A0
%’

Automatic Speech Recognition (CS753)

Lecture 15: Language Models (Part II)

Instructor: Preethi Jyothi
Mar 2, 2017

Recap

Ngram language models are popularly used in various ML
applications

Language models are evaluated using the perplexity
(normalized per-word cross-entropy) measure.

For a uniform unigram model over L words, perplexity = L.

MLE estimates for Ngram models assume there are no unseen
Ngrams

Smoothing algorithms: Discount some probability mass from seen
Ngrams and redistribute discounted mass to unseen events

Two different kinds of smoothing that combine higher-order and lower-
order Ngram models: Backoff and Interpolation

Advanced Smoothing Techniques

Good-Turing Discounting
Katz Backoff Smoothing
Absolute Discounting Interpolation

Kneser-Ney Smoothing

Advanced Smoothing Techniques

+ Good-Turing Discounting

Recall add-1/add-a smoothing

(also viewed as discounting)

Smoothing can be viewed as discounting (lowering) some
probability mass from seen Ngrams and redistributing
discounted mass to unseen events

i.e. probability of a bigram with Laplace (add-1) smoothing

m(wi—1,w;) + 1
7T(U)Z'_1) -+ V

Prrap(w;|w;—1) =

can be written as
T (w1, w;)

W(wi_l)

Prrap(wi|w;—1) =

7T(w7;_1)
w(wi_l) —+ V

where discounted count 7" (w;_1,w;) = (w(w;_1,w;) + 1)

Problems with Add-a Smoothing

What’s wrong with add-o smoothing?

Assigns too much probability mass away from seen Ngrams to
unseen events

Does not discount high counts and low counts correctly
Also, a is tricky to set

Is there a more principled way to do this smoothing?
A solution: Good-Turing estimation

Good-Turing estimation
(uses held-out data)

r Nr True r* add-1r*
1 2 x 100 0.448 2.8x101
2 4 x 10° 1.25 4.2x101
3 2 x10° 2.24 5.7x10-1
4 1 x10° 3.23 7.1x10°1
5 7 x 104 4,21 8.5x101

r = Count in a large corpus & N is the number of bigrams with r counts
True r” is estimated on a different held-out corpus

Add-1 smoothing hugely overestimates fraction of unseen events

Good-Turing estimation uses held-out data to predict how to
go from r to the true r”

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing...”, CSL, 1991

Good-Turing Estimation

Intuition for Good-Turing estimation using leave-one-out validation:
Let N, be the number of word types that occur r times in the entire corpus

Split a given set of N word tokens into a training set of (N-1) samples + 1 sample
as the held-out set; repeat this process N times so that all N samples appear in
the held-out set

In what fraction of these N trials is the held-out word unseen during training?

N1/N

In what fraction of these N trials is the held-out word seen exactly k times
during training? (k+1)N.1/N

There are (2)Nk words with training count k. Each should occur with probability:

(k+1)Ni+1/(N x Ng)
Expected count of each of the Ny words: k™ = 0(k) = (k+1) Ni.1/Ni

Good-Turing Smoothing

Thus, Good-Turing smoothing states that for any Ngram that
occurs r times, we should use an adjusted count O(r) = (r + 1)Np1/N;

Good-Turing smoothed counts for unseen events: 6(0) = N1/No
Example: 10 bananas, 6 apples, 2 papayas, 1 guava, 1 pear
How likely are we to see a guava next? The GT estimate is 6(1)/N
Here, N =20, Ny =1, N1 = 2. Computing 6(1): 0(1) =2 x 1/2 =1

Thus, Prgr(guava) = 6(1)/20 = 0.05

Good-Turing estimates

r Nr 0(r) True r*
0 7.47 x 1010 .0000270 .0000270
1 2 x 10° 0.446 0.448
2 4 x 10° 1.26 1.25
3 2 x10° 2.24 2.24
4 1 x10° 3.24 3.23
5 7 x 104 4,22 4,21
6 5 x 104 5.19 5.23
7/ 3.5 x 104 6.21 6.21
8 2.7 x 104 /.24 /.21
9 2.2 x 104 8.25 8.26

Table showing frequencies of bigrams from 0 to 9
In this example, for r > 0, 6(r) = True r* and 0(r) is always less than r

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing...”, CSL, 1991

Good-Turing Estimation

One issue: For large r, many instances of N1 = 0!
This would lead to O8(r) = (r + 1)Nr.1/N; being set to 0.

Solution: Discount only for small counts r <= k (e.g. k = 9) and

O(r) =rforr>k

Another solution: Smooth N, using a best-fit power law once
counts start getting small

Good-Turing smoothing tells us how to discount some probability
mass to unseen events. Could we redistribute this mass across
observed counts of lower-order Ngram events? Backoff!

