
Instructor: Preethi Jyothi
Lecture 2  

Automatic Speech Recognition (CS753)
Lecture 2: Introducing WFSTs and WFST Algorithms
Automatic Speech Recognition (CS753)

Includes content from a tutorial by the instructor at the 
20th JSALT Workshop, Univ. of Washington, 2015

Formalism:
Finite State
Transducers

Recall

speech 
signal 

Acoustic 
Feature 

Generator
SEARCH

Acoustic 
Model

(phones)

Language 
Model

word sequence 
W*

O

Pronunciation 
Model

Properties
of speech

sounds

Acoustic 
Signal

Processing

Hidden
Markov
Models

Deep
Neural

Networks

Hybrid
HMM-DNN 
Systems

Speaker
Adaptation

Ngram/RNN
LMs

G2P/feature-
based models

Search
algorithms

(Weighted) Automaton

• Accepts a subset of strings (over an alphabet), and rejects the rest
• Mathematically, specified by L ⊆ Σ* or equivalently f : Σ* → {0,1}

• Weighted: outputs a “weight” as well (e.g., probability)
• f : Σ* → W

• Transducer: outputs another string (over possibly another alphabet)
• f : Σ* ⨉ Δ* → W

(Weighted) Finite State Automaton

• Functions that can be implemented using a machine which:

• reads the string one symbol at a time

• has a fixed amount of memory: so, at any moment, the machine can
be in only one of finitely many states, irrespective of the length of
the input string

• Allows efficient algorithms to reason about the machine

• e.g., output string with maximum weight for input

Why WFSTs?

• Powerful enough to (reasonably) model processes in language,
speech, computational biology and other machine learning
applications

• Simpler WFSTs can be combined to create complex WFSTs,
e.g., speech recognition systems

• If using WFST models, efficient algorithms available to train
the models and to make inferences

• Toolkits that don’t have domain specific dependencies

Elements of an FST

1 20

• States

• Start state (0)

• Final states (1 & 2)

• Arcs (transitions)

• Input symbols (from alphabet Σ)

• Output symbols (from alphabet Δ)

 FST maps input strings to output strings

Structure: Finite State Transducer (FST)

Path

• A successful “path” → Sequence of transitions from the start state
to any final state

• Input label of a path → Concatenation of input labels on arcs.
Similarly for output label of a path.

1 20

FSAs and FSTs

• Finite state acceptors (FSAs)
• Each transition has a source & destination state, and  

a label
• FSA accepts a set of strings, L ⊆ Σ*

• Finite state transducers (FSTs)
• Each transition has a source & destination state,  

an input label and an output label
• FST represents a relationship, R ⊆ Σ* ⨉ Δ*

FSA�can�
be�though

t�of�as�a
�

special�ki
nd�of�FST

Example of an FSA

1 20

Accepts strings 
{c, a, ab}

Equivalent FST

1 20

Accepts strings 
{c, a, ab} 

and outputs identical strings  
{c, a, ab}

Σ = { yelp, bark }, Δ = { , …, }

Special symbol, ε (epsilon) : allows to make a move without
consuming an input symbol

7
bark

0 4 5 6 8

10

or without producing an output symbol

1
yelp

2 33 9

yelp → . bark → | |…

Barking dog FST

Weighted Path

• “Weights” can be probabilities, negative log-likelihoods, or any cost
function representing the cost incurred in mapping an input
sequence to an output sequence

• How are the weights accumulated along a path?

a

1 2
an

0

Weighted Path: Probabilistic FST

• T(,) = Pr[output= , accepts | input= , start]  
  

1 20

w(e) = Pr[e taken | state=0,in-symbol=]

e1

e2

e3 e4

π1 = e1e2

π2 = e3e4

= Pr[e1 | input= , start] × Pr[e2 | input= , start, e1]
= Pr[e1 | state=0, in-symb=] × Pr[e2 | state=2, in-symb=]
= w(e1) × w(e2) = 0.25×1.0 = 0.25

= w(e3) × w(e4)
= 0.5×0.5 = 0.25

= 0.25 + 0.25 = 0.5

= Pr[π1 | input= , start] + Pr[π2 | input= , start]

