
Instructor: Preethi Jyothi
Mar 23, 2017  

Automatic Speech Recognition (CS753)
Lecture 18: Search & Decoding (Part I)
Automatic Speech Recognition (CS753)

Recall ASR Decoding

W ⇤
= argmax

W
Pr(OA|W) Pr(W)

W ⇤
= argmax

wN
1 ,N

8
<

:

"
NY

n=1

Pr(wn|wn�1
n�m+1)

#2

4
X

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

3

5

9
=

;

⇡ argmax

wN
1 ,N

("
NY

n=1

Pr(wn|wn�1
n�m+1)

#"
max

qT1 ,wN
1

TY

t=1

Pr(Ot|qt, wN
1) Pr(qt|qt�1, w

N
1)

#)
Viterbi

• Viterbi approximation divides the above optimisation problem into
sub-problems that allows the efficient application of dynamic
programming

• An exact search using Viterbi is infeasible for large vocabulary tasks!

Recall Viterbi search
• Viterbi search finds the most probable path through a trellis of time on

the X-axis and states on the Y-axis

• Viterbi algorithm: Only needs to maintain information about the most
probable path at each state

9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 13

start

H

C

H

C

H

C

end

P(C|sta
rt)

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.3 * .5

P(H|C) * P
(1|H)

.4 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8
 *

.4
v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.08) = .038

v2(1) = max(.32*.15, .02*.25) = .048

start start start

t

C

H

end end endqF

q2

q1

q0

o1 o2 o3

3 1 3

Figure 9.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1(j) = a0 jb j(o1) 1  j  N (9.20)

bt1(j) = 0 (9.21)

2. Recursion (recall that states 0 and qF are non-emitting):

vt(j) =
N

max
i=1

vt�1(i)ai j b j(ot); 1  j  N,1 < t  T (9.22)

btt(j) =
N

argmax
i=1

vt�1(i)ai j b j(ot); 1  j  N,1 < t  T (9.23)

3. Termination:

The best score: P⇤= vT (qF) =
N

max
i=1

vT (i)⇤aiF (9.24)

The start of backtrace: qT⇤= btT (qF) =
N

argmax
i=1

vT (i)⇤aiF (9.25)

9.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,

Image from [JM]: Jurafsky & Martin, 3rd edition, Chapter 9

ASR Search Network

0
the birds

are

boy is

walking

d ax

b

oy

b

Network of
words

Network of
phones

Network of
HMM states

Time-state trellis
w

or
d 1

w
or

d 2
w

or
d 3

Time, t →

Viterbi search over the large trellis

• Exact search is infeasible for large vocabulary tasks

• Unknown word boundaries

• Ngram language models greatly increase the search space

• Solutions

• Compactly represent the search space using WFST-based
optimisations

• Beam search: Prune away parts of the search space that aren’t
promising

Viterbi search over the large trellis

• Exact search is infeasible for large vocabulary tasks

• Unknown word boundaries

• Ngram language models greatly increase the search space

• Solutions

• Compactly represent the search space using WFST-based
optimisations

• Beam search: Prune away parts of the search space that aren’t
promising

Two main WFST Optimizations

Recall not all weighted transducers are determinizable

To ensure determinizability of L ○ G, introduce disambiguation  
symbols in L to deal with homophones in the lexicon

read : r eh d #0  
red : r eh d #1

• Use determinization to reduce/eliminate redundancy

Propagate the disambiguation symbols as self-loops back to  
C and H. Resulting machines are H̃, C̃, L̃

• Use determinization to reduce/eliminate redundancy

• Use minimization to reduce space requirements

Two main WFST Optimizations

Minimization ensures that the final composed machine  
has minimum number of states

Final optimization cascade:

N = πε(min(det(H̃ ○ det(C̃ ○ det(L̃ ○ G)))))

Replaces disambiguation symbols  
in input alphabet of H̃ with ε

Example G

0 1

bob:bob
bond:bond
rob:rob

2

slept:slept
read:read
ate:ate

Compact language models (G)

• Use Backoff Ngram language models for G

a,b b,c

b

ε

c

c / Pr(c|a,b)

ε / α(a,b)
c / Pr(c|b)

ε / α(b,c)

ε / α(b) c / Pr(c)

Example G

0 1

bob:bob
bond:bond
rob:rob

2

slept:slept
read:read
ate:ate

Example L̃ :Lexicon with disambig symbols

0

1b:bob

5b:bond

9r:rob

12
s:slept

17

r:read

20

ey:ate

2aa:-

6aa:-

10aa:-

13l:-

18eh:-

21

t:-

3b:-

4

#0:-

-:-

7n:-

8

d:-

-:-

11

b:-

-:-

14
eh:-

15

p:-

16

t:-

-:-

19
d:-

-:-

-:-

L̃ ○ G

0

1b:bob

2b:bond

3

r:rob

4aa:-

5aa:-

6
aa:-

7b:-

8n:-

9b:-

10#0:-

11d:- 12

-:-

-:-

-:-

13
s:slept

14r:read

15

ey:ate

16l:-

17eh:-

18
t:-

19eh:-

20d:-

21p:- 22t:-

det(L̃ ○ G)

