{\mathbf{k}}$

Good-Turing Smoothing

- Thus, Good-Turing smoothing states that for any Ngram that occurs r times, we should use an adjusted count $\theta(r) = (r + 1)N_{r+1}/N_r$
- Good-Turing smoothed counts for unseen events: $\theta(0) = N_1/N_0$
- Example: 10 bananas, 6 apples, 2 papayas, 1 guava, 1 pear
 - How likely are we to see a guava next? The GT estimate is $\theta(1)/N$
 - Here, N = 20, N₂ = 1, N₁ = 2. Computing $\theta(1): \theta(1) = 2 \times 1/2 = 1$
 - Thus, $Pr_{GT}(guava) = \theta(1)/20 = 0.05$

Good-Turing estimates

r	Nr	θ(r)	True r*
0	7.47×10^{10}	.0000270	.0000270
1	2 × 10 ⁶	0.446	0.448
2	4 × 10 ⁵	1.26	1.25
3	2 × 10 ⁵	2.24	2.24
4	1 × 10 ⁵	3.24	3.23
5	7 × 10 ⁴	4.22	4.21
6	5 × 10 ⁴	5.19	5.23
7	3.5 × 10 ⁴	6.21	6.21
8	2.7 × 10 ⁴	7.24	7.21
9	2.2 × 10 ⁴	8.25	8.26

Table showing frequencies of bigrams from 0 to 9 In this example, for r > 0, $\theta(r) \cong$ True r^* and $\theta(r)$ is always less than r

[CG91]: Church and Gale, "A comparison of enhanced Good-Turing...", CSL, 1991

Good-Turing Estimation

- One issue: For large r, many instances of $N_{r+1} = 0!$
 - This would lead to $\theta(r) = (r + 1)N_{r+1}/N_r$ being set to 0.
- Solution: Discount only for small counts r <= k (e.g. k = 9) and $\theta(r) = r$ for r > k
- Another solution: Smooth N_r using a best-fit power law once counts start getting small
- Good-Turing smoothing tells us how to discount some probability mass to unseen events. Could we redistribute this mass across observed counts of lower-order Ngram events? Backoff!

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation
- Kneser-Ney Smoothing

Katz Smoothing

- Good-Turing discounting determines the volume of probability mass that is allocated to unseen events
- Katz Smoothing distributes this remaining mass proportionally across "smaller" Ngrams
 - i.e. no trigram found, use backoff probability of bigram and if no bigram found, use backoff probability of unigram

Katz Backoff Smoothing

• For a Katz bigram model, let us define:

•
$$\Psi(w_{i-1}) = \{w: \pi(w_{i-1}, w) > 0\}$$

• A bigram model with Katz smoothing can be written in terms of a unigram model as follows:

$$P_{\text{Katz}}(w_i|w_{i-1}) = \begin{cases} \frac{\pi^*(w_{i-1}, w_i)}{\pi(w_{i-1})} & \text{if } w_i \in \Psi(w_{i-1}) \\ \alpha(w_{i-1}) P_{\text{Katz}}(w_i) & \text{if } w_i \notin \Psi(w_{i-1}) \end{cases}$$

where
$$\alpha(w_{i-1}) = \frac{\left(1 - \sum_{w \in \Psi(w_{i-1})} \frac{\pi^*(w_{i-1}, w)}{\pi(w_{i-1})}\right)}{\sum_{w_i \notin \Psi(w_{i-1})} P_{\text{Katz}}(w_i)}$$

Katz Backoff Smoothing

$$P_{\text{Katz}}(w_i|w_{i-1}) = \begin{cases} \frac{\pi^*(w_{i-1},w_i)}{\pi(w_{i-1})} & \text{if } w_i \in \Psi(w_{i-1}) \\ \alpha(w_{i-1}) P_{\text{Katz}}(w_i) & \text{if } w_i \notin \Psi(w_{i-1}) \end{cases}$$

where
$$\alpha(w_{i-1}) = \frac{\left(1 - \sum_{w \in \Psi(w_{i-1})} \frac{\pi^*(w_{i-1}, w)}{\pi(w_{i-1})}\right)}{\sum_{w_i \notin \Psi(w_{i-1})} P_{\text{Katz}}(w_i)}$$

- A bigram with a non-zero count is discounted using Good-Turing estimation
- The left-over probability mass from discounting for the unigram model ...
- ... is distributed over $w_i \notin \Psi(w_{i-1})$ proportionally to $P_{Katz}(w_i)$

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation
- Kneser-Ney Smoothing

Recall Good-Turing estimates

r	Nr	θ(r)
0	7.47×10^{10}	.0000270
1	2 × 10 ⁶	0.446
2	4 × 10 ⁵	1.26
3	2 × 10 ⁵	2.24
4	1 × 10 ⁵	3.24
5	7 × 10 ⁴	4.22
6	5 × 10 ⁴	5.19
7	3.5 × 10 ⁴	6.21
8	2.7 × 10 ⁴	7.24
9	2.2 × 10 ⁴	8.25

For r > 0, we observe that $\theta(r) \cong r - 0.75$ i.e. an absolute discounting

[[]CG91]: Church and Gale, "A comparison of enhanced Good-Turing...", CSL, 1991

Absolute Discounting Interpolation

- Absolute discounting motivated by Good-Turing estimation
- Just subtract a constant *d* from the non-zero counts to get the discounted count
- · Also involves linear interpolation with lower-order models

$$\Pr_{\text{abs}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \lambda(w_{i-1})\Pr(w_i)$$

