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Recap
• Language models using feedforward neural networks with 

fixed length context

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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Recap

• Language models using feedforward neural networks with 
fixed length context: Provide significant improvements in ASR 
performance over Ngram based language models 

• But fixed length context needs to be specified before training 

• Recurrent neural networks (RNNs) do not use limited size of 
context 

• Build RNN-based language models



Simple RNN language model
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Abstract
A new recurrent neural network based language model (RNN
LM) with applications to speech recognition is presented. Re-
sults indicate that it is possible to obtain around 50% reduction
of perplexity by using mixture of several RNN LMs, compared
to a state of the art backoff language model. Speech recognition
experiments show around 18% reduction of word error rate on
the Wall Street Journal task when comparing models trained on
the same amount of data, and around 5% on the much harder
NIST RT05 task, even when the backoff model is trained on
much more data than the RNN LM. We provide ample empiri-
cal evidence to suggest that connectionist language models are
superior to standard n-gram techniques, except their high com-
putational (training) complexity.
Index Terms: language modeling, recurrent neural networks,
speech recognition

1. Introduction
Sequential data prediction is considered by many as a key prob-
lem in machine learning and artificial intelligence (see for ex-
ample [1]). The goal of statistical language modeling is to
predict the next word in textual data given context; thus we
are dealing with sequential data prediction problem when con-
structing language models. Still, many attempts to obtain such
statistical models involve approaches that are very specific for
language domain - for example, assumption that natural lan-
guage sentences can be described by parse trees, or that we
need to consider morphology of words, syntax and semantics.
Even the most widely used and general models, based on n-
gram statistics, assume that language consists of sequences of
atomic symbols - words - that form sentences, and where the
end of sentence symbol plays important and very special role.

It is questionable if there has been any significant progress
in language modeling over simple n-gram models (see for ex-
ample [2] for review of advanced techniques). If we would mea-
sure this progress by ability of models to better predict sequen-
tial data, the answer would be that considerable improvement
has been achieved - namely by introduction of cache models
and class-based models. While many other techniques have
been proposed, their effect is almost always similar to cache
models (that describe long context information) or class-based
models (that improve parameter estimation for short contexts by
sharing parameters between similar words).

If we would measure success of advanced language model-
ing techniques by their application in practice, we would have
to be much more skeptical. Language models for real-world
speech recognition or machine translation systems are built on
huge amounts of data, and popular belief says that more data
is all we need. Models coming from research tend to be com-
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CONTEXT(t)

CONTEXT(t-1)

Figure 1: Simple recurrent neural network.

plex and often work well only for systems based on very limited
amounts of training data. In fact, most of the proposed advanced
language modeling techniques provide only tiny improvements
over simple baselines, and are rarely used in practice.

2. Model description
We have decided to investigate recurrent neural networks for
modeling sequential data. Using artificial neural networks in
statistical language modeling has been already proposed by
Bengio [3], who used feedforward neural networks with fixed-
length context. This approach was exceptionally successful
and further investigation by Goodman [2] shows that this sin-
gle model performs better than mixture of several other models
based on other techniques, including class-based model. Later,
Schwenk [4] has shown that neural network based models pro-
vide significant improvements in speech recognition for several
tasks against good baseline systems.

A major deficiency of Bengio’s approach is that a feedfor-
ward network has to use fixed length context that needs to be
specified ad hoc before training. Usually this means that neural
networks see only five to ten preceding words when predicting
the next one. It is well known that humans can exploit longer
context with great success. Also, cache models provide comple-
mentary information to neural network models, so it is natural
to think about a model that would encode temporal information
implicitly for contexts with arbitrary lengths.

Recurrent neural networks do not use limited size of con-
text. By using recurrent connections, information can cycle in-

Copyright © 2010 ISCA 26-30 September 2010, Makuhari, Chiba, Japan
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• Current word, xt 
Hidden state, st  
Output, yt

Image from: Mikolov et al., “Recurrent neural network based language model”, Interspeech 10

• RNN is trained using the  
cross-entropy criterion

st = f(Uxt +Wst�1)

ot = softmax(V st)

U V

W



RNN-LMs

• Optimizations used for NNLMs are relevant to RNN-LMs as 
well (rescoring Nbest lists or lattices, using a shortlist, etc.) 

• Perplexity reductions over Kneser-Ney models: Table 1: Performance of models on WSJ DEV set when increas-
ing size of training data.

