
Instructor: Preethi Jyothi
Mar 2, 2017  

Automatic Speech Recognition (CS753)
Lecture 15: Language Models (Part II)
Automatic Speech Recognition (CS753)

Recap

• Ngram language models are popularly used in various ML
applications

• Language models are evaluated using the perplexity  
(normalized per-word cross-entropy) measure.

• For a uniform unigram model over L words, perplexity = L.

• MLE estimates for Ngram models assume there are no unseen
Ngrams

• Smoothing algorithms: Discount some probability mass from seen
Ngrams and redistribute discounted mass to unseen events
• Two different kinds of smoothing that combine higher-order and lower-

order Ngram models: Backoff and Interpolation

Advanced Smoothing Techniques

• Good-Turing Discounting

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

• Good-Turing Discounting

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Recall add-1/add-α smoothing  
(also viewed as discounting)

• Smoothing can be viewed as discounting (lowering) some
probability mass from seen Ngrams and redistributing
discounted mass to unseen events

• i.e. probability of a bigram with Laplace (add-1) smoothing

• can be written as

PrLap(wi|wi�1) =
⇡(wi�1, wi) + 1

⇡(wi�1) + V

⇡⇤(wi�1, wi) = (⇡(wi�1, wi) + 1)
⇡(wi�1)

⇡(wi�1) + V

PrLap(wi|wi�1) =
⇡⇤(wi�1, wi)

⇡(wi�1)

• where discounted count

Problems with Add-α Smoothing

• What’s wrong with add-α smoothing?

• Assigns too much probability mass away from seen Ngrams to
unseen events

• Does not discount high counts and low counts correctly

• Also, α is tricky to set

• Is there a more principled way to do this smoothing?  
A solution: Good-Turing estimation

Good-Turing estimation 
(uses held-out data)

r Nr True r* add-1 r*

1 2 × 106 0.448 2.8x10-11

2 4 × 105 1.25 4.2x10-11

3 2 × 105 2.24 5.7x10-11

4 1 × 105 3.23 7.1x10-11

5 7 × 104 4.21 8.5x10-11

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing…”, CSL, 1991

r = Count in a large corpus & Nr is the number of bigrams with r counts 
True r* is estimated on a different held-out corpus

• Add-1 smoothing hugely overestimates fraction of unseen events

• Good-Turing estimation uses held-out data to predict how to  
go from r to the true r*

Good-Turing Estimation

• Intuition for Good-Turing estimation using leave-one-out validation:

• Let Nr be the number of word types that occur r times in the entire corpus

• Split a given set of N word tokens into a training set of (N-1) samples + 1 sample
as the held-out set; repeat this process N times so that all N samples appear in
the held-out set

• In what fraction of these N trials is the held-out word unseen during training?

• In what fraction of these N trials is the held-out word seen exactly k times
during training?

• There are (≅)Nk words with training count k. Each should occur with probability: 

• Expected count of each of the Nk words:

N1/N

(k+1)Nk+1/N

(k+1)Nk+1/(N × Nk)
 k* = θ(k) = (k+1) Nk+1/Nk

Good-Turing Smoothing

• Thus, Good-Turing smoothing states that for any Ngram that
occurs r times, we should use an adjusted count θ(r) = (r + 1)Nr+1/Nr

• Good-Turing smoothed counts for unseen events: θ(0) = N1/N0

• Example: 10 bananas, 6 apples, 2 papayas, 1 guava, 1 pear

• How likely are we to see a guava next? The GT estimate is θ(1)/N

• Here, N = 20 , N2 = 1, N1 = 2. Computing θ(1): θ(1) = 2 × 1/2 = 1

• Thus, PrGT(guava) = θ(1)/20 = 0.05

Good-Turing estimates

r Nr θ(r) True r*

0 7.47 × 1010 .0000270 .0000270

1 2 × 106 0.446 0.448

2 4 × 105 1.26 1.25

3 2 × 105 2.24 2.24

4 1 × 105 3.24 3.23

5 7 × 104 4.22 4.21

6 5 × 104 5.19 5.23

7 3.5 × 104 6.21 6.21

8 2.7 × 104 7.24 7.21

9 2.2 × 104 8.25 8.26

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing…”, CSL, 1991

Table showing frequencies of bigrams from 0 to 9  
In this example, for r > 0, θ(r) ≅ True r* and θ(r) is always less than r

Good-Turing Estimation

• One issue: For large r, many instances of Nr+1 = 0!

• This would lead to θ(r) = (r + 1)Nr+1/Nr being set to 0.

• Solution: Discount only for small counts r <= k (e.g. k = 9) and  
θ(r) = r for r > k

• Another solution: Smooth Nr using a best-fit power law once
counts start getting small

• Good-Turing smoothing tells us how to discount some probability
mass to unseen events. Could we redistribute this mass across
observed counts of lower-order Ngram events? Backoff !