• T(,) = Pr[output= , accepts | input= , start]  
  

1 20

w(e) = Pr[e taken | state=0,in-symbol=]

e1

e2

e3 e4

π1 = e1e2

π2 = e3e4

= Pr[π1 | input= , start] + Pr[π2 | input= , start]

• More generally, T(x,y) = Σπ ∈ P(x,y) Πe ∈ π w(e) 
where P(x,y) is the set of all accepting paths with input x and output y

Weighted Path: Probabilistic FST

1 20

• But not all WFSTs are probabilistic FSTs

• Weight is often a “score” and maybe accumulated differently

• But helpful to retain some basic algebraic properties of weights:
abstracted as semirings

Weighted Path

Semirings

A semiring is a set of values associated with two operations ⊕

and ⊗, along with their identity values and 0̄ 1̄

Weight assigned to an input/output pair  

T(x,y) = ⊕π ∈ P(x,y) ⊗e ∈ π w(e)

where P(x,y) is the set of all accepting paths with input x, output y

(generalizing the weight function for a probabilistic FST)

Semirings

Some popular semirings [M02]

SEMIRING SET ⊕ ⊗
Boolean {F,T} ∨ ∧ F T

Probability ℝ+ + ⨉ 0 1

Log ℝ ∪ {-∞, +∞} ⊕log + +∞ 0

Tropical ℝ ∪ {-∞, +∞} min + +∞ 0

1̄0̄

Is there
a path
for x:y
Pr[y|x]

-log Pr[y|x]
“Viterbi

Approx.”
of

-log Pr[y|x]

Operator ⊕log defined as: x ⊕log y = -log (e-x + e-y)

[M02] Mohri, M. Semiring frameworks and algorithms for shortest-distance
problems, Journal of Automata, Languages and Combinatorics, 7(3):321—350, 2002.

• Weight of a path π is the ⊗-product of all the transitions in π 

• Weight of a sequence “x,y” is the ⊕-sum of all paths labeled with “x,y” 
w((an),) = (1.5 ⊕ 0̅) = min(1.5, ∞) = 1.5

a

1 2
an

0

⊕=min ⊗=+

w(π): (0.5 ⊗ 1.0) = 0.5 + 1.0 = 1.5

Weighted Path: Tropical Semiring

• Weight of a sequence “x,y” is the ⊕-sum of all paths labeled with “x,y”
w((an),) = ?

Path 1: (0.5 ⊗ 1.0) = 1.5

Path 2: (0.3 ⊗ 0.1) = 0.4

Weight of “((an),)” = (1.5 ⊕ 0.4) = 0.4

a

1 2
an

0

4
an

Weighted Path: Tropical Semiring

⊕=min ⊗=+

Shortest Path

• Recall T(x,y) = ⊕π ∈ P(x,y) w(π) 
where P(x,y) = set of paths with input/output (x,y); w(π) = ⊗e ∈ π w(e)

• In the probability semiring, a dynamic program to compute T(x,y)
• Θ(|Q|3) time : impractical for large FSTs

• In the tropical semiring ⊕ is min. T(x,y) associated with a single path in
P(x,y) : Shortest Path
• Can be found using Dijkstra’s algorithm : Θ(|E| + |Q|⋅log|Q|) time

Shortest Path

1 20

T(“α”, “ ”) = ?

T(“αα”, “ ”) = ?

Inversion

a

1 2
an

0

Swap the input and output labels in each transition

a

an

Weights (if they exist) are retained on the arcs

This operation comes in handy, especially during composition!

