

Automatic Speech Recognition (CS753) Lecture 20: Discriminative Training for HMMs

Instructor: Preethi Jyothi Mar 30, 2017

Discriminative Training

Recall: MLE for HMMs

Maximum likelihood estimation (MLE) sets HMM parameters so as to maximise the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} \log P_{\lambda}(X_i | M_i)$$

where

 $X_1, \,..., \,X_i, \,...\, X_N$ are training utterances M_i is the HMM corresponding to the word sequence of X_i λ corresponds to the HMM parameters

What are some conceptual problems with this approach?

Discriminative Learning

- *Discriminative models* directly model the class posterior probability or learn the parameters of a joint probability model discriminatively so that classification errors are minimised
 - As opposed to *generative models* that attempt to learn a probability model of the data distribution
- [Vapnik] "one should solve the (classification/recognition) problem directly and never solve a more general problem as an intermediate step"

Discriminative Learning

- Two central issues in developing discriminative learning methods:
 - 1. Constructing suitable objective functions for optimisation
 - 2. Developing optimization techniques for these objective functions

Maximum mutual information (MMI) estimation: Discriminative Training

• MMI aims to directly maximise the posterior probability (criterion also referred to as conditional maximum likelihood)

$$\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log P_{\lambda}(M_i | X_i)$$
$$= \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i | M_i) P(W_i)}{\sum_{W'} P_{\lambda}(X_i | M_{W'}) P(W')}$$

• P(W) is the language model probability

Why is it called MMI?

 Mutual information *I(X, W)* between acoustic data X and word labels W is defined as:

$$I(X, W) = \sum_{X, W} \Pr(X, W) \log \frac{\Pr(X, W)}{\Pr(X) \Pr(W)}$$
$$= \sum_{X, W} \Pr(X, W) \log \frac{\Pr(W|X)}{\Pr(W)}$$
$$= H(W) - H(W|X)$$

where H(W) is the entropy of W and H(W|X) is the conditional entropy

Why is it called MMI?

• Assume H(W) is given via the language model. Then, maximizing mutual information becomes equivalent to minimising conditional entropy

$$H(W|X) = -\frac{1}{N} \sum_{i=1}^{N} \log \Pr(W_i|X_i)$$
$$= -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\Pr(X_i|W_i) \Pr(W_i)}{\sum_{W'} \Pr(X_i|W') \Pr(W')}$$

• Thus, MMI is equivalent to maximizing:

$$\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i | M_i) P(W_i)}{\sum_{W'} P_{\lambda}(X_i | M_{W'}) P(W')}$$

MMI estimation

$$\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i | M_i) P(W_i)}{\sum_{W'} P_{\lambda}(X_i | M_{W'}) P(W')}$$
How do we compute this?

- Numerator: Likelihood of data given correct word sequence
- Denominator: Total likelihood of the data given all possible word sequences

Recall: Word Lattices

- A word lattice is a pruned version of the decoding graph for an utterance
- Acyclic directed graph with arc costs computed from acoustic model and language model scores
- Lattice nodes implicitly capture information about time within the utterance

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008

MMI estimation

$$\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i | M_i) P(W_i)}{\sum_{W'} P_{\lambda}(X_i | M_{W'}) P(W')}$$
How do we compute this?

- Numerator: Likelihood of data given correct word sequence
- Denominator: Total likelihood of the data given all possible word sequences
 - Estimate by generating lattices, and summing over all the word sequences in the lattice

MMI Training and Lattices

- Computing the denominator: Estimate by generating lattices, and summing over all the words in the lattice
- Numerator lattices: Restrict G to a linear chain acceptor representing the words in the correct word sequence. Lattices are usually only computed once for MMI training.
- HMM parameter estimation for MMI uses the extended Baum-Welch algorithm [V96,WP00]
- Like HMMs, can DNNs also be trained with an MMI-type objective function? Yes! (More about this next week.)

[V96]:Valtchev et al., Lattice-based discriminative training for large vocabulary speech recognition, 1996 [WP00]: Woodland and Povey, Large scale discriminative training for speech recognition, 2000

MMI results on Switchboard

 Switchboard results on two eval sets (SWB, CHE). Trained on 300 hours of speech. Comparing maximum likelihood (ML) against discriminatively trained GMM systems and MMItrained DNNs.

