

Automatic Speech Recognition (CS753) Lecture 18: Search & Decoding (Part I)

Instructor: Preethi Jyothi Mar 23, 2017

Recall ASR Decoding

$$W^* = \underset{W}{\operatorname{arg\,max}} \Pr(O_A|W) \Pr(W)$$

$$W^* = \operatorname*{arg\,max}_{w_1^N, N} \left\{ \left[\prod_{n=1}^N \Pr(w_n | w_{n-m+1}^{n-1}) \right] \left[\sum_{q_1^T, w_1^N} \prod_{t=1}^T \Pr(O_t | q_t, w_1^N) \Pr(q_t | q_{t-1}, w_1^N) \right] \right\}$$

$$\begin{array}{l} \text{Viterbi} \\ \approx \underset{w_1^N, N}{\arg \max} \left\{ \left[\prod_{n=1}^N \Pr(w_n | w_{n-m+1}^{n-1}) \right] \left[\underset{q_1^T, w_1^N}{\max} \prod_{t=1}^T \Pr(O_t | q_t, w_1^N) \Pr(q_t | q_{t-1}, w_1^N) \right] \right\} \end{array}$$

- Viterbi approximation divides the above optimisation problem into sub-problems that allows the efficient application of dynamic programming
- An exact search using Viterbi is infeasible for large vocabulary tasks!

Recall Viterbi search

 Viterbi search finds the most probable path through a trellis of time on the X-axis and states on the Y-axis

 Viterbi algorithm: Only needs to maintain information about the most probable path at each state

Image from [JM]: Jurafsky & Martin, 3rd edition, Chapter 9

ASR Search Network

Time, t \rightarrow

Viterbi search over the large trellis

- Exact search is infeasible for large vocabulary tasks
 - Unknown word boundaries
 - Ngram language models greatly increase the search space
- Solutions
 - Compactly represent the search space using WFST-based optimisations
 - Beam search: Prune away parts of the search space that aren't promising

Viterbi search over the large trellis

- Exact search is infeasible for large vocabulary tasks
 - Unknown word boundaries
 - Ngram language models greatly increase the search space
- Solutions
 - Compactly represent the search space using WFST-based optimisations
 - Beam search: Prune away parts of the search space that aren't promising

Two main WFST Optimizations

Use determinization to reduce/eliminate redundancy

Recall not all weighted transducers are determinizable

To ensure determinizability of L \odot G, introduce disambiguation symbols in L to deal with homophones in the lexicon

read : r eh d #0 red : r eh d #1

Propagate the disambiguation symbols as self-loops back to C and H. Resulting machines are $\tilde{H}, \tilde{C}, \tilde{L}$

Two main WFST Optimizations

- Use determinization to reduce/eliminate redundancy
- Use minimization to reduce space requirements

Minimization ensures that the final composed machine has minimum number of states

Final optimization cascade:

$$\mathsf{N} = \pi_{\epsilon}(\min(\det(\tilde{\mathsf{H}} \circ \det(\tilde{\mathsf{C}} \circ \det(\tilde{\mathsf{L}} \circ \mathsf{G})))))$$

Replaces disambiguation symbols in input alphabet of \tilde{H} with ϵ

Compact language models (G)

• Use Backoff Ngram language models for G

Example \tilde{L} :Lexicon with disambig symbols

 $\tilde{L} \, \odot \, G$

 $det(\tilde{L} \, \odot \, G)$

$min(det(\tilde{L} \cap G))$

Viterbi search over the large trellis

- Exact search is infeasible for large vocabulary tasks
 - Unknown word boundaries
 - Ngram language models greatly increase the search space
- Solutions
 - Compactly represent the search space using WFST-based optimisations
 - Beam search: Prune away parts of the search space that aren't promising

Beam pruning

- At each time-step t, only retain those nodes in the time-state trellis that are within a fixed threshold δ (beam width) of the best path
- Given active nodes from the last time-step:
 - Examine nodes in the current time-step ...
 - ... that are reachable from active nodes in the previous timestep
 - Get active nodes for the current time-step by only retaining nodes with hypotheses that score close to the score of the best hypothesis

Beam search

- Beam search at each node keeps only hypotheses with scores that fall within a threshold of the current best hypothesis
- Hypotheses with $Q(t, s) < \delta \cdot \max Q(t, s')$ are pruned

here, δ controls the *beam width*

- Search errors could occur if the most probable hypothesis gets pruned
- Trade-off between balancing search errors and speeding up decoding

Static and dynamic networks

- What we've seen so far: *Static* decoding graph
 - $\bullet \quad H \mathrel{\circ} C \mathrel{\circ} L \mathrel{\circ} G$
 - Determinize/minimize to make this graph more compact
- Another approach: *Dynamic* graph expansion
 - Dynamically build the graph with active states on the fly
 - Do on-the-fly composition with the language model G
 - (H \circ C \circ L) \circ G

Multi-pass search

- Some models are too expensive to implement in first-pass decoding (e.g. RNN-based LMs)
- First-pass decoding: Use simpler model (e.g. Ngram LMs)
 - to find most probable word sequences
 - and represent as a word lattice or an N-best list
- Rescore first-pass hypotheses using complex model to find the best word sequence

Multi-pass decoding with N-best lists

• Simple algorithm: Modify the Viterbi algorithm to return the Nbest word sequences for a given speech input

Multi-pass decoding with N-best lists

 Simple algorithm: Modify the Viterbi algorithm to return the Nbest word sequences for a given speech input

		AM	LM
Rank	Path	logprob	logprob
1.	it's an area that's naturally sort of mysterious	-7193.53	-20.25
2.	that's an area that's naturally sort of mysterious	-7192.28	-21.11
3.	it's an area that's not really sort of mysterious	-7221.68	-18.91
4.	that scenario that's naturally sort of mysterious	-7189.19	-22.08
5.	there's an area that's naturally sort of mysterious	-7198.35	-21.34
6.	that's an area that's not really sort of mysterious	-7220.44	-19.77
7.	the scenario that's naturally sort of mysterious	-7205.42	-21.50
8.	so it's an area that's naturally sort of mysterious	-7195.92	-21.71
9.	that scenario that's not really sort of mysterious	-7217.34	-20.70
10.	there's an area that's not really sort of mysterious	-7226.51	-20.01

 N-best lists aren't as diverse as we'd like. And, not enough information in N-best lists to effectively use other knowledge sources

Multi-pass decoding with lattices

ASR lattice: Weighted automata/directed graph representing alternate word hypotheses from an ASR system

Multi-pass decoding with lattices

 Confusion networks/sausages: Lattices that show competing/ confusable words and can be used to compute posterior probabilities at the word level

