

#### Automatic Speech Recognition (CS753) Lecture 16: Language Models (Part III)

Instructor: Preethi Jyothi Mar 16, 2017

#### Mid-semester feedback -> Thanks!

• Work out more examples esp. for topics that are math-intensive

https://tinyurl.com/cs753problems

• Give more insights on the "big picture"

Upcoming lectures will try and address this

• More programming assignments.

Assignment 2 is entirely programming-based!



marks

### Recap of Ngram language models

- For a word sequence W = w<sub>1</sub>,w<sub>2</sub>,...,w<sub>n-1</sub>,w<sub>n</sub>, an Ngram model predicts w<sub>i</sub> based on w<sub>i-(N-1)</sub>,...,w<sub>i-1</sub>
- Practically impossible to see most Ngrams during training
- This is addressed using smoothing techniques involving interpolation and backoff models

## Looking beyond words

Many unseen word Ngrams during training

This guava is yellow

This *dragonfruit* is yellow [*dragonfruit*  $\rightarrow$  unseen]

• What if we move from word Ngrams to "CLASS" Ngrams?

 $Pr(Color|Fruit, Verb) = \frac{\pi(Fruit, Verb, Color)}{\pi(Fruit, Verb)}$ 

• (Many-to-one) function mapping each word w to one C classes

# Computing word probabilities from class probabilities

- $\Pr(w_i \mid w_{i-1}, ..., w_{i-n+1}) \cong \Pr(w_i \mid c(w_i)) \times \Pr(c(w_i) \mid c(w_{i-1}), ..., c(w_{i-n+1}))$
- We want Pr(Red|Apple,is)

= Pr(COLOR|FRUIT, VERB) × Pr(Red|COLOR)

- How are words assigned to classes? Unsupervised clustering algorithm that groups "related words" into the same class [Brown92]
- Using classes, reduction in number of parameters:  $V^N \rightarrow VC + C^N$
- · Both class-based and word-based LMs could be interpolated

### Interpolate many models vs build one model

- Instead of interpolating different language models, can we come up with a single model that combines different information sources about a word?
- Maximum-entropy language models [R94]

<sup>[</sup>R94] Rosenfeld, "A Maximum Entropy Approach to SLM", CSL 96

### Maximum Entropy LMs

Probability of a word w given history h has a log-linear form:

$$P_{\Lambda}(w|h) = \frac{1}{Z_{\Lambda}(h)} \exp\left(\sum_{i} \lambda_{i} \cdot f_{i}(w,h)\right)$$
$$Z_{\Lambda}(h) = \sum_{w' \in V} \exp\left(\sum_{i} \lambda_{i} \cdot f_{i}(w',h)\right)$$

where

Each  $f_i(w, h)$  is a feature function. E.g.

$$f_i(w,h) = \begin{cases} 1 & \text{if } w = a \text{ and } h \text{ ends in } b \\ 0 & \text{otherwise} \end{cases}$$

 $\lambda$ 's are learned by fitting the training sentences using a maximum likelihood criterion

# Word representations in Ngram models

- In standard Ngram models, words are represented in the discrete space involving the vocabulary
- Limits the possibility of truly interpolating probabilities of unseen Ngrams
- Can we build a representation for words in the continuous space?

#### Word representations

- 1-hot representation:
  - Each word is given an index in  $\{1, \ldots, V\}$ . The 1-hot vector  $f_i \in R^V$  contains zeros everywhere except for the  $i^{th}$  dimension being 1
- 1-hot form, however, doesn't encode information about word similarity
- Distributed (or continuous) representation: Each word is associated with a dense vector. E.g.  $dog \rightarrow \{-0.02, -0.37, 0.26, 0.25, -0.11, 0.34\}$

# Word embeddings

- These distributed representations in a continuous space are also referred to as "word embeddings"
  - Low dimensional
  - Similar words will have similar vectors
- Word embeddings capture semantic properties (such as *man* is to *woman* as *boy* is to *girl*, etc.) and morphological properties (*glad* is similar to *gladly*, etc.)

#### Word embeddings

| FRANCE      | JESUS   | XBOX        | REDDISH   | SCRATCHED | MEGABITS        |
|-------------|---------|-------------|-----------|-----------|-----------------|
| AUSTRIA     | GOD     | AMIGA       | GREENISH  | NAILED    | OCTETS          |
| BELGIUM     | SATI    | PLAYSTATION | BLUISH    | SMASHED   | MB/S            |
| GERMANY     | CHRIST  | MSX         | PINKISH   | PUNCHED   | BIT/S           |
| ITALY       | SATAN   | IPOD        | PURPLISH  | POPPED    | BAUD            |
| GREECE      | KALI    | SEGA        | BROWNISH  | CRIMPED   | CARATS          |
| SWEDEN      | INDRA   | psNUMBER    | GREYISH   | SCRAPED   | $_{\rm KBIT/S}$ |
| NORWAY      | VISHNU  | HD          | GRAYISH   | SCREWED   | MEGAHERTZ       |
| EUROPE      | ANANDA  | DREAMCAST   | WHITISH   | SECTIONED | MEGAPIXELS      |
| HUNGARY     | PARVATI | GEFORCE     | SILVERY   | SLASHED   | $_{\rm GBIT/S}$ |
| SWITZERLAND | GRACE   | CAPCOM      | YELLOWISH | RIPPED    | AMPERES         |

