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Automatic Speech Recognition (CS753)

Lecture 17: RNN language models + Introduction to Kaldi

Instructor: Preethi Jyothi
Mar 20, 2017



Recap

fixed length context

i-th output = P(w, = i| context)

Language models using feedforward neural networks with
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Image from: Bengio et al., “A neural probabilistic language model”, JMLR, 03



Recap

Language models using feedforward neural networks with
fixed length context: Provide significant improvements in ASR
performance over Ngram based language models

But fixed length context needs to be specified before training

Recurrent neural networks (RNNs) do not use limited size of
context

Build RNN-based language models



Simple RNN language model

INPUT (t) OUTPUT (t)
— +  Current word, xt
. CONTEXT (t) )
Hidden state, s;
U V - Output, yi

> St = f(UCE‘t + WSt_l)

0 = softmax(V sy)
- RNN is trained using the

W g

cross-entropy criterion

CONTEXT (t-1)

Image from: Mikolov et al., “Recurrent neural network based language model”, Interspeech 10



RNN-LMs

Optimizations used for NNLMs are relevant to RNN-LMs as
well (rescoring Nbest lists or lattices, using a shortlist, etc.)

Perplexity reductions over Kneser-Ney models:

Model # words | PPL | WER
KNS5 LM 200K 336 16.4
KNS5 LM + RNN 90/2 200K 271 15.4
KNS5 LM IM 287 15.1
KNS5 LM + RNN 90/2 IM 225 14.0
KNS5 LM 6.4M 221 13.5
KNS5 LM + RNN 250/5 6.4M 156 11.7

Image from: Mikolov et al., “Recurrent neural network based language model”, Interspeech 10



Training RNN-LMs

RNN-LMs are trained using backpropagation through time (BPTT):
Unfold the RNN in time + train the unfolded RNN using
backpropagation + mini-batch gradient descent

Main issues with BPTT: Exploding and vanishing gradients

Exploding gradients: Gradients can increase exponentially over
time during backpropagation. Clip values of gradients to handle

this.

Vanishing gradients: Magnitude of gradients approach very tiny
values as we propagate gradients back in time. Architectures like
Long Short Term Memory (LSTMs) networks can handle this.



LSTM-LMs

p(w|h) +  Vanilla RNN-LMs
o output layer unlikely to show full
potential of recurrent
w models due to issues
> 2nd hidden layer like Vanishing
gradients

projection layer

_STM-LMs: Similar to
RNN-LMs except use

O input layer | STM units in the
0 1 0 2nd hidden
v

(recurrent) layer

Image from: Sundermeyer et al., “LSTM NNs for Language Modeling”, 10



PPL

Comparing RNN-LMs with LSTM-LMs
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Image from: Sundermeyer et al., “LSTM NNs for Language Modeling”, 10



Character-based RNN-LMs
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Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Generate text using a trained
character-based LSTM-LM

VIOLA:

WHY, SALISBURY MUST FIND HIS FLESH AND THOUGHT
THAT WHICH | AM NOT APS, NOT A MAN AND IN FIRE,

TO SHOW THE REINING OF THE RAVEN AND THE WARS

TO GRACE MY HAND REPROACH WITHIN, AND NOT A FAIR ARE HAND,
THAT CAESAR AND MY GOODLY FATHER'S WORLD;

WHEN | WAS HEAVEN OF PRESENCE AND OUR FLEETS,

WE SPARE WITH HOURS, BUT CUT THY COUNCIL | AM GREAT,
MURDERED AND BY THY MASTER'S READY THERE

MY POWER TO GIVE THEE BUT SO MUCH AS HELL:

SOME SERVICE IN THE NOBLE BONDMAN HERE,

WOULD SHOW HIM TO HER WINE.

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

The Big Picture



Putting it all together:
How do we recognise an utterance?

A: speech utterance

Ox: acoustic features corresponding to the utterance A

W* = argmax Pr(O|W) Pr(W)
%%

Return the word sequence that jointly assigns the highest
probability to Oa

How do we estimate Pr(O4|W) and Pr(W)?

How do we decode?



Acoustic model

W* = argmax Pr(O4|W) Pr(W)
7%

Pr(04|W) =) Pr(O4,Q|W)
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Viterbi approximation



Acoustic Model

Transition

probabilities
7 /

Pr(O4|W) = max HPr(Ot|qt,w{V)Pr(qt|qt_1,wiv)

01—

Emission
probabilities

Lq Modeled using a
Pr(O|q;wy) = Z catN (Ol e, ge; wi ) mixture of Gaussians
(=1

All the free parameters (means, covariances, mixture weights,
transition probabilities) are learned using EM (Baum-Welch)
algorithm



Language Model

W* = argmax Pr(O4|W) Pr(W)
1%

Pr(W) = Pr(wy,wa, ..., wN)

= Pr(wq) .. .Pr(wN‘w]]:][:in_Fl)

m-gram language model

Further optimized using smoothing and interpolation with
lower-order Ngram models



Decoding: Search

W* = argmax Pr(O4|W) Pr(W)

%%
"N 1 [ T ]
W* = arg max H r(wy|wny 1) H r(O¢|qe, wy' ) Pr(qe|qe—1, w7 )
wy ,N n—1 ] t=1
Viterbi ([N 11 I N ]
RS arg max | H r(wp, |wy, — m—l—l) ax HPY Otlge, wy ) Pr(gelge—1, w7 )
wy ,N | | p=1 | q1 wi i—1

Viterbi approximation divides the above optimisation problem into sub-
problems that allows the efficient application of dynamic programming

Search space still very huge for LVCSR tasks! Use approximate decoding
techniques (A" decoding, beam-width decoding, etc.) to visit only
promising parts of the search space




ASR Search
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Kaldi Toolkit & Assignment 2



