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Recap: Static and Dynamic Networks

Static network: Build compact decoding graph using WFST
optimisation techniques.

Dynamic networks:
Dynamically build the graph with active states on the fly

On-the-fly composition with the language model acceptor G



Static Network Decoding

Expand the whole network prior to decoding.

The individual transducers H, C, L and G are combined using
composition to build a static decoding graph.

The graph is further optimised by weighted determinization
and minimisation.

D = e(min(det(H o det(C o det(L o G)))))

The final optimised network is typically 3-5 times larger
than the language model G

Becomes impractical for very large vocabularies



Searching the graph

Two main decoding algorithms adopted in ASR systems:

1. Viterbi beam search decoder

2. A" stack decoder



Viterbi beam search decoder

Time-synchronous search algorithm:

For time t, each state is updated by the best score from all
states in time t-1

Beam search prunes unpromising states at every time step.

At each time-step t, only retain those nodes in the time-state
trellis that are within a fixed threshold o (beam width) of the
score of the best hypothesis.



Trellis with full Viterbi & beam search

No beam search E With beam search



Beam search algorithm

Initialization: current states := initial state
while (current states do not contain the goal state) do:

successor states := NEXT(current states)
where NEXT is next state function

score the successor states

set current states to a pruned set of successor states using beam
width 0

only retain those successor states that are within

0 times the best path weight




A* stack decoder

So far, we considered a time-synchronous search algorithm
that moves through the observation sequence step-by-step

A” stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

Running hypotheses are handled using a stack which is a
priority queue sorted on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A™)

2. How to choose the next word used in the extensions?
(fast-match)



Recall A" algorithm

To find the best path from a node to a goal node within a

weighted graph,

A" maintains a tree of paths until one of them terminates in a
goal node

A" expands a path that minimises £(n) = g(n) + h(n)
where n is the final node on the path, g(n) is the cost from
the start node to n and h(n) is a heuristic determining the
cost from n to the goal node

h (n)must be admissible i.e. it shouldn’t overestimate the true
cost to the nearest goal node
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Which hypotheses should be extended?

A" maintains a priority queue of partial paths and chooses the one with
the highest score to be extended

Score should be related to probability: For a word sequence W given an
acoustic sequence O, score o< Pr(O|W)Pr(W)

But not exactly this score because this will be biased towards shorter paths

A" evaluation function based on f(p) = g(p) + h(p) for a partial path p where
g(p) = score from the beginning of the utterance to the end of p

h(p) = estimate of best scoring extension from p to end of the
utterance

An example of h(p): Compute some average probability prob per frame

(over a training corpus). Then h(p) = prob x (T-t) where t is the end time of
the hypothesis and T is the length of the utterance
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Fast-match

Fast-match: Algorithm to quickly find words in the lexicon that
are a good match to a portion of the acoustic input

Acoustics are split into a front part, A, (accounted by the word
string so far, W) and the remaining part A’. Fast-match is to find
a small subset of words that best match the beginning of A’.

Many techniques exist: 1) Rapidly find Pr(A’|w) for all w in the
vocabulary and choose words that exceed a threshold

2) Vocabulary is pre-clustered into subsets of acoustically
similar words. Each cluster is associated with a centroid.
Match A’ against the centroids and choose subsets having
centroids whose match exceeds a threshold

[B et al.]: Bahl et al., Fast match for continuous speech recognition using allophonic models, 1992



A* stack decoder

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.

Pop the best (highest score) sentence s off the queue.

If (s 1s marked end-of-sentence (EOS) ) output s and terminate.

Get list of candidate next words by doing fast matches.

For each candidate next word w:
Create a new candidate sentence s+ w.
Use forward algorithm to compute acoustic likelihood L of s +w
Compute language model probability P of extended sentence s +w
Compute “score” for s +w (a function of L, P, and ?7?7?)
if (end-of-sentence) set EOS flag for s +w.
Insert s +w into the queue together with its score and EOS flag

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10



Example (1)

P(acoustic | "if" ) =

forward probability
If
P( "if" | START) 30
Alice
4(Q
(none) Every
1 25
P(inISTART)
In
4

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10



Example (2)

P( "if" ISTART)

(none)

P(acoustics| "if" ) =
forward probability

if

was
29

wants
24

walls

P("if" | START)

(none)

P(music | if

P(acoustic | whether)
forward probability

music
32

muscle
31

messy
25

' was

29

wants
24

walls

P(acoustic | music) =
forward probability

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10



A* vs Beam search

Nowadays Viterbi beam search is the more popular paradigm
for ASR tasks

A" is used to search through lattices

How are lattices generated?



Lattice Generation

Say we want to decode an utterance, U, of T frames.

Construct a sausage acceptor for this utterance, X, with T+1
states and arcs for each context-dependent HMM state at each
time-step

Search the following composed machine for the best word
sequence corresponding to U:

D=XoHCLG



Lattice Generation

For all practical applications, we have to use beam pruning over D such
that only a subset of states/arcs in D are visited. Call this resulting
pruned machine, B.

Word lattice, say L, is a further pruned version of B defined by a lattice
beam, p3. L satisfies the following requirements:

L should have a path for every word sequence within 5 of the best-
scoring path in B

All scores and alignments in L correspond to actual paths through B

L does not contain duplicate paths with the same word sequence



Word Confusion Networks

Word confusion networks are normalised word lattices that provide
alignments for a fraction of word sequences in the word lattice
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Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008



Constructing word confusion network

Links of a confusion network are grouped into confusion sets
and every path contains exactly one link from each set

This clustering is done in two stages:

1. Links that correspond to the same word and overlap in
time are combined

2. Links corresponding to different words are clustered into
confusion sets. Clustering algorithm is based on

phonetic similarity, time overlap and word posteriors.
More details in [LBSO00]
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Image from [LBS0O]: L. Mangu et al., “Finding consensus in speech recognition”, Computer Speech & Lang, 2000



