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Mid-semester feedback ⇾ Thanks!

• Work out more examples esp. for topics that are math-intensive 
              
            https://tinyurl.com/cs753problems 

• Give more insights on the “big picture”  
       
            Upcoming lectures will try and address this 

• More programming assignments.  
 
            Assignment 2 is entirely programming-based!
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Recap of Ngram language models

• For a word sequence W = w1,w2,…,wn-1,wn, an Ngram model 
predicts wi based on wi-(N-1),…,wi-1 

• Practically impossible to see most Ngrams during training 

• This is addressed using smoothing techniques involving 
interpolation and backoff models



Looking beyond words

• Many unseen word Ngrams during training  
 
                  This guava is yellow  
 
                  This dragonfruit is yellow  [dragonfruit → unseen] 

• What if we move from word Ngrams to “class” Ngrams?  
 
    Pr(Color|Fruit,Verb) = π(Fruit,Verb,Color)  
                                                       π(Fruit, Verb) 

• (Many-to-one) function mapping each word w to one C classes



Computing word probabilities from 
class probabilities
• Pr(wi | wi-1, … ,wi-n+1) ≅ Pr(wi | c(wi)) × Pr(c(wi) | c(wi-1), … , c(wi-n+1)) 

• We want Pr(Red|Apple,is)  

= Pr(COLOR|FRUIT, VERB) × Pr(Red|COLOR) 

• How are words assigned to classes? Unsupervised clustering 
algorithm that groups “related words” into the same class [Brown92] 

• Using classes, reduction in number of parameters:  
VN → VC + CN 

• Both class-based and word-based LMs could be interpolated  



Interpolate many models vs build 
one model

• Instead of interpolating different language models, can we 
come up with a single model that combines different 
information sources about a word? 

• Maximum-entropy language models [R94]

[R94] Rosenfeld, “A Maximum Entropy Approach to SLM”, CSL 96



Maximum Entropy LMs
Probability of a word w given history h has a log-linear form:
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fi(w, h) is the i-th feature function based on word w and
history h. Each �i represents the weight of the corresponding
feature and the set of feature weights ⇤ forms the parameters
of the model, estimated during LM training. In the case of
n-gram MaxEnt models, each n-gram corresponds to a single
features. For instance, a bigram feature would take the form:

fi(w, h) =

⇢
1 if w = a and h ends in b
0 otherwise

for some a and b. Typically, for an n-gram MaxEnt model
the feature set and parameters are defined to include all the
n-grams (n = 1, 2, · · ·N ) seen in a training data.

A. Training Procedure
Supervised parameter estimation algorithms for n-gram

MaxEnt LMs fit the training sentences using a Maximum
Likelihood (ML) criterion. Let the training data W =

{w
1

,w
2

, · · ·wl} be comprised of l sentences, and let nj de-
note the number of words in sentence wj . The log-likelihood
of the training corpus W using the MaxEnt language model
parameters ⇤ can be written as,

L(W;⇤) = logP (W) =
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Maximizing L(W;⇤) yields trained model parameters
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There are several approaches to maximizing this objective,
such as Generalized Iterative Scaling (GIS) [11], or gradient
based methods, such as L-BFGS [12]. In this work, we use
gradient based optimization, specifically, Quasi-Newton L-
BFGS. It is easy to show that the gradient of the log-likelihood
with respect to the model parameters ⇤ can be calculated as,
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and f(w, h) is a vector which has value one for the activated
n-gram features corresponding to (w, h) and zero elsewhere.
Hence, the gradient is the difference � between the observed
and expected n-gram features (over the MaxEnt distribution)
summed over every event (w, h) weighted by its observed
count c(w, h) in the training data. In addition, an L

2

regu-
larization term ||⇤||2

2

with weight � is added to the objective
function (Eq. 4) to prevent overfitting and provide smoothing
[13]. � is usually chosen empirically using a development set.

B. Hierarchical Training Technique

A significant disadvantage of MaxEnt LM training is the
need to compute the normalizer (partition function) Z

⇤

(h) of
(2), which must sum over all possible words w to achieve a
valid probability. In the naive implementation of a MaxEnt
LM, the complexity for computing normalization factors (and
feature expectations) for a single iteration is O(|H| ⇥ |V |),
where |H| is the number of history tokens seen in W and
|V | is the vocabulary size, typically on the order of tens of
thousands. We instead use the hierarchical training procedure
introduced in [3] for nested and non overlapping features, e.g.,
n-gram features. The hierarchical training procedure reduces
the complexity for calculating normalization factors and n-
gram feature expectations to O(

PN
n=1

#n-grams), the same
complexity as training the corresponding back-off n-gram LM
(where we must compute the frequency for all seen n-grams.)