Projection
Project onto the input or output alphabet

a

1 2
an

0

a

1 2
an

0

Project
onto

output

Attempts to remove epsilon arcs for more efficient use of WFSTs

Not all epsilons can be removed

a

1 2
an

0

a

1 2
an

0

an

a

Epsilon Removal

Basic FST Operations (Rational Operations)

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

Basic FST Operations (Rational Operations)

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

7
bark

0 4 5 6 8

101
yelp

2 33 9

Example: Recall Barking dog FST

Animal farm!

bark

yelp

moo

bleat

Example: Union

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

Basic FST Operations (Rational Operations)

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

Suppose the last “ ” in a bleat should be followed by one or more
a’s 
 

(e.g., “ ” is not OK, but “ ” and “ ” are)

bleat

Example: Concatenation

The set of weighted transducers are closed under the following
operations [Mohri ‘02]:

1. Sum or Union: (T1 ⊕ T2)(x, y) = T1(x, y) ⊕ T2(x, y)

2. Product or Concatenation: (T1 ⊗ T2)(x, y) = T1(x1, y1) ⊗ T2(x2, y2)

3. Kleene-closure: T*(x, y) = Tn(x, y)

Basic FST Operations (Rational Operations)

x=x1x2
y=y1y2

⊕

⊕
n=0

∞

Animal farm: allow arbitrarily long sequence of sounds!

bark moo yelp bleat →

bark

yelp

moo

bleat

Example: Closure

Easily�com
bine�

simple�FS
Ts� 

into�more
�

complex�o
nes

Composition

• If T1 transduces x to z, and T2 transduces z to y, then T1 ○ T2
transduces x to y

• (T1 ○ T2)(x, y) = T1 (x, z) ⊗ T2 (z, y)⊕
z

T1 T2

T1 ○ T2

Composition: Construction

Composition

T1 T2

T1 ○ T2

T1

T2

T1 ○ T2

Composition: Example 1
T2�translates�the�
output�from�one�

alphabet�to�another

Composition: Example 2

T1 T2

T1 ○ T2

T2�restricts�the�output�

string�to�aab.�

T1�○�T2�is�a�“lattice”.

Composition: Handling epsilons

Dupli
cate�
path
s!�

Weig
hts�c
an�be
�wro
ng� 

(in�c
erta
in�se
mirin
gs)

Impli
cit� 

�self
-loop
s 

on�ev
ery�s
tate

1
2

1

2

2

1

T’1 Filter T’2

Gets
�rid�
of�th
e�

ε:ε�
self-
loops

2 1
2

1

Probl
emat
ic�pa
ths:  

�ε1ε2
�outp
ut�fr
om�T
’1�

and�ε
2ε1�i
nput
�to�T
’2

Composition: Filters

2

1

2

1

2 1

1 1

2

1

2

2

T’1 Filter T’2

Composition: Filters

Probl
emat
ic�pa
ths:  

�ε1ε2
�outp
ut�fr
om�T
’1�

and�ε
2ε1�i
nput
�to�T
’2

Filte
r�tha
t�doe
sn’t�

 

take
�inpu
t�ε1ε

2�or�

produ
ce�ou
tput
�ε2ε1

Composition: Filters

2

1

2 1
2

1

1 1

2

1

2

2

T’1 Filter T’2

Filte
r�tha
t�doe
sn’t�

 

take
�inpu
t�ε1ε

2�or�

produ
ce�ou
tput
�ε2ε1

Composition: Recap

• If T1 transduces x to z,  
and T2 transduces z to y,  
then T1 ○ T2 transduces x to y

• (T1 ○ T2)(x, y) = T1 (x, z) ⊗ T2 (z, y)

• Note: output alphabet of T1 ⊆ input alphabet of T2

M. Mohri, F. Pereira, and M. Riley. The design principles of a weighted finite-state
transducer library. Theoretical Computer Science, 231(1): 17–32, 2000.

⊕
z

A B

D C

Given what D said,  
can we infer the message A started with?

ransack
pet shop

The Telephone Game

A B

D C

Model the errors made by each player using an FST

ransack
pet shop

The Telephone Game

FB FC FD? r ae n s ae k  
p eh t sh aa p

A B

D C

ransack
pet shop

The Telephone Game

FB FC FD?

…
acceptor

r ae n s ae k  
p eh t sh aa p

The Telephone Game

FB FC FD?

ban

ran

ban

ran

L L-1

ransack  
pet shop

The Telephone Game

FB FC FD acceptor

ransack
pet shop

Find the best path in this FST
Read off the input words on the arcs

Can also find the best combination of paths in each player FST

yeah
so what’s

up

ransom
pet soap

yeah
some wet

soap

player model

L err L-1

The Telephone Game