Advanced Smoothing Techniques

- Katz Backoff Smoothing

Katz Smoothing

Good-Turing discounting determines the volume of probability
mass that is allocated to unseen events

Katz Smoothing distributes this remaining mass proportionally
across “smaller” Ngrams

i.e. no trigram found, use backoff probability of bigram and
if no bigram found, use backoff probability of unigram

Katz Backoft Smoothing

For a Katz bigram model, let us define:

V(wi1) = {w: m(wi-1w) > 0}

- A bigram model with Katz smoothing can be written in terms

of a unigram model as

Pratz (wi|wi—1) = <

follows:

(W*(wi—lawi)

m(w;—1) if w; € \Ij(wi—l)

where a(w;_1) =

a(w;—1)Pratz(w;) if w; & W(w;—1)

\

W*(wi_l,w)
(]. — ZwE\P(wi_l) m(w;—1))
Z’wi%\lf(wi_l) PKatz(wi)

Katz Backoft Smoothing

(W*(wi—l,wz’)

Ptz (wilwi_1) = Twi-1) .
a(w; -1 WPratz (w;)| if w; & W(w;_1)

if w; € \I!(wi_l)

\

7'('*(’UJ7;—17w)
I = ZwE\IJ(’w@'—l) T(wi—1)

w; €V (wi_1) PKatz Wy

where a(w;_1) =

A bigram with a non-zero count is discounted using Good-
Turing estimation

The left-over probability mass from discounting for the
unigram model ...

... is distributed over w; € W(w;.1) proportionally to Pkat(w;)

Advanced Smoothing Techniques

- Absolute Discounting Interpolation

Recall Good-Turing estimates

r Nr 0(r)
0 7.47 x 1010 .0000270
1 2 x 10° 0.446
2 4 x 10° 1.26
3 2 x10° 2.24
4 1 x 10° 3.24
5 7 x 104 4.22
6 5 x 104 5.19
/ 3.5 x 104 6.21
8 2.7 x 10* /.24
9 2.2 x 10* 8.25

For r > 0, we observe that O(r) = r - 0.75 i.e. an absolute discounting

[CG91]: Church and Gale, “A comparison of enhanced Good-Turing...”, CSL, 1991

Absolute Discounting Interpolation

Absolute discounting motivated by Good-Turing estimation

- Just subtract a constant d from the non-zero counts to get the
discounted count

Also involves linear interpolation with lower-order models

max{m(w;_1,w;) —d,0} -\ (. r(w;
(o) F A (wi—1)Pr(w;)

Prabs (wz ‘wi— 1) —

Advanced Smoothing Techniques

- Kneser-Ney Smoothing

Kneser-Ney discounting

max{ﬂ(wi_l, wz) — d, O}

7'('(?1]7;_1)

Prrn(w;|lw;—1) = F ARN (Wi—1)PTreont (w;)

c.f., absolute discounting

max{m(w;_1,w;) —d,0} ” (.
m(w;_1) F A1) Pr(ws)

Prabs (wz ‘wi— 1) —

Kneser-Ney discounting

max{m(w;_1,w;) —d,0}

W(wi_l)

Prin(w;|w;—1) = F ARN (w;—1)Preont (w;)

Consider an example: “Today | cooked some yellow curry”
Suppose n(yellow, curry) = 0. Praps[w | yellow | = A(yellow)Pr(w)

Now, say Pr[Francisco] >> Pr[curry], as San Francisco is very common
In our corpus.

But Francisco is not as common a “continuation” (follows only San) as
curry is (red curry, chicken curry, potato curry, ...)

Moral: Should use probability of being a continuation!

c.f., absolute discounting

maX{W(wi_l,wz’)_daO} |)\(w,)Pr(w-)
W(wi_l) | 1—1 v

Prabs (wz |wz'— 1) —

Kneser-Ney discounting

max{m(w;_1,w;) —d,0}

Prin(w;|w;—1) = F ARN (w;—1)Preont (w;)

W(wi_l)
Prom(u) = 200 ang (i) =~ i)
<I>(wz) — {wi_l . W(wi_l,wi) > O} d J \\If(wz_l)\ ° \CID(wz)\
Where B = {(wi_l,wi) : ﬂ(wi_l,wi) > O} 7T<”w7;_1> : |B‘

c.f., absolute discounting

max{T(w;_1,w;) —d,0} ” (.
W(wi_l) !)\(z—l)P(z)

Prabs (wz |wz'— 1) —

Kneser-Ney: An Alternate View

A mix of bigram and unigram models .
B

A bigram ab could be generated in two ways:) @ h
In context a, output b, or c @

In context g, forget context and then output b (i.e., as “aeb”)

In a given set of bigrams, for each bigram ab, assume that du of its
occurrences were produced in the second way

Will compute probabilities for each transition under this

assumption

Kneser-Ney: An Alternate View

Assuming 7(a,b) - da» occurrences as “ab”, and dg occurrences as “asb”

Pr[bla] = [n(ab)- dus] / 7(a) N
Prielal = Xy day]| / m(a) b @
£laj = [2y day | o
Prlbe] = [Zxcho] / [Zuy by] .l b
Prin[b| a] = Pr[b|a] + Pr[e|a]- Pr[b |e] £ @

Kneser-Ney: Take d, = d for all bigrams xy that do appear (assuming
they all appear at least d times — kosher, e.g., if d= 1)

Then X, day = d-{W(a)|, Zx dws = d|D(b)|, and Ty diy = d-|B]

max{7(a,b) —d,0} ~d-[¥(a)|-[P(D)|

el =T T w8

Ngram models as WFSAs

With no optimizations, an Ngram over a vocabulary of V
words defines a WFSA with VN1 states and VN edges.

Example: Consider a trigram model for a two-word vocabulary,
A B.

4 states representing bigram histories, A_A, A_B, B_A, B_B

8 arcs transitioning between these states

Clearly not practical when V is large.

Resort to backoff language models

WEFSA for backoft language model

Q c / Pr(cla,b) /
£ /oc(a,lN C//Pr(c/b) £ /oc(b C)

e/oc(b)\ﬁx // Pr(c)

&

Next class: Beyond Ngram LMs