Model # words PPL WER
KN5 LM 200K 336 16.4
KN5 LM + RNN 90/2 200K 271 15.4
KN5 LM 1M 287 15.1
KN5 LM + RNN 90/2 1M 225 14.0
KN5 LM 6.4M 221 13.5
KN5 LM + RNN 250/5 6.4M 156 11.7

where Crare is number of words in the vocabulary that occur
less often than the threshold. All rare words are thus treated
equally, ie. probability is distributed uniformly between them.

Schwenk [4] describes several possible approaches that can
be used for further performance improvements. Additional pos-
sibilities are also discussed in [10][11][12] and most of them
can be applied also to RNNs. For comparison, it takes around 6
hours for our basic implementation to train RNN model based
on Brown corpus (800K words, 100 hidden units and vocab-
ulary threshold 5), while Bengio reports 113 days for basic
implementation and 26 hours with importance sampling [10],
when using similar data and size of neural network. We use
only BLAS library to speed up computation.

3. WSJ experiments
To evaluate performance of simple recurrent neural network
based language model, we have selected several standard
speech recognition tasks. First we report results after rescor-
ing 100-best lists from DARPA WSJ’92 and WSJ’93 data sets
- the same data sets were used by Xu [8] and Filimonov [9].
Oracle WER is 6.1% for dev set and 9.5% for eval set. Training
data for language model are the same as used by Xu [8].

The training corpus consists of 37M words from NYT sec-
tion of English Gigaword. As it is very time consuming to train
RNN LM on large data, we have used only up to 6.4M words
for training RNN models (300K sentences) - it takes several
weeks to train the most complex models. Perplexity is evalu-
ated on held-out data (230K words). Also, we report results
for combined models - linear interpolation with weight 0.75 for
RNN LM and 0.25 for backoff LM is used in all these experi-
ments. In further experiments, we denote modified Kneser-Ney
smoothed 5-gram as KN5. Configurations of neural network
LMs, such as RNN 90/2, indicate that the hidden layer size is
90 and threshold for merging words to rare token is 2. To cor-
rectly rescore n-best lists with backoff models that are trained
on subset of data used by recognizer, we use open vocabulary
language models (unknown words are assigned small probabil-
ity). To improve results, outputs from various RNN LMs with
different architectures can be linearly interpolated (diversity is
also given by random weight initialization).

The results, reported in Tables 1 and 2, are by no means
among the largest improvements reported for the WSJ task ob-
tained just by changing the language modeling technique. The
improvement keeps getting larger with increasing training data,
suggesting that even larger improvements may be achieved sim-
ply by using more data. As shown in Table 2, WER reduc-
tion when using mixture of 3 dynamic RNN LMs against 5-
gram with modified Kneser-Ney smoothing is about 18%. Also,
perplexity reductions are one of the largest ever reported, al-
most 50% when comparing KN 5gram and mixture of 3 dy-

Table 2: Comparison of various configurations of RNN LMs
and combinations with backoff models while using 6.4M words
in training data (WSJ DEV).

PPL WER
Model RNN RNN+KN RNN RNN+KN
KN5 - baseline - 221 - 13.5
RNN 60/20 229 186 13.2 12.6
RNN 90/10 202 173 12.8 12.2
RNN 250/5 173 155 12.3 11.7
RNN 250/2 176 156 12.0 11.9
RNN 400/10 171 152 12.5 12.1
3xRNN static 151 143 11.6 11.3
3xRNN dynamic 128 121 11.3 11.1

Table 3: Comparison of WSJ results obtained with various mod-
els. Note that RNN models are trained just on 6.4M words.

Model DEV WER EVAL WER
Lattice 1 best 12.9 18.4
Baseline - KN5 (37M) 12.2 17.2
Discriminative LM [8] (37M) 11.5 16.9
Joint LM [9] (70M) - 16.7
Static 3xRNN + KN5 (37M) 11.0 15.5
Dynamic 3xRNN + KN5 (37M) 10.7 16.34

namic RNN LMs - actually, by mixing static and dynamic RNN
LMs with larger learning rate used when processing testing data
(↵ = 0.3), the best perplexity result was 112.

All LMs in the preceding experiments were trained on only
6.4M words, which is much less than the amount of data used
by others for this task. To provide a comparison with Xu [8] and
Filimonov [9], we have used 37M words based backoff model
(the same data were used by Xu, Filimonov used 70M words).
Results are reported in Table 3, and we can conclude that RNN
based models can reduce WER by around 12% relatively, com-
pared to backoff model trained on 5x more data3.