III. LANGUAGE MODEL ADAPTATION

While n-gram language models are effective at learning a
probability distribution that can explain a given corpus, they
fail to assign realistic probabilities to new data that differ from
training examples. In this case, new grammatical structures and
previously unseen n-grams are estimated to be very unlikely,
which can degrade system performance in new domains. For
new domains without text training data, we seek to train on
available out-of-domain text data and in-domain audio. We can
draw on techniques from work in semi-supervised learning
to facilitate semi-supervised adaptation. One such approach
consistent with MaxEnt trained language models is conditional
entropy regularization. We review this method and define a
new language model adaptation objective.

A. Conditional Entropy Regularization

Consider a classification problem where X are the inputs
(observations) and Y are the corresponding output (class)
labels. The conditional entropy H(Y|X) is a measure of the
average (expected) randomness in the probability distribution
of class labels Y after observing the input X.

H(Y|X) = EX[H(Y|X = x)] =

�
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p(y|x) log p(y|x)
!
dx (7)

Conditional entropy measures the amount of the class over-
lap and can be related to classification performance through
the well known Fano’s Inequality [7], [14]. This inequality
proves that Y can be estimated with low probability of error
only if the conditional entropy H(Y|X) is small. Intuitively,
class overlap indicates uncertainty about the example and by
minimizing the entropy, we encourage the model to prefer
parameters that minimize class overlap, thereby minimizing
uncertainty. The trained low conditional entropy model will
have a decision boundary that passes through low-density
regions of the input distribution p(X). For problems with
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λ’s  are learned by fitting the training sentences using a maximum  
likelihood criterion



Word representations in Ngram 
models

• In standard Ngram models, words are represented in the 
discrete space involving the vocabulary 

• Limits the possibility of truly interpolating probabilities of 
unseen Ngrams 

• Can we build a representation for words in the continuous 
space?



Word representations

• 1-hot representation:  

• Each word is given an index in {1, … , V}.  The 1-hot vector  
fi ∈ RV contains zeros everywhere except for the ith 
dimension being 1 

• 1-hot form, however, doesn’t encode information about word 
similarity 

• Distributed (or continuous) representation: Each word is 
associated with a dense vector. E.g.  
dog → {-0.02, -0.37, 0.26, 0.25, -0.11, 0.34}



Word embeddings

• These distributed representations in a continuous space are 
also referred to as “word embeddings” 
• Low dimensional  
• Similar words will have similar vectors 

• Word embeddings capture semantic properties (such as man is 
to woman as boy is to girl, etc.) and morphological properties 
(glad is similar to gladly, etc.)



[C01]: Collobert et al.,01

Word embeddings



Relationships learned from embeddings

[M13]: Mikolov et al.,13



Bilingual embeddings

[S13]: Socher et al.,13



Word embeddings

• These distributed representations in a continuous space are 
also referred to as “word embeddings” 
• Low dimensional  
• Similar words will have similar vectors 

• Word embeddings capture semantic properties (such as man is 
to woman as boy is to girl, etc.) and morphological properties 
(glad is similar to gladly, etc.) 

• The word embeddings could be learned via the first layer of a 
neural network [B03].

[B03]: Bengio et al., “A neural probabilistic LM”, JMLR, 03



Continuous space language models
3 Continuous Space Language Models

The architecture of the neural network LM is
shown in Figure 2. A standard fully-connected
multi-layer perceptron is used. The inputs to
the neural network are the indices of the n�1
previous words in the vocabulary hj=wj�n+1,
. . . , wj�2, wj�1 and the outputs are the posterior
probabilities of all words of the vocabulary:

P (wj = i|hj) �i � [1, N ] (2)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ith word
of the vocabulary is coded by setting the ith ele-
ment of the vector to 1 and all the other elements
to 0. The ith line of the N � P dimensional pro-
jection matrix corresponds to the continuous rep-
resentation of the ith word. Let us denote cl these
projections, dj the hidden layer activities, oi the
outputs, pi their softmax normalization, and mjl,
bj , vij and ki the hidden and output layer weights
and the corresponding biases. Using these nota-
tions, the neural network performs the following
operations:

dj = tanh
�

�

l

mjl cl + bj

�

(3)

oi =
�

j

vij dj + ki (4)

pi = eoi /
N�

r=1

eor (5)

The value of the output neuron pi corresponds di-
rectly to the probability P (wj = i|hj). Training is
performed with the standard back-propagation al-
gorithm minimizing the following error function:

E =
N�

i=1

ti log pi + �

�

�
�
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m2
jl +

�

ij

v2
ij

�
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where ti denotes the desired output, i.e., the prob-
ability should be 1.0 for the next word in the train-
ing sentence and 0.0 for all the other ones. The
first part of this equation is the cross-entropy be-
tween the output and the target probability dis-
tributions, and the second part is a regulariza-
tion term that aims to prevent the neural network
from overfitting the training data (weight decay).
The parameter � has to be determined experimen-
tally. Training is done using a resampling algo-
rithm (Schwenk and Gauvain, 2005).
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Figure 2: Architecture of the continuous space
LM. hj denotes the context wj�n+1, . . . , wj�1. P
is the size of one projection and H ,N is the size
of the hidden and output layer respectively. When
short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the poste-
rior probabilities. Therefore, the neural network
directly minimizes the perplexity on the train-
ing data. Note also that the gradient is back-
propagated through the projection-layer, which
means that the neural network learns the projec-
tion of the words onto the continuous space that is
best for the probability estimation task.
The complexity to calculate one probability

with this basic version of the neural network LM is
quite high due to the large output layer. To speed
up the processing several improvements were used
(Schwenk, 2004):

1. Lattice rescoring: the statistical machine
translation decoder generates a lattice using
a 3-gram back-off LM. The neural network
LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Efficient implementation: collection of all
LM probability requests with the same con-
text ht in one lattice, propagation of several
examples at once through the neural network
and utilization of libraries with CPU opti-
mized matrix-operations.

The idea behind short-lists is to use the neural

726

[S06]: Schwenk et al., “Continuous space language models for SMT”, ACL, 06



NN language model

• Project all the words of the 
context hj = wj-n+1,…,wj-1 to 
their dense forms 

• Then, calculate the language 
model probability Pr(wj =i| hj) 
for the given context hj

3 Continuous Space Language Models

The architecture of the neural network LM is
shown in Figure 2. A standard fully-connected
multi-layer perceptron is used. The inputs to
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It can be shown that the outputs of a neural net-
work trained in this manner converge to the poste-
rior probabilities. Therefore, the neural network
directly minimizes the perplexity on the train-
ing data. Note also that the gradient is back-
propagated through the projection-layer, which
means that the neural network learns the projec-
tion of the words onto the continuous space that is
best for the probability estimation task.
The complexity to calculate one probability

with this basic version of the neural network LM is
quite high due to the large output layer. To speed
up the processing several improvements were used
(Schwenk, 2004):

1. Lattice rescoring: the statistical machine
translation decoder generates a lattice using
a 3-gram back-off LM. The neural network
LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Efficient implementation: collection of all
LM probability requests with the same con-
text ht in one lattice, propagation of several
examples at once through the neural network
and utilization of libraries with CPU opti-
mized matrix-operations.

The idea behind short-lists is to use the neural

726



NN language model
• Dense vectors of all the words in 

context are concatenated forming 
the first hidden layer of the neural 
network 

• Second hidden layer:  

    dk = tanh(Σmkjcj + bk) ∀k = 1, …, H 

• Output layer: 

    oi = Σvikdk + b̃i  ∀i = 1, …, N 

• pi  → softmax output from the ith 
neuron → Pr(wj = i∣hj) 

3 Continuous Space Language Models

The architecture of the neural network LM is
shown in Figure 2. A standard fully-connected
multi-layer perceptron is used. The inputs to
the neural network are the indices of the n�1
previous words in the vocabulary hj=wj�n+1,
. . . , wj�2, wj�1 and the outputs are the posterior
probabilities of all words of the vocabulary:

P (wj = i|hj) �i � [1, N ] (2)

where N is the size of the vocabulary. The input
uses the so-called 1-of-n coding, i.e., the ith word
of the vocabulary is coded by setting the ith ele-
ment of the vector to 1 and all the other elements
to 0. The ith line of the N � P dimensional pro-
jection matrix corresponds to the continuous rep-
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projections, dj the hidden layer activities, oi the
outputs, pi their softmax normalization, and mjl,
bj , vij and ki the hidden and output layer weights
and the corresponding biases. Using these nota-
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dj = tanh
�

�

l

mjl cl + bj

�

(3)

oi =
�

j

vij dj + ki (4)

pi = eoi /
N�

r=1

eor (5)

The value of the output neuron pi corresponds di-
rectly to the probability P (wj = i|hj). Training is
performed with the standard back-propagation al-
gorithm minimizing the following error function:

E =
N�

i=1

ti log pi + �

�

�
�

jl

m2
jl +

�

ij

v2
ij

�

� (6)

where ti denotes the desired output, i.e., the prob-
ability should be 1.0 for the next word in the train-
ing sentence and 0.0 for all the other ones. The
first part of this equation is the cross-entropy be-
tween the output and the target probability dis-
tributions, and the second part is a regulariza-
tion term that aims to prevent the neural network
from overfitting the training data (weight decay).
The parameter � has to be determined experimen-
tally. Training is done using a resampling algo-
rithm (Schwenk and Gauvain, 2005).
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short-lists are used the size of the output layer is
much smaller then the size of the vocabulary.

