
Instructor: Preethi Jyothi
Mar 27, 2017  

Automatic Speech Recognition (CS753)
Lecture 19: Search, Decoding and Lattices
Automatic Speech Recognition (CS753)

Recap: Static and Dynamic Networks

• Static network: Build compact decoding graph using WFST
optimisation techniques.

• Dynamic networks:
• Dynamically build the graph with active states on the fly
• On-the-fly composition with the language model acceptor G

0

1b:-

2
r:rob

3aa:-

4
aa:-

5b:bob

6n:bond 7

b:-

#0:-

d:- 8-:-

9
r:read

10s:slept 11

ey:ate

12eh:-

13l:-
14t:-

d:-

15eh:- p:-

Static Network Decoding
• Expand the whole network prior to decoding.

• The individual transducers H, C, L and G are combined using
composition to build a static decoding graph.

• The graph is further optimised by weighted determinization
and minimisation.

• D = πε(min(det(H̃ ○ det(C̃ ○ det(L̃ ○ G)))))

• The final optimised network is typically 3-5 times larger
than the language model G

• Becomes impractical for very large vocabularies

Searching the graph

• Two main decoding algorithms adopted in ASR systems:

1. Viterbi beam search decoder

2. A* stack decoder

Viterbi beam search decoder

• Time-synchronous search algorithm:

• For time t, each state is updated by the best score from all
states in time t-1

• Beam search prunes unpromising states at every time step.

• At each time-step t, only retain those nodes in the time-state
trellis that are within a fixed threshold δ (beam width) of the
score of the best hypothesis.

Trellis with full Viterbi & beam search

No beam search With beam search

Beam search algorithm

Initialization: current states := initial state

while (current states do not contain the goal state) do:

successor states := NEXT(current states)  
 where NEXT is next state function

score the successor states

set current states to a pruned set of successor states using beam
width δ 
 only retain those successor states that are within  
 δ times the best path weight

A* stack decoder
• So far, we considered a time-synchronous search algorithm

that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a stack which is a
priority queue sorted on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Recall A* algorithm

• To find the best path from a node to a goal node within a
weighted graph,

• A* maintains a tree of paths until one of them terminates in a
goal node

• A* expands a path that minimises f(n) = g(n) + h(n)
where n is the final node on the path, g(n) is the cost from
the start node to n and h(n) is a heuristic determining the
cost from n to the goal node

• h(n)must be admissible i.e. it shouldn’t overestimate the true
cost to the nearest goal node

A* stack decoder
• So far, we considered a time-synchronous search algorithm

that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a stack which is a
priority queue sorted on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Which hypotheses should be extended?
• A* maintains a priority queue of partial paths and chooses the one with

the highest score to be extended

• Score should be related to probability: For a word sequence W given an
acoustic sequence O, score ∝ Pr(O|W)Pr(W)

• But not exactly this score because this will be biased towards shorter paths

• A* evaluation function based on f(p) = g(p) + h(p) for a partial path p where  
 g(p) = score from the beginning of the utterance to the end of p  
 h(p) = estimate of best scoring extension from p to end of the  
 utterance

• An example of h(p): Compute some average probability prob per frame
(over a training corpus). Then h(p) = prob × (T-t) where t is the end time of
the hypothesis and T is the length of the utterance

A* stack decoder
• So far, we considered a time-synchronous search algorithm

that moves through the observation sequence step-by-step

• A* stack decoding is a time-asynchronous algorithm that
proceeds by extending one or more hypotheses word by word
(i.e. no constraint on hypotheses ending at the same time)

• Running hypotheses are handled using a stack which is a
priority queue sorted on scores. Two problems to be addressed:

1. Which hypotheses should be extended? (Use A*)

2. How to choose the next word used in the extensions?
(fast-match)

Fast-match
• Fast-match: Algorithm to quickly find words in the lexicon that

are a good match to a portion of the acoustic input

• Acoustics are split into a front part, A, (accounted by the word
string so far, W) and the remaining part A’. Fast-match is to find
a small subset of words that best match the beginning of A’.