4. NIST RT05 experiments
While previous experiments show very interesting improve-
ments over a fair baseline, a valid criticism would be that the
acoustic models used in those experiments are far from state
of the art, and perhaps obtaining improvements in such cases
is easier than improving well tuned system. Even more crucial
is the fact that 37M or 70M words used for training baseline
backoff models is by far less than what is possible for the task.

To show that it is possible to obtain meaningful improve-
ments in state of the art system, we experimented with lattices
generated by AMI system used for NIST RT05 evaluation [13].
Test data set was NIST RT05 evaluation on independent headset
condition.

The acoustic HMMs are based on cross-word tied-states tri-
phones trained discriminatively using MPE criteria. Feature ex-

3We have also tried to combine RNN models and discriminatively
trained LMs [8], with no significant improvement.

4Apparently strange result obtained with dynamic models on eval-
uation set is probably due to the fact that sentences in eval set do not
follow each other. As dynamic changes in model try to capture longer
context information between sentences, sentences must be presented
consecutively to dynamic models.
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Training RNN-LMs

• RNN-LMs are trained using backpropagation through time (BPTT): 
Unfold the RNN in time + train the unfolded RNN using 
backpropagation + mini-batch gradient descent 

• Main issues with BPTT: Exploding and vanishing gradients 

• Exploding gradients: Gradients can increase exponentially over 
time during backpropagation. Clip values of gradients to handle 
this. 

• Vanishing gradients: Magnitude of gradients approach very tiny 
values as we propagate gradients back in time. Architectures like 
Long Short Term Memory (LSTMs) networks can handle this.



LSTM-LMs

ing units. The final unit is depicted in Fig. 1, where we have
included two modifications of the original LSTM unit proposed
in [12] and [13].

Figure 1: LSTM memory cell with gating units

A standard neural network unit i only consists of the input
activation ai and the output activation bi which are related—
when a tanh activation function is used—by

bi = tanh(ai).

The LSTM unit adds several intermediate steps: After applying
the activation function to ai, the result is multiplied by a fac-
tor b◆. Then the inner activation value of the previous time step,
multiplied by the quantity b� is added due to the recurrent self-
connection. Finally, the result is scaled by b! and fed to another
activation function, yielding bi. The factors b◆, b�, b! 2 (0, 1),
indicated by the small white circles, are controlled by additional
units (depicted as blue circles) called input, output, and forget
gate, respectively. The gating units sum the activations of the
previous hidden layer and the activations of the current layer
from the previous time step as well as the inner activation of
the LSTM unit. The resulting value is squashed by a logistic
sigmoid function which then is set to b◆, b�, or b! , respectively.

For brevity, we omit the rather extensive equations describ-
ing the LSTM network. These can be found e. g. in [14]1.

The whole LSTM unit including the gating units may be in-
terpreted as a differentiable version of computer memory ([14]).
For this reason, LSTM units sometimes are also referred to as
LSTM memory cells. Whether one adheres to the proposed in-
terpretation of the gating units or not, the LSTM architecture
solves the vanishing gradient problem at small computational
extra-costs. In addition, it has the desirable property of includ-
ing standard recurrent neural network units as a special case.

3. Neural network language models

Although there are several differences in the neural network lan-
guage models that have been successfully applied so far, all of
them share some basic principles:

• The input words are encoded by 1-of-K coding where K
is the number of words in the vocabulary.

• At the output layer, a softmax activation function is used
to produce correctly normalized probability values.

1As opposed to our LSTM version, in [14] the gating units do not
receive the activations of the previous hidden layer

• As training criterion the cross entropy error is used
which is equivalent to maximum likelihood.

We also follow this approach. It is generally advised to normal-
ize the input data of a neural network ([15]) which means that a
linear transformation is applied so that the data have zero mean
and unit variance. When using 1-of-K coding, this is obviously
not the case.

Giving up the sparseness of the input features (which is usu-
ally exploited to speed up matrix computations, cf. [16]), the
data can easily be normalized because there exist closed-form
solutions for the mean and variance of the 1-of-K encoded input
features that depend only on the unigram counts of the words
observed in the training data. On the contrary we observed that
convergence was considerably slowed down by normalization.
It seems that it suffices when the input data in each dimension
lie in the same [0, 1] range.

As the input features are highly correlated (e. g., we have
xi = 1 �

P
i 6=j xi) for the i-th dimension of an input vari-

able x), applying a whitening transform to the features appears
to be more promising. Because of the high dimensionality, this
seems practically unfeasible.

Regarding the network topology, in [6] a single recurrent
hidden layer was used, while in [3] an architecture with two
hidden layers was applied, the first layer having the interpreta-
tion of projecting the input words to a continuous space. In a
similar spirit, we stick to the topology shown in Fig. 2 where
we plug in LSTM units into the second recurrent layer, combin-
ing it with different projection layers of standard neural network
units.