0

1b:-

2
r:rob

3aa:-

4
aa:-

5b:bob

6n:bond

7b:-

8#0:-

9d:- 10

-:-

-:-

-:-

11
r:read

12s:slept

13

ey:ate

14eh:-

15l:-

16
t:-

17d:-

18eh:- 19p:- 20t:-

min(det(L̃ ○ G))

0

1b:-

2
r:rob

3aa:-

4
aa:-

5b:bob

6n:bond 7

b:-

#0:-

d:- 8-:-

9
r:read

10s:slept 11

ey:ate

12eh:-

13l:-
14t:-

d:-

15eh:- p:-

det(L̃ ○ G)

0

1b:-

2
r:rob

3aa:-

4
aa:-

5b:bob

6n:bond

7b:-

8#0:-

9d:- 10

-:-

-:-

-:-

11
r:read

12s:slept

13

ey:ate

14eh:-

15l:-

16
t:-

17d:-

18eh:- 19p:- 20t:-

Viterbi search over the large trellis

• Exact search is infeasible for large vocabulary tasks

• Unknown word boundaries

• Ngram language models greatly increase the search space

• Solutions

• Compactly represent the search space using WFST-based
optimisations

• Beam search: Prune away parts of the search space that aren’t
promising

Beam pruning
• At each time-step t, only retain those nodes in the time-state

trellis that are within a fixed threshold δ (beam width) of the
best path

• Given active nodes from the last time-step:

• Examine nodes in the current time-step …

• … that are reachable from active nodes in the previous time-
step

• Get active nodes for the current time-step by only retaining
nodes with hypotheses that score close to the score of the
best hypothesis

Beam search

• Beam search at each node keeps only hypotheses with scores
that fall within a threshold of the current best hypothesis

• Hypotheses with Q(t, s) < δ ⋅ max Q(t, s’) are pruned

 here, δ controls the beam width

• Search errors could occur if the most probable hypothesis gets
pruned

• Trade-off between balancing search errors and speeding up
decoding

Static and dynamic networks

• What we’ve seen so far: Static decoding graph

• H ○ C ○ L ○ G

• Determinize/minimize to make this graph more compact

• Another approach: Dynamic graph expansion

• Dynamically build the graph with active states on the fly

• Do on-the-fly composition with the language model G

• (H ○ C ○ L) ○ G

Multi-pass search

• Some models are too expensive to implement in first-pass
decoding (e.g. RNN-based LMs)

• First-pass decoding: Use simpler model (e.g. Ngram LMs)

• to find most probable word sequences

• and represent as a word lattice or an N-best list

• Rescore first-pass hypotheses using complex model to find the
best word sequence

Multi-pass decoding with N-best lists

DRAFT
Section 10.1. Multipass Decoding: N-best lists and lattices 3

to wy didn’t include wz (i.e., P(wy|wq,wz) was low for all q). Advanced probabilistic
LMs like SCFGs also violate the same dynamic programming assumptions.

There are two solutions to these problems with Viterbi decoding. The most com-
mon is to modify the Viterbi decoder to return multiple potential utterances, instead
of just the single best, and then use other high-level language model or pronunciation-
modeling algorithms to re-rank these multiple outputs (Schwartz and Austin, 1991;
Soong and Huang, 1990; Murveit et al., 1993).

The second solution is to employ a completely different decoding algorithm, such
as the stack decoder, or A∗ decoder (Jelinek, 1969; Jelinek et al., 1975). We beginSTACK DECODER

A
∗ in this section with multiple-pass decoding, and return to stack decoding in the next

section.
In multiple-pass decoding we break up the decoding process into two stages. In

the first stage we use fast, efficient knowledge sources or algorithms to perform a non-
optimal search. So for example we might use an unsophisticated but time-and-space
efficient language model like a bigram, or use simplified acoustic models. In the second
decoding pass we can apply more sophisticated but slower decoding algorithms on a
reduced search space. The interface between these passes is an N-best list or word
lattice.

The simplest algorithm for multipass decoding is to modify the Viterbi algorithm
to return the N-best sentences (word sequences) for a given speech input. SupposeN-BEST

for example a bigram grammar is used with such an N-best-Viterbi algorithm to return
the 1000 most highly-probable sentences, each with their AM likelihood and LM prior
score. This 1000-best list can now be passed to a more sophisticated language model
like a trigram grammar. This new LM is used to replace the bigram LM score of
each hypothesized sentence with a new trigram LM probability. These priors can be
combined with the acoustic likelihood of each sentence to generate a new posterior
probability for each sentence. Sentences are thus rescored and re-ranked using thisRESCORED

more sophisticated probability. Fig. 10.1 shows an intuition for this algorithm.

