Automatic Speech Recognition (CS753)
 Lecture 15: Language Models (Part II)

Instructor: Preethi Jyothi
Mar 2, 2017

Recap

- Ngram language models are popularly used in various ML applications
- Language models are evaluated using the perplexity (normalized per-word cross-entropy) measure.
- For a uniform unigram model over L words, perplexity $=L$.
- MLE estimates for Ngram models assume there are no unseen Ngrams
- Smoothing algorithms: Discount some probability mass from seen Ngrams and redistribute discounted mass to unseen events
- Two different kinds of smoothing that combine higher-order and lowerorder Ngram models: Backoff and Interpolation

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation
- Kneser-Ney Smoothing

Advanced Smoothing Techniques

- Good-Turing Discounting

Katz Backoff Smoothing

Absolute Discounting Interpolation

Kneser-Ney Smoothing

Recall add- $1 /$ add $-\alpha$ smoothing (also viewed as discounting)

- Smoothing can be viewed as discounting (lowering) some probability mass from seen Ngrams and redistributing discounted mass to unseen events
- i.e. probability of a bigram with Laplace (add-1) smoothing

$$
\operatorname{Pr}_{L a p}\left(w_{i} \mid w_{i-1}\right)=\frac{\pi\left(w_{i-1}, w_{i}\right)+1}{\pi\left(w_{i-1}\right)+V}
$$

- can be written as

$$
\operatorname{Pr}_{L a p}\left(w_{i} \mid w_{i-1}\right)=\frac{\pi^{*}\left(w_{i-1}, w_{i}\right)}{\pi\left(w_{i-1}\right)}
$$

- where discounted count $\pi^{*}\left(w_{i-1}, w_{i}\right)=\left(\pi\left(w_{i-1}, w_{i}\right)+1\right) \frac{\pi\left(w_{i-1}\right)}{\pi\left(w_{i-1}\right)+V}$

Problems with Add- α Smoothing

- What's wrong with add- α smoothing?
- Assigns too much probability mass away from seen Ngrams to unseen events
- Does not discount high counts and low counts correctly
- Also, α is tricky to set
- Is there a more principled way to do this smoothing?

A solution: Good-Turing estimation

Good-Turing estimation (uses held-out data)

r	N_{r}	True r^{*}	add-1 r^{*}
1	2×10^{6}	0.448	2.8×10^{-11}
2	4×10^{5}	1.25	4.2×10^{-11}
3	2×10^{5}	2.24	5.7×10^{-11}
4	1×10^{5}	3.23	7.1×10^{-11}
5	7×10^{4}	4.21	8.5×10^{-11}

$r=$ Count in a large corpus $\& N_{r}$ is the number of bigrams with r counts True r^{*} is estimated on a different held-out corpus

- Add-1 smoothing hugely overestimates fraction of unseen events
- Good-Turing estimation uses held-out data to predict how to go from r to the true r^{*}

Good-Turing Estimation

- Intuition for Good-Turing estimation using leave-one-out validation:
- Let N_{r} be the number of word types that occur r times in the entire corpus
- Split a given set of N word tokens into a training set of $(\mathrm{N}-1)$ samples +1 sample as the held-out set; repeat this process N times so that all N samples appear in the held-out set
- In what fraction of these N trials is the held-out word unseen during training? $\mathrm{N}_{1} / \mathrm{N}$
- In what fraction of these N trials is the held-out word seen exactly k times during training? $(k+1) \mathrm{N}_{\mathrm{k}+1} / \mathrm{N}$
- There are $(\cong \underline{\cong}) \mathrm{N}_{\mathrm{k}}$ words with training count k . Each should occur with probability: $(k+1) N_{k+1} /\left(N \times N_{k}\right)$
- Expected count of each of the N_{k} words: $\mathbf{k}^{*}=\boldsymbol{\theta}(\mathrm{k})=(\mathrm{k}+\mathbf{1}) \mathrm{N}_{\mathrm{k}+1} / \mathrm{N}_{\mathrm{k}}$