It can be shown that the outputs of a neural net-
work trained in this manner converge to the poste-
rior probabilities. Therefore, the neural network
directly minimizes the perplexity on the train-
ing data. Note also that the gradient is back-
propagated through the projection-layer, which
means that the neural network learns the projec-
tion of the words onto the continuous space that is
best for the probability estimation task.
The complexity to calculate one probability

with this basic version of the neural network LM is
quite high due to the large output layer. To speed
up the processing several improvements were used
(Schwenk, 2004):

1. Lattice rescoring: the statistical machine
translation decoder generates a lattice using
a 3-gram back-off LM. The neural network
LM is then used to rescore the lattice.

2. Shortlists: the neural network is only used to
predict the LM probabilities of a subset of the
whole vocabulary.

3. Efficient implementation: collection of all
LM probability requests with the same con-
text ht in one lattice, propagation of several
examples at once through the neural network
and utilization of libraries with CPU opti-
mized matrix-operations.

The idea behind short-lists is to use the neural
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NN language model

• Model is trained to minimise the following loss function: 

• Here, ti is the target output 1-hot vector  (1 for next word in 
the training instance, 0 elsewhere) 

• First part: Cross-entropy between the target distribution and 
the distribution estimated by the NN 

• Second part: Regularization term

L =

NX

i=1

ti log pi + ✏

 
X

kl

m2
kl +

X

ik

v2ik

!



Decoding with NN LMs

• Two main techniques used to make the NN LM tractable for 
large vocabulary ASR systems: 

1. Lattice rescoring 

2. Shortlists



Use NN language model via lattice 
rescoring

• Lattice — Graph of possible word sequences from the ASR system using an Ngram 
backoff LM 

• Each lattice arc has both acoustic/language model scores. 
• LM scores on the arcs are replaced by scores from the NN LM



Decoding with NN LMs

• Two main techniques used to make the NN LM tractable for 
large vocabulary ASR systems: 

1. Lattice rescoring 

2. Shortlists



Shortlist

• Softmax normalization of the output layer is an expensive 
operation esp. for large vocabularies 

• Solution: Limit the output to the s most frequent words.  

• LM probabilities of words in the short-list are calculated by 
the NN 

• LM probabilities of the remaining words are from Ngram 
backoff models



Results

and 347 M words of broadcast news data. The word list consists of 50 k words. All available data was used to
train the language model of the third system: 27.3 M words of in-domain (complete release of Fisher data) and
901 M words of broadcast news. The acoustic model was trained on 450 h. The word list consists of 51 k words.

The neural network language model was trained on the in-domain data only (CTS corpora). Two types of
experiments were conducted for all three systems:

(1) The neural network language model was interpolated with a back-off language model that was also
trained on the CTS corpora only and compared to this CTS back-off language model.

(2) The neural network language model was interpolated with the full back-off language model (trained on
CTS and BN data) and compared to this full language model.

The first experiment allows us to assess the real benefit of the neural language model since the two smooth-
ing approaches (back-off and hybrid) are compared on the same data. In the second experiment all the avail-
able data was used for the back-off model to obtain the overall best results. The perplexities of the hybrid and
the back-off language model are given in Table 3.

A perplexity reduction of about 9% relative is obtained independently of the size of the language model
training data. This gain decreases to approximately 6% after interpolation with the back-off language model
trained on the additional BN corpus of out-of domain data. It can be seen that the perplexity of the hybrid
language model trained only on the CTS data is better than that of the back-off reference language model
trained on all of the data (45.5 with respect to 47.5). Despite these rather small gains in perplexity, consistent
word error reductions were observed (see Fig. 4).

Although the size of the language model training data has almost quadrupled from 7.2 M to 27.3 M words,
use of the hybrid language model resulted in a consistent absolute word error reduction of about 0.5%. In all
of these experiments, it seems that the word error reductions achieved by the hybrid language model are inde-
pendent of the other improvements, in particular those obtained by better acoustic modeling and by adding

Table 3
Perplexities on the 2003 evaluation data for the back-off and the hybrid LM as a function of the size of the CTS training data

CTS corpus (words) 7.2 M 12.3 M 27.3 M

In-domain data only
Back-off LM 62.4 55.9 50.1
Hybrid LM 57.0 50.6 45.5

Interpolated with all data
Back-off LM 53.0 51.1 47.5
Hybrid LM 50.8 48.0 44.2
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Fig. 4. Word error rates on the 2003 evaluation test set for the back-off LM and the hybrid LM, trained only on CTS data (left bars for
each system) and interpolated with the broadcast news LM (right bars for each system).
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Longer word context?

• What have we seen so far: A feedforward NN used to compute 
an Ngram probability Pr(wj = i∣hj) (where hj is the Ngram 
history) 

• We know Ngrams are limiting: Alice who had attempted the 
assignment asked the lecturer 

• How can we predict the next word based on the entire 
sequence of preceding words? Use recurrent neural networks. 

• Next class!