If music be the
 food of love...

If music be the
 food of love...

N-Best List

?Every happy family...
?In a hole in the ground...
?If music be the food of love...
?If music be the foot of dove...

?Alice was beginning to get...

N-Best
Decoder

Smarter
Knowledge
Source

1-Best Utterance

Simple
Knowledge
Source

speech
input Rescoring

Figure 10.1 The use of N-best decoding as part of a two-stage decoding model. Effi-
cient but unsophisticated knowledge sources are used to return the N-best utterances. This
significantly reduces the search space for the second pass models, which are thus free to
be very sophisticated but slow.

There are a number of algorithms for augmenting the Viterbi algorithm to generate
N-best hypotheses. It turns out that there is no polynomial-time admissible algorithm

• Simple algorithm: Modify the Viterbi algorithm to return the N-
best word sequences for a given speech input

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Multi-pass decoding with N-best lists
• Simple algorithm: Modify the Viterbi algorithm to return the N-

best word sequences for a given speech input

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

• N-best lists aren’t as diverse as we’d like. And, not enough
information in N-best lists to effectively use other knowledge
sources

DR
AF
T

4 Chapter 10. Speech Recognition: Advanced Topics

for finding the N most likely hypotheses (?). There are however, a number of ap-
proximate (non-admissible) algorithms; we will introduce just one of them, the “Exact
N-best” algorithm of Schwartz and Chow (1990). In Exact N-best, instead of each state
maintaining a single path/backtrace, we maintain up to N different paths for each state.
But we’d like to insure that these paths correspond to different word paths; we don’t
want to waste our N paths on different state sequences that map to the same words. To
do this, we keep for each path the word history, the entire sequence of words up to
the current word/state. If two paths with the same word history come to a state at the
same time, we merge the paths and sum the path probabilities. To keep the N best word
sequences, the resulting algorithm requires O(N) times the normal Viterbi time.

AM LM
Rank Path logprob logprob
1. it’s an area that’s naturally sort of mysterious -7193.53 -20.25
2. that’s an area that’s naturally sort of mysterious -7192.28 -21.11
3. it’s an area that’s not really sort of mysterious -7221.68 -18.91
4. that scenario that’s naturally sort of mysterious -7189.19 -22.08
5. there’s an area that’s naturally sort of mysterious -7198.35 -21.34
6. that’s an area that’s not really sort of mysterious -7220.44 -19.77
7. the scenario that’s naturally sort of mysterious -7205.42 -21.50
8. so it’s an area that’s naturally sort of mysterious -7195.92 -21.71
9. that scenario that’s not really sort of mysterious -7217.34 -20.70
10. there’s an area that’s not really sort of mysterious -7226.51 -20.01

Figure 10.2 An example 10-Best list from the Broadcast News corpus, produced by the
CU-HTK BN system (thanks to Phil Woodland). Logprobs use log10; the language model
scale factor (LMSF) is 15.

The result of any of these algorithms is anN-best list like the one shown in Fig. 10.2.
In Fig. 10.2 the correct hypothesis happens to be the first one, but of course the reason
to use N-best lists is that isn’t always the case. Each sentence in an N-best list is also
annotated with an acoustic model probability and a language model probability. This
allows a second-stage knowledge source to replace one of those two probabilities with
an improved estimate.

One problem with an N-best list is that when N is large, listing all the sentences
is extremely inefficient. Another problem is that N-best lists don’t give quite as much
information as we might want for a second-pass decoder. For example, we might want
distinct acoustic model information for each word hypothesis so that we can reapply a
new acoustic model for the word. Or we might want to have available different start
and end times of each word so that we can apply a new duration model.

For this reason, the output of a first-pass decoder is usually a more sophisticated
representation called a word lattice (Murveit et al., 1993; Aubert and Ney, 1995). AWORD LATTICE

word lattice is a directed graph that efficiently represents much more information about
possible word sequences.1 In some systems, nodes in the graph are words and arcs are

1 Actually an ASR lattice is not the kind of lattice that may be familiar to you from mathematics, since it is
not required to have the properties of a true lattice (i.e., be a partially ordered set with particular properties,
such as a unique join for each pair of elements). Really it’s just a graph, but it is conventional to call it a

Multi-pass decoding with lattices
• ASR lattice: Weighted automata/directed graph representing

alternate word hypotheses from an ASR system

so, it’s
it’s

there’s

that’s

that scenario

an area that’s naturally sort of mysterious

the not really

Multi-pass decoding with lattices
• Confusion networks/sausages: Lattices that show competing/

confusable words and can be used to compute posterior
probabilities at the word level

it’s
there’s
that’s

that scenario

an area that’s naturally sort of mysterious

the

not