• Good-Turing Discounting

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Katz Smoothing

• Good-Turing discounting determines the volume of probability
mass that is allocated to unseen events

• Katz Smoothing distributes this remaining mass proportionally
across “smaller” Ngrams

• i.e. no trigram found, use backoff probability of bigram and
if no bigram found, use backoff probability of unigram

Katz Backoff Smoothing

• For a Katz bigram model, let us define:

• Ψ(wi-1) = {w: π(wi-1,w) > 0}

• A bigram model with Katz smoothing can be written in terms
of a unigram model as follows:

PKatz(wi|wi�1) =

(
⇡⇤(wi�1,wi)

⇡(wi�1)
if wi 2 (wi�1)

↵(wi�1)PKatz(wi) if wi 62 (wi�1)

where ↵(wi�1) =

⇣
1�

P
w2 (wi�1)

⇡⇤(wi�1,w)
⇡(wi�1)

⌘

P
wi 62 (wi�1)

PKatz(wi)

Katz Backoff Smoothing

• A bigram with a non-zero count is discounted using Good-
Turing estimation

• The left-over probability mass from discounting for the
unigram model …

• … is distributed over wi ∉ Ψ(wi -1) proportionally to PKatz(wi)

PKatz(wi|wi�1) =

(
⇡⇤(wi�1,wi)

⇡(wi�1)
if wi 2 (wi�1)

↵(wi�1)PKatz(wi) if wi 62 (wi�1)

where ↵(wi�1) =

⇣
1�

P
w2 (wi�1)

⇡⇤(wi�1,w)
⇡(wi�1)

⌘

P
wi 62 (wi�1)

PKatz(wi)

• Good-Turing Discounting

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Recall Good-Turing estimates
r Nr θ(r)

0 7.47 × 1010 .0000270

1 2 × 106 0.446

2 4 × 105 1.26

3 2 × 105 2.24

4 1 × 105 3.24

5 7 × 104 4.22

6 5 × 104 5.19

7 3.5 × 104 6.21

8 2.7 × 104 7.24

9 2.2 × 104 8.25

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing…”, CSL, 1991

For r > 0, we observe that θ(r) ≅ r - 0.75 i.e. an absolute discounting

Absolute Discounting Interpolation

• Absolute discounting motivated by Good-Turing estimation

• Just subtract a constant d from the non-zero counts to get the
discounted count

• Also involves linear interpolation with lower-order models

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

• Good-Turing Discounting

• Katz Backoff Smoothing

• Absolute Discounting Interpolation

• Kneser-Ney Smoothing

Advanced Smoothing Techniques

Kneser-Ney discounting

c.f., absolute discounting

Pr

KN

(wi|wi�1

) =

max{⇡(wi�1

, wi)� d, 0}
⇡(wi�1

)

+ �
KN

(wi�1

)Pr

cont

(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Kneser-Ney discounting

c.f., absolute discounting

Pr

KN

(wi|wi�1

) =

max{⇡(wi�1

, wi)� d, 0}
⇡(wi�1

)

+ �
KN

(wi�1

)Pr

cont

(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Consider an example: “Today I cooked some yellow curry”

Suppose π(yellow, curry) = 0. Prabs[w | yellow] = λ(yellow)Pr(w)

Now, say Pr[Francisco] >> Pr[curry], as San Francisco is very common
in our corpus.

But Francisco is not as common a “continuation” (follows only San) as
curry is (red curry, chicken curry, potato curry, …)

Moral: Should use probability of being a continuation!

Kneser-Ney discounting

where

c.f., absolute discounting

Pr

KN

(wi|wi�1

) =

max{⇡(wi�1

, wi)� d, 0}
⇡(wi�1

)

+ �
KN

(wi�1

)Pr

cont

(wi)

Prabs(wi|wi�1) =
max{⇡(wi�1, wi)� d, 0}

⇡(wi�1)
+ �(wi�1)Pr(wi)

Pr
cont

(wi) =
|�(wi)|
|B|

�(wi) = {wi�1 : ⇡(wi�1, wi) > 0}
B = {(wi�1, wi) : ⇡(wi�1, wi) > 0}
 (wi�1) = {wi : ⇡(wi�1, wi) > 0}

and �KN(wi�1) =
d

⇡(wi�1)
| (wi�1)|

d · | (wi�1)| · |�(wi)|
⇡(wi�1) · |B|

Kneser-Ney: An Alternate View

• A mix of bigram and unigram models

• A bigram ab could be generated in two ways:

• In context a, output b, or

• In context a, forget context and then output b (i.e., as “aεb”)

• In a given set of bigrams, for each bigram ab, assume that dab of its
occurrences were produced in the second way

• Will compute probabilities for each transition under this
assumption

a

b

ε

b
b

ε
a

Kneser-Ney: An Alternate View

• Assuming π(a,b) - dab occurrences as “ab”, and dab occurrences as “aεb”
• Pr[b|a] = [π(a,b) - dab] / π(a)
• Pr[ε |a] = [Σy day] / π(a)
• Pr[b |ε] = [Σx dxb] / [Σxy dxy]
• PrKN[b | a] = Pr[b|a] + Pr[ε |a]⋅ Pr[b |ε]

• Kneser-Ney: Take dxy = d for all bigrams xy that do appear (assuming
they all appear at least d times — kosher, e.g., if d = 1)

a

b

ε

b
b

ε
a

PrKN(b|a) =
max{⇡(a, b)� d, 0}

⇡(a)
+

d · | (a)| · |�(b)|
⇡(a) · |B|

• Then Σy day = d⋅|Ψ(a)|, Σx dxb = d⋅|Φ(b)|, and Σxy dxy = d⋅|B| 
where Ψ(a) = {y : π(a,y) > 0}, Φ(b) = {x : π(x,b) > 0}, B = {xy : π(x,y) > 0}

Ngram models as WFSAs

• With no optimizations, an Ngram over a vocabulary of V
words defines a WFSA with VN-1 states and VN edges.

• Example: Consider a trigram model for a two-word vocabulary,
A B.
• 4 states representing bigram histories, A_A, A_B, B_A, B_B
• 8 arcs transitioning between these states

• Clearly not practical when V is large.
• Resort to backoff language models

WFSA for backoff language model

a,b b,c

b

ε

c

c / Pr(c|a,b)

ε / α(a,b)
c / Pr(c|b)

ε / α(b,c)

ε / α(b) c / Pr(c)

Next class: Beyond Ngram LMs