• Many techniques exist: 1) Rapidly find Pr(A’|w) for all w in the
vocabulary and choose words that exceed a threshold  
2) Vocabulary is pre-clustered into subsets of acoustically
similar words. Each cluster is associated with a centroid.
Match A’ against the centroids and choose subsets having
centroids whose match exceeds a threshold

[B et al.]: Bahl et al., Fast match for continuous speech recognition using allophonic models, 1992

A* stack decoder

DR
AF
T

Section 10.2. A∗ (‘Stack’) Decoding 9

annotated with a score). In a priority queue each element has a score, and the pop oper-
ation returns the element with the highest score. The A∗ decoding algorithm iteratively
chooses the best prefix-so-far, computes all the possible next words for that prefix, and
adds these extended sentences to the queue. Fig. 10.7 shows the complete algorithm.

function STACK-DECODING() returns min-distance

Initialize the priority queue with a null sentence.
Pop the best (highest score) sentence s off the queue.
If (s is marked end-of-sentence (EOS)) output s and terminate.
Get list of candidate next words by doing fast matches.
For each candidate next word w:

Create a new candidate sentence s+w.
Use forward algorithm to compute acoustic likelihood L of s+w
Compute language model probability P of extended sentence s+w
Compute “score” for s+w (a function of L, P, and ???)
if (end-of-sentence) set EOS flag for s+w.
Insert s+w into the queue together with its score and EOS flag

Figure 10.7 The A∗ decoding algorithm (modified from Paul (1991) and Jelinek
(1997)). The evaluation function that is used to compute the score for a sentence is not
completely defined here; possible evaluation functions are discussed below.

Let’s consider a stylized example of an A∗ decoder working on a waveform for
which the correct transcription is If music be the food of love. Fig. 10.8 shows the
search space after the decoder has examined paths of length one from the root. A fast
match is used to select the likely next words. A fast match is one of a class of heuristicsFAST MATCH

designed to efficiently winnow down the number of possible following words, often
by computing some approximation to the forward probability (see below for further
discussion of fast matching).

At this point in our example, we’ve done the fast match, selected a subset of the
possible next words, and assigned each of them a score. The word Alice has the highest
score. We haven’t yet said exactly how the scoring works.

Fig. 10.9a show the next stage in the search. We have expanded the Alice node.
This means that the Alice node is no longer on the queue, but its children are. Note that
now the node labeled if actually has a higher score than any of the children of Alice.
Fig. 10.9b shows the state of the search after expanding the if node, removing it, and
adding if music, if muscle, and if messy on to the queue.

We clearly want the scoring criterion for a hypothesis to be related to its probability.
Indeed it might seem that the score for a string of words wi1 given an acoustic string y

j
1

should be the product of the prior and the likelihood:

P(y j1|w
i
1)P(wi1)

Alas, the score cannot be this probability because the probability will be much
smaller for a longer path than a shorter one. This is due to a simple fact about prob-
abilities and substrings; any prefix of a string must have a higher probability than the

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

Example (1)

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

DRAFT
10 Chapter 10. Speech Recognition: Advanced Topics

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

Figure 10.8 The beginning of the search for the sentence If music be the food of love.
At this early stage Alice is the most likely hypothesis. (It has a higher score than the other
hypotheses.)

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)
if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

(a) (b)

Figure 10.9 The next steps of the search for the sentence If music be the food of love. In
(a) we’ve now expanded the Alice node and added three extensions which have a relatively
high score; the highest-scoring node is START if, which is not along the START Alice path
at all. In (b) we’ve expanded the if node. The hypothesis START if music then has the
highest score.

string itself (e.g., P(START the . . .) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
single-word hypotheses.

Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984) f ∗(p),
given a partial path p:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is the estimated score of the best complete path (complete sentence) which
starts with the partial path p. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this

Example (2)

DRAFT
10 Chapter 10. Speech Recognition: Advanced Topics

(none)
1

Alice

Every

In

30

25

4

P(in|START)

40

If
P("if" | START)

P(acoustic | "if") =
 forward probability

Figure 10.8 The beginning of the search for the sentence If music be the food of love.
At this early stage Alice is the most likely hypothesis. (It has a higher score than the other
hypotheses.)

(none)
1

Alice

Every

In

30

25

4

40

was

wants

walls
2

29

24

P(acoustics| "if") =
 forward probability

P("if" |START)
if

(none)
1

Alice

Every

In

30

25

4

40

walls
2

was
29

wants
24

32

31

25

P(acoustic | whether) =
 forward probability

P(music | if

if
P("if" | START)

music
P(acoustic | music) =
 forward probability

muscle

messy

(a) (b)

Figure 10.9 The next steps of the search for the sentence If music be the food of love. In
(a) we’ve now expanded the Alice node and added three extensions which have a relatively
high score; the highest-scoring node is START if, which is not along the START Alice path
at all. In (b) we’ve expanded the if node. The hypothesis START if music then has the
highest score.

string itself (e.g., P(START the . . .) will be greater than P(START the book)). Thus
if we used probability as the score, the A∗ decoding algorithm would get stuck on the
single-word hypotheses.