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation
- Kneser-Ney Smoothing

Kneser-Ney discounting

$$\Pr_{\mathrm{KN}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda_{\mathrm{KN}}(w_{i-1})\Pr_{\mathrm{cont}}(w_i)}{\pi(w_{i-1})}$$

c.f., absolute discounting

$$\Pr_{\text{abs}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda(w_{i-1})\Pr(w_i)}{\lambda(w_{i-1})}$$

Kneser-Ney discounting

$$\Pr_{\mathrm{KN}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda_{\mathrm{KN}}(w_{i-1})\Pr_{\mathrm{cont}}(w_i)}{\pi(w_{i-1})}$$

Consider an example: "Today I cooked some yellow <u>curry</u>" Suppose $\pi(yellow, curry) = 0$. $\Pr_{abs}[w | yellow] = \lambda(yellow)\Pr(w)$ Now, say $\Pr[Francisco] >> \Pr[curry]$, as San Francisco is very common in our corpus.

But *Francisco* is not as common a "continuation" (follows only *San*) as *curry* is (*red curry, chicken curry, potato curry, ...*)

Moral: Should use probability of being a continuation!

c.f., absolute discounting

$$\Pr_{\text{abs}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda(w_{i-1})\Pr(w_i)}{\lambda(w_{i-1})}$$

Kneser-Ney discounting

$$\begin{aligned} \Pr_{\mathrm{KN}}(w_{i}|w_{i-1}) &= \frac{\max\{\pi(w_{i-1}, w_{i}) - d, 0\}}{\pi(w_{i-1})} + \lambda_{\mathrm{KN}}(w_{i-1}) \Pr_{\mathrm{cont}}(w_{i}) \\ \Pr_{\mathrm{cont}}(w_{i}) &= \frac{|\Phi(w_{i})|}{|B|} \quad \text{and} \quad \lambda_{\mathrm{KN}}(w_{i-1}) = \frac{d}{\pi(w_{i-1})} |\Psi(w_{i-1})| \\ \Phi(w_{i}) &= \{w_{i-1} : \pi(w_{i-1}, w_{i}) > 0\} \\ \Phi(w_{i}) &= \{w_{i-1} : \pi(w_{i-1}, w_{i}) > 0\} \quad \frac{d \cdot |\Psi(w_{i-1})| \cdot |\Phi(w_{i})|}{\pi(w_{i-1}) \cdot |B|} \end{aligned}$$

c.f., absolute discounting

$$\Pr_{\text{abs}}(w_i|w_{i-1}) = \frac{\max\{\pi(w_{i-1}, w_i) - d, 0\}}{\pi(w_{i-1})} + \frac{\lambda(w_{i-1})\Pr(w_i)}{\lambda(w_{i-1})}$$

Kneser-Ney: An Alternate View

- A mix of bigram and unigram models
- A bigram *ab* could be generated in two ways:
 - In context *a*, output *b*, or
 - In context *a*, forget context and then output *b* (i.e., as "*aεb*")

b

E

b

- In a given set of bigrams, for each bigram *ab*, assume that *d_{ab}* of its occurrences were produced in the second way
- Will compute probabilities for each transition under this assumption

Kneser-Ney: An Alternate View

• Assuming $\pi(a,b)$ - d_{ab} occurrences as "*ab*", and d_{ab} occurrences as "*a\varepsilon b*"

D

E

b

- $\Pr[b|a] = [\pi(a,b) d_{ab}] / \pi(a)$
- $\Pr[\varepsilon | a] = [\Sigma_y d_{ay}] / \pi(a)$
- $\Pr[b|\varepsilon] = [\Sigma_x d_{xb}] / [\Sigma_{xy} d_{xy}]$
- $\Pr_{KN}[b \mid a] = \Pr[b \mid a] + \Pr[\varepsilon \mid a] \cdot \Pr[b \mid \varepsilon]$
- Kneser-Ney: Take $d_{xy} = d$ for all bigrams xy that do appear (assuming they all appear at least d times kosher, e.g., if d = 1)
 - Then $\Sigma_y d_{ay} = d \cdot |\Psi(a)|$, $\Sigma_x d_{xb} = d \cdot |\Phi(b)|$, and $\Sigma_{xy} d_{xy} = d \cdot |B|$ where $\Psi(a) = \{y : \pi(a, y) > 0\}$, $\Phi(b) = \{x : \pi(x, b) > 0\}$, $B = \{xy : \pi(x, y) > 0\}$

$$\Pr_{\rm KN}(b|a) = \frac{\max\{\pi(a,b) - d, 0\}}{\pi(a)} + \frac{d \cdot |\Psi(a)| \cdot |\Phi(b)|}{\pi(a) \cdot |B|}$$

Ngram models as WFSAs

- With no optimizations, an Ngram over a vocabulary of V words defines a WFSA with V^{N-1} states and V^N edges.
- Example: Consider a trigram model for a two-word vocabulary, A B.
 - 4 states representing bigram histories, A_A, A_B, B_A, B_B
 - 8 arcs transitioning between these states
- Clearly not practical when V is large.
 - Resort to backoff language models

WFSA for backoff language model

Next class: Beyond Ngram LMs