# Relationships learned from embeddings

| Relationship         | Example 1           | Example 2         | Example 3            |  |
|----------------------|---------------------|-------------------|----------------------|--|
| France - Paris       | Italy: Rome         | Japan: Tokyo      | Florida: Tallahassee |  |
| big - bigger         | small: larger       | cold: colder      | quick: quicker       |  |
| Miami - Florida      | Baltimore: Maryland | Dallas: Texas     | Kona: Hawaii         |  |
| Einstein - scientist | Messi: midfielder   | Mozart: violinist | Picasso: painter     |  |
| Sarkozy - France     | Berlusconi: Italy   | Merkel: Germany   | Koizumi: Japan       |  |
| copper - Cu          | zinc: Zn            | gold: Au          | uranium: plutonium   |  |
| Berlusconi - Silvio  | Sarkozy: Nicolas    | Putin: Medvedev   | Obama: Barack        |  |
| Microsoft - Windows  | Google: Android     | IBM: Linux        | Apple: iPhone        |  |
| Microsoft - Ballmer  | Google: Yahoo       | IBM: McNealy      | Apple: Jobs          |  |
| Japan - sushi        | Germany: bratwurst  | France: tapas     | USA: pizza           |  |

# Bilingual embeddings



# Word embeddings

- These distributed representations in a continuous space are also referred to as "word embeddings"
  - Low dimensional
  - Similar words will have similar vectors
- Word embeddings capture semantic properties (such as *man* is to *woman* as *boy* is to *girl*, etc.) and morphological properties (*glad* is similar to *gladly*, etc.)
- The word embeddings could be learned via the first layer of a neural network [B03].

#### Continuous space language models



[S06]: Schwenk et al., "Continuous space language models for SMT", ACL, 06

# NN language model

- Project all the words of the context h<sub>j</sub> = w<sub>j-n+1</sub>,...,w<sub>j-1</sub> to their dense forms
- Then, calculate the language model probability Pr(w<sub>j</sub> = i| h<sub>j</sub>) for the given context h<sub>j</sub>



# NN language model

- Dense vectors of all the words in context are concatenated forming the first hidden layer of the neural network
- Second hidden layer:

$$d_k = \tanh(\sum m_{kj}c_j + b_k) \forall k = 1, ..., H$$

• Output layer:

$$\mathbf{o}_i = \sum \mathbf{v}_{ik} \mathbf{d}_k + \tilde{\mathbf{b}}_i \ \forall i = 1, ..., N$$

•  $p_i \rightarrow \text{softmax output from the ith}$ neuron  $\rightarrow Pr(w_j = i|h_j)$ 



# NN language model

Model is trained to minimise the following loss function:

$$L = \sum_{i=1}^{N} t_i \log p_i + \epsilon \left( \sum_{kl} m_{kl}^2 + \sum_{ik} v_{ik}^2 \right)$$

- Here, t<sub>i</sub> is the target output 1-hot vector (1 for next word in the training instance, 0 elsewhere)
- First part: Cross-entropy between the target distribution and the distribution estimated by the NN
- Second part: Regularization term

### Decoding with NN LMs

- Two main techniques used to make the NN LM tractable for large vocabulary ASR systems:
  - 1. Lattice rescoring
  - 2. Shortlists

# Use NN language model via lattice rescoring



- Lattice Graph of possible word sequences from the ASR system using an Ngram backoff LM
- Each lattice arc has both acoustic/language model scores.
- LM scores on the arcs are replaced by scores from the NN LM

### Decoding with NN LMs

- Two main techniques used to make the NN LM tractable for large vocabulary ASR systems:
  - 1. Lattice rescoring
  - 2. Shortlists

#### Shortlist

- Softmax normalization of the output layer is an expensive operation esp. for large vocabularies
- Solution: Limit the output to the *s* most frequent words.
  - LM probabilities of words in the short-list are calculated by the NN
  - LM probabilities of the remaining words are from Ngram backoff models

#### Results

Table 3

Perplexities on the 2003 evaluation data for the back-off and the hybrid LM as a function of the size of the CTS training data

| CTS corpus (words)         | 7.2 M | 12.3 M | 27.3 M |
|----------------------------|-------|--------|--------|
| In-domain data only        |       |        |        |
| Back-off LM                | 62.4  | 55.9   | 50.1   |
| Hybrid LM                  | 57.0  | 50.6   | 45.5   |
| Interpolated with all data |       |        |        |
| Back-off LM                | 53.0  | 51.1   | 47.5   |
| Hybrid LM                  | 50.8  | 48.0   | 44.2   |



[S06]: Schwenk et al., "Continuous space language models for SMT", ACL, 06

# Longer word context?

- What have we seen so far: A feedforward NN used to compute an Ngram probability Pr(w<sub>j</sub> = i|h<sub>j</sub>) (where h<sub>j</sub> is the Ngram history)
- We know Ngrams are limiting: Alice who had attempted <u>the</u> <u>assignment asked</u> the lecturer
- How can we predict the next word based on the entire sequence of preceding words? Use recurrent neural networks.
- Next class!