Instead, we use the A∗ evaluation function (Nilsson, 1980; Pearl, 1984) f ∗(p),
given a partial path p:

f ∗(p) = g(p)+h∗(p)

f ∗(p) is the estimated score of the best complete path (complete sentence) which
starts with the partial path p. In other words, it is an estimate of how well this path
would do if we let it continue through the sentence. The A∗ algorithm builds this

Image from [JM]: Jurafsky & Martin, SLP 2nd edition, Chapter 10

A* vs Beam search

• Nowadays Viterbi beam search is the more popular paradigm
for ASR tasks

• A* is used to search through lattices

• How are lattices generated?

Lattice Generation

• Say we want to decode an utterance, U, of T frames.

• Construct a sausage acceptor for this utterance, X, with T+1
states and arcs for each context-dependent HMM state at each
time-step

• Search the following composed machine for the best word
sequence corresponding to U:  
  
 D = X ○ HCLG

Lattice Generation

• For all practical applications, we have to use beam pruning over D such
that only a subset of states/arcs in D are visited. Call this resulting
pruned machine, B.

• Word lattice, say L, is a further pruned version of B defined by a lattice
beam, β. L satisfies the following requirements:

• L should have a path for every word sequence within β of the best-
scoring path in B

• All scores and alignments in L correspond to actual paths through B

• L does not contain duplicate paths with the same word sequence

Word Confusion Networks
Word confusion networks are normalised word lattices that provide
alignments for a fraction of word sequences in the word lattice214 Architecture of an HMM-Based Recogniser

HAVE

HAVE
HAVE

I
I

MOVE

VERY

VERY

ISIL

SIL

VEAL

OFTEN

OF
TE

N SIL

SIL
SIL

SIL
FINE

IT VERY FAST

V
ER

Y

MOVE

HAVE IT

(a) Word Lattice

I HAVE IT VEAL FINE

 - MOVE - VERY OFTEN

FAST

(b) Confusion Network

Time

FINE

Fig. 2.6 Example lattice and confusion network.

longer correspond to discrete points in time, instead they simply enforce
word sequence constraints. Thus, parallel arcs in the confusion network
do not necessarily correspond to the same acoustic segment. However,
it is assumed that most of the time the overlap is sufficient to enable
parallel arcs to be regarded as competing hypotheses. A confusion net-
work has the property that for every path through the original lattice,
there exists a corresponding path through the confusion network. Each
arc in the confusion network carries the posterior probability of the
corresponding word w. This is computed by finding the link probabil-
ity of w in the lattice using a forward–backward procedure, summing
over all occurrences of w and then normalising so that all competing
word arcs in the confusion network sum to one. Confusion networks can
be used for minimum word-error decoding [165] (an example of min-
imum Bayes’ risk (MBR) decoding [22]), to provide confidence scores
and for merging the outputs of different decoders [41, 43, 63, 72] (see
Multi-Pass Recognition Architectures).

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008

Constructing word confusion network
• Links of a confusion network are grouped into confusion sets

and every path contains exactly one link from each set

• This clustering is done in two stages:

1. Links that correspond to the same word and overlap in
time are combined

2. Links corresponding to different words are clustered into
confusion sets. Clustering algorithm is based on
phonetic similarity, time overlap and word posteriors.
More details in [LBS00]

214 Architecture of an HMM-Based Recogniser

HAVE

HAVE
HAVE

I
I

MOVE

VERY

VERY

ISIL

SIL

VEAL

OFTEN

OF
TE

N SIL

SIL
SIL

SIL

FINE

IT VERY FAST

V
ER

Y

MOVE

HAVE IT

(a) Word Lattice

I HAVE IT VEAL FINE

 - MOVE - VERY OFTEN

FAST

(b) Confusion Network

Time

FINE

Fig. 2.6 Example lattice and confusion network.

longer correspond to discrete points in time, instead they simply enforce
word sequence constraints. Thus, parallel arcs in the confusion network
do not necessarily correspond to the same acoustic segment. However,
it is assumed that most of the time the overlap is sufficient to enable
parallel arcs to be regarded as competing hypotheses. A confusion net-
work has the property that for every path through the original lattice,
there exists a corresponding path through the confusion network. Each
arc in the confusion network carries the posterior probability of the
corresponding word w. This is computed by finding the link probabil-
ity of w in the lattice using a forward–backward procedure, summing
over all occurrences of w and then normalising so that all competing
word arcs in the confusion network sum to one. Confusion networks can
be used for minimum word-error decoding [165] (an example of min-
imum Bayes’ risk (MBR) decoding [22]), to provide confidence scores
and for merging the outputs of different decoders [41, 43, 63, 72] (see
Multi-Pass Recognition Architectures).

Image from [LBS00]: L. Mangu et al., “Finding consensus in speech recognition”, Computer Speech & Lang, 2000