Good-Turing Smoothing

- Thus, Good-Turing smoothing states that for any Ngram that occurs r times, we should use an adjusted count $\theta(r)=(r+1) N_{r+1} / N_{r}$
- Good-Turing smoothed counts for unseen events: $\theta(0)=N_{1} / N_{0}$
- Example: 10 bananas, 6 apples, 2 papayas, 1 guava, 1 pear
- How likely are we to see a guava next? The GT estimate is $\theta(1) / \mathrm{N}$
- Here, $\mathrm{N}=20, \mathrm{~N}_{2}=1, \mathrm{~N}_{1}=2$. Computing $\theta(1): \theta(1)=2 \times 1 / 2=1$
- Thus, $\operatorname{Pr}_{\mathrm{GT}}($ guava $)=\theta(1) / 20=0.05$

Good-Turing estimates

r	N_{r}	$\theta(r)$	True r^{*}
0	7.47×10^{10}	.0000270	.0000270
1	2×10^{6}	0.446	0.448
2	4×10^{5}	1.26	1.25
3	2×10^{5}	2.24	2.24
4	1×10^{5}	3.24	3.23
5	7×10^{4}	4.22	4.21
6	5×10^{4}	5.19	5.23
7	3.5×10^{4}	6.21	6.21
8	2.7×10^{4}	7.24	7.21
9	2.2×10^{4}	8.25	8.26

Table showing frequencies of bigrams from 0 to 9
In this example, for $r>0, \theta(r) \cong$ True r^{*} and $\theta(r)$ is always less than r

Good-Turing Estimation

- One issue: For large r, many instances of $\mathrm{N}_{\mathrm{r}+1}=0$!
- This would lead to $\theta(r)=(r+1) N_{r+1} / N_{r}$ being set to 0 .
- Solution: Discount only for small counts $\mathrm{r}<=\mathrm{k}(\mathrm{e} . \mathrm{g} . \mathrm{k}=9)$ and $\theta(r)=r$ for $r>k$
- Another solution: Smooth N_{r} using a best-fit power law once counts start getting small
- Good-Turing smoothing tells us how to discount some probability mass to unseen events. Could we redistribute this mass across observed counts of lower-order Ngram events? Backoff!

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing

Absolute Discounting Interpolation

Kneser-Ney Smoothing

Katz Smoothing

- Good-Turing discounting determines the volume of probability mass that is allocated to unseen events
- Katz Smoothing distributes this remaining mass proportionally across "smaller" Ngrams
- i.e. no trigram found, use backoff probability of bigram and if no bigram found, use backoff probability of unigram

Katz Backoff Smoothing

- For a Katz bigram model, let us define:
- $\Psi\left(w_{i-1}\right)=\left\{w: \pi\left(w_{i-1, w}\right)>0\right\}$
- A bigram model with Katz smoothing can be written in terms of a unigram model as follows:

$$
P_{\mathrm{Katz}}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\pi^{*}\left(w_{i-1}, w_{i}\right)}{\pi\left(w_{i-1}\right)} & \text { if } w_{i} \in \Psi\left(w_{i-1}\right) \\ \alpha\left(w_{i-1}\right) P_{\mathrm{Katz}}\left(w_{i}\right) & \text { if } w_{i} \notin \Psi\left(w_{i-1}\right)\end{cases}
$$

where $\quad \alpha\left(w_{i-1}\right)=\frac{\left(1-\sum_{w \in \Psi\left(w_{i-1}\right)} \frac{\pi^{*}\left(w_{i-1}, w\right)}{\pi\left(w_{i-1}\right)}\right)}{\sum_{w_{i} \notin \Psi\left(w_{i-1}\right)} P_{\mathrm{Katz}}\left(w_{i}\right)}$