Figure 2: Neural network LM architecture

For large-vocabulary language modeling, training is
strongly dominated by the computation of the input activa-
tions ai of the softmax output layer which in contrast to the
input layer is not sparse:

ai =
JX

j=1

!ijbj .

Here, J denotes the number of nodes in the last hidden layer,
!ij are the weights between the last hidden layer and the output
layer, and i = 1, . . . , V , where V is the vocabulary size.

To reduce the computational effort, in [17] (following an
idea from [18]), it was proposed to split the words into a set of
disjoint word classes. Then the probability p(wm|wm�1

1 ) can
be factorized as follows:

p(wm|wm�1
1 ) = p

�
wm|c(wm), wm�1

1

�
p

�
c(wm)|wm�1

1

�

• Vanilla RNN-LMs 
unlikely to show full 
potential of recurrent 
models due to issues 
like vanishing 
gradients 

• LSTM-LMs: Similar to 
RNN-LMs except use 
LSTM units in the 
2nd hidden 
(recurrent) layer

Image from: Sundermeyer et al., “LSTM NNs for Language Modeling”,  10



Comparing RNN-LMs with LSTM-LMs
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Figure 3: Experimental results on the Treebank corpus; for (c) and (d), 200 nodes were used for the hidden layers.

Experiments suggest that the performance of standard re-
current neural network architectures can be improved by about
8 % relative in terms of perplexity. Finally, comparatively large
improvements were obtained when interpolating an LSTM LM
with a huge Kneser-Ney smoothed backing-off model on top of
a state-of-the-art French recognition system.

For future work, it seems interesting to analyze the differ-
ences between standard and LSTM networks and the impact on
the recognition quality of a speech recognizer.
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Character-based RNN-LMs

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


Generate text using a trained  
character-based LSTM-LM

VIOLA: 
Why, Salisbury must find his flesh and thought 
That which I am not aps, not a man and in fire, 
To show the reining of the raven and the wars 
To grace my hand reproach within, and not a fair are hand, 
That Caesar and my goodly father's world; 
When I was heaven of presence and our fleets, 
We spare with hours, but cut thy council I am great, 
Murdered and by thy master's ready there 
My power to give thee but so much as hell: 
Some service in the noble bondman here, 
Would show him to her wine. 

Image from: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

http://karpathy.github.io/2015/05/21/rnn-effectiveness/


The Big Picture



Putting it all together: 
How do we recognise an utterance?

• A: speech utterance 

• OA: acoustic features corresponding to the utterance A 

• Return the word sequence that jointly assigns the highest 
probability to OA 

• How do we estimate Pr(OA|W) and Pr(W)? 

• How do we decode?

W ⇤
= argmax

W
Pr(OA|W ) Pr(W )



Acoustic model
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Acoustic Model

Pr(OA|W ) = max

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1 ) Pr(qt|qt�1, w

N
1 )

Emission 
probabilities

Pr(O|q;wN
1 ) =

LqX

`=1

cq`N (O|µq`,⌃q`;w
N
1 )

Modeled using a  
mixture of Gaussians

Transition 
probabilities

• All the free parameters (means, covariances, mixture weights, 
transition probabilities) are learned using EM (Baum-Welch) 
algorithm 



Language Model

W ⇤
= argmax

W
Pr(OA|W ) Pr(W )

m-gram language model

• Further optimized using smoothing and interpolation with 
lower-order Ngram models

Pr(W ) = Pr(w1, w2, . . . , wN )

= Pr(w1) . . .Pr(wN |wN�1
N�m+1)



Decoding: Search

W ⇤
= argmax

W
Pr(OA|W ) Pr(W )

W ⇤
= argmax

wN
1 ,N
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⇡ argmax

wN
1 ,N
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NY
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Pr(wn|wn�1
n�m+1)

#"
max

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1 ) Pr(qt|qt�1, w

N
1 )

#)
Viterbi

• Viterbi approximation divides the above optimisation problem into sub-
problems that allows the efficient application of dynamic programming 

• Search space still very huge for LVCSR tasks! Use approximate decoding 
techniques (A* decoding, beam-width decoding, etc.) to visit only 
promising parts of the search space



ASR Search

0
the birds/0.404

animals/1.789

are/0.693

were/0.693

boy/1.789

is

walking

[d] [ax] 

Lexicon

HMM for [d] HMM for [ax] 

Acoustic 
models
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