Katz Backoff Smoothing

$$
P_{\text {Katz }}\left(w_{i} \mid w_{i-1}\right)= \begin{cases}\frac{\pi^{*}\left(w_{i-1}, w_{i}\right)}{\pi\left(w_{i-1}\right)} & \text { if } w_{i} \in \Psi\left(w_{i-1}\right) \\ \alpha\left(w_{i-1}\right) P_{\text {Katz }}\left(w_{i}\right) & \text { if } w_{i} \notin \Psi\left(w_{i-1}\right)\end{cases}
$$

$$
\text { where } \quad \alpha\left(w_{i-1}\right)=\frac{\left(1-\sum_{w \in \Psi\left(w_{i-1}\right)} \frac{\pi^{*}\left(w_{i-1}, w\right)}{\pi\left(w_{i-1}\right)}\right)}{\sum_{w_{i} \notin \Psi\left(w_{i-1}\right)} P_{\mathrm{Katz}}\left(w_{i}\right)}
$$

- A bigram with a non-zero count is discounted using GoodTuring estimation
- The left-over probability mass from discounting for the unigram model ...
- ... is distributed over $w_{i} \notin \Psi\left(w_{i-1}\right)$ proportionally to $\mathrm{P}_{\mathrm{Katz}}\left(w_{i}\right)$

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing
- Absolute Discounting Interpolation

Recall Good-Turing estimates

r	N_{r}	$\theta(r)$
0	7.47×10^{10}	.0000270
1	2×10^{6}	0.446
2	4×10^{5}	1.26
3	2×10^{5}	2.24
4	1×10^{5}	3.24
5	7×10^{4}	4.22
6	5×10^{4}	5.19
7	3.5×10^{4}	6.21
8	2.7×10^{4}	7.24
9	2.2×10^{4}	8.25

For $r>0$, we observe that $\theta(r) \cong r-0.75$ i.e. an absolute discounting

Absolute Discounting Interpolation

- Absolute discounting motivated by Good-Turing estimation
- Just subtract a constant d from the non-zero counts to get the discounted count
- Also involves linear interpolation with lower-order models

$$
\operatorname{Pr}_{\mathrm{abs}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) \operatorname{Pr}\left(w_{i}\right)
$$

Advanced Smoothing Techniques

- Good-Turing Discounting
- Katz Backoff Smoothing

Absolute Discounting Interpolation

- Kneser-Ney Smoothing

Kneser-Ney discounting

$$
\operatorname{Pr}_{\mathrm{KN}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda_{\mathrm{KN}}\left(w_{i-1}\right) \operatorname{Pr}_{\text {cont }}\left(w_{i}\right)
$$

c.f., absolute discounting

$$
\operatorname{Pr}_{\mathrm{abs}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) \operatorname{Pr}\left(w_{i}\right)
$$

Kneser-Ney discounting

$$
\operatorname{Pr}_{\mathrm{KN}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda_{\mathrm{KN}}\left(w_{i-1}\right) \operatorname{Pr}_{\mathrm{cont}}\left(w_{i}\right)
$$

Consider an example: "Today I cooked some yellow curry"
Suppose $\pi($ yellow, curry $)=0 . \operatorname{Pr}_{\text {abs }}[w \mid$ yellow $]=\lambda($ yellow $) \operatorname{Pr}(w)$
Now, say $\operatorname{Pr}[$ Francisco >> $\operatorname{Pr}[$ curry $]$, as San Francisco is very common in our corpus.

But Francisco is not as common a "continuation" (follows only San) as curry is (red curry, chicken curry, potato curry, ...)

Moral: Should use probability of being a continuation!
c.f., absolute discounting

$$
\operatorname{Pr}_{\mathrm{abs}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) \operatorname{Pr}\left(w_{i}\right)
$$

Kneser-Ney discounting

$$
\begin{aligned}
& \operatorname{Pr}_{\mathrm{KN}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda_{\mathrm{KN}}\left(w_{i-1}\right) \operatorname{Pr}_{\mathrm{cont}}\left(w_{i}\right) \\
& \operatorname{Pr}_{\mathrm{cont}}\left(w_{i}\right)=\frac{\left|\Phi\left(w_{i}\right)\right|}{|B|} \text { and } \quad \lambda_{\mathrm{KN}}\left(w_{i-1}\right)=\frac{d}{\pi\left(w_{i-1}\right)}\left|\Psi\left(w_{i-1}\right)\right| \\
& \text { where } \quad \Phi\left(w_{i}\right)=\left\{w_{i-1}: \pi\left(w_{i-1}, w_{i}\right)>0\right\} \\
& \text { w } \quad B=\left\{\left(w_{i-1}, w_{i}\right): \pi\left(w_{i-1}, w_{i}\right)>0\right\}
\end{aligned} \quad \frac{d \cdot\left|\Psi\left(w_{i-1}\right)\right| \cdot\left|\Phi\left(w_{i}\right)\right|}{\pi\left(w_{i-1}\right) \cdot|B|}
$$

c.f., absolute discounting

$$
\operatorname{Pr}_{\mathrm{abs}}\left(w_{i} \mid w_{i-1}\right)=\frac{\max \left\{\pi\left(w_{i-1}, w_{i}\right)-d, 0\right\}}{\pi\left(w_{i-1}\right)}+\lambda\left(w_{i-1}\right) \operatorname{Pr}\left(w_{i}\right)
$$

Kneser-Ney: An Alternate View

- A mix of bigram and unigram models
- A bigram $a b$ could be generated in two ways:
- In context a, output b, or

- In context a, forget context and then output b (i.e., as " $a \varepsilon b$ ")
- In a given set of bigrams, for each bigram $a b$, assume that $d_{a b}$ of its occurrences were produced in the second way
- Will compute probabilities for each transition under this assumption

Kneser-Ney: An Alternate View

- Assuming $\pi(a, b)-d_{a b}$ occurrences as " $a b$ ", and $d_{a b}$ occurrences as " $a \varepsilon b$ "
- $\operatorname{Pr}[b \mid a]=\left[\pi(a, b)-d_{a b}\right] / \pi(a)$
- $\operatorname{Pr}[\varepsilon \mid a]=\left[\Sigma_{y} d_{a y}\right] / \pi(a)$
- $\operatorname{Pr}[b \mid \varepsilon]=\left[\Sigma_{x} d_{x b}\right] /\left[\Sigma_{x y} d_{x y}\right]$
- $\operatorname{Pr}_{\mathrm{KN}}[b \mid a]=\operatorname{Pr}[b \mid a]+\operatorname{Pr}[\varepsilon \mid a] \cdot \operatorname{Pr}[b \mid \varepsilon]$

- Kneser-Ney: Take $d_{x y}=d$ for all bigrams $x y$ that do appear (assuming they all appear at least d times - kosher, e.g., if $d=1$)
- Then $\Sigma_{y} d_{a y}=d \cdot|\Psi(a)|, \Sigma_{x} d_{x b}=d \cdot|\Phi(b)|$, and $\Sigma_{x y} d_{x y}=d \cdot|B|$ where $\Psi(a)=\{y: \pi(a, y)>0\}, \Phi(b)=\{x: \pi(x, b)>0\}, B=\{x y: \pi(x, y)>0\}$

$$
\operatorname{Pr}_{\mathrm{KN}}(b \mid a)=\frac{\max \{\pi(a, b)-d, 0\}}{\pi(a)}+\frac{d \cdot|\Psi(a)| \cdot|\Phi(b)|}{\pi(a) \cdot|B|}
$$

Ngram models as WFSAs

- With no optimizations, an Ngram over a vocabulary of V words defines a WFSA with $\mathrm{V}^{\mathrm{N}-1}$ states and V^{N} edges.
- Example: Consider a trigram model for a two-word vocabulary, AB.
- 4 states representing bigram histories, A_A, A_B, B_A, B_B
- 8 arcs transitioning between these states
- Clearly not practical when V is large.
- Resort to backoff language models

WFSA for backoff language model

Next class: Beyond Ngram LMs