	SWB	CHE	Total
GMM ML	21.2	36.4	28.8
GMM MMI	18.6	33.0	25.8
DNN CE	14.2	25.7	20.0
DNN MMI	12.9	24.6	18.8

[V et al.]: Vesely et al., Sequence discriminative training of DNNs, Interspeech 2013

Another Discriminative Training Objective: Minimum Phone/Word Error (MPE/MWE)

- MMI is an optimisation criterion at the sentence-level. Change the criterion so that it is directly related to subsentence (i.e. word or phone) error rate.
- MPE/MWE objective function is defined as:

$$\mathcal{F}_{\text{MPE/MWE}} = \sum_{i=1}^{N} \log \frac{\sum_{W} P_{\lambda}(X_i | M_W) P(W) A(W, W_i)}{\sum_{W'} P_{\lambda}(X_i | M_{W'}) P(W')}$$

where $A(W, W_i)$ is phone/word accuracy of the sentence W given the reference sentence W_i i.e. the total phone count in W_i minus the sum of insertion/deletion/substitution errors of W

MPE/MWE training

$$\mathcal{F}_{\text{MPE/MWE}} = \sum_{i=1}^{N} \log \frac{\sum_{W} P_{\lambda}(X_i | M_W) P(W) A(W, W_i)}{\sum_{W'} P_{\lambda}(X_i | M_{W'}) P(W')}$$

- The MPE/MWE criterion is a weighted average of the phone/ word accuracy over all the training instances
- $A(W, W_i)$ can be computed either at the phone or word level for the MPE or MWE criterion, respectively
- The weighting given by MPE/MWE depends on the number of incorrect phones/words in the string while MMI looks at whether the entire sentence is correct or not

MPE results on Switchboard

 Switchboard results on eval set SWB. Trained on 68 hours of speech. Comparing maximum likelihood (MLE) against discriminatively trained (MMI/MPE/MWE) GMM systems

	SWB	%WER redn
GMM MLE	46.6	-
GMM MMI	44.3	2.3
GMM MPE	43.1	3.5
GMM MWE	43.3	3.3

[V et al.]: Vesely et al., Sequence discriminative training of DNNs, Interspeech 2013

How does this fit within an ASR system?

Estimating acoustic model parameters

• If *A*: speech utterance and *O*_A: acoustic features corresponding to the utterance *A*,

$$W^* = \operatorname*{arg\,max}_{W} P_{\lambda}(O_A|W) P_{\beta}(W)$$

- ASR decoding: Return the word sequence that jointly assigns the highest probability to *O*_A
- How do we estimate λ in $P_{\lambda}(O_A|W)$?
 - MLE estimation
 - MMI estimation
 - MPE/MWE estimation

Covered in this class

Another way to improve ASR performance: System Combination

System Combination

- Combining recognition outputs from multiple systems to produce a hypothesis that is more accurate than any of the original systems
- Most widely used technique: ROVER [ROVER].
 - 1-best word sequences from each system are aligned using a greedy dynamic programming algorithm
 - Voting-based decision made for words aligned together
 - Can we do better than just looking at 1-best sequences?

bbn1.ctm	there's	a	lot	of	@	like	societies	@	@	ruin	engineers	and	lakes
emu-isl1.etm	there's	the	labs	@	@	like	societies	@	for	women	engineers		think
cu-htk2.ctm	there's	the	last	@	@	like	societies	@	true	of	engineers	and	like
dragon1.ctm	was	@	alive	@	the	legal	society	is	for	women	engineers	and	like
sril.ctm	there's	a	lot	of	@	like	society's	@	@	through	engineers	Q	like

Image from [ROVER]: Fiscus, Post-processing method to yield reduced word error rates, 1997

Recall: Word Confusion Networks

Word confusion networks are normalised word lattices that provide alignments for a fraction of word sequences in the word lattice

(b) Confusion Network

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008

System Combination

- Combining recognition outputs from multiple systems to produce a hypothesis that is more accurate than any of the original systems
- Most widely used technique: ROVER [ROVER].
 - 1-best word sequences from each system are aligned using a greedy dynamic programming algorithm
 - Voting-based decision made for words aligned together
 - Could align confusion networks instead of 1-best sequences

bbn1.ctm	there's	a	lot	of	@	like	societies	@	@	ruin	engineers	and	lakes
emu-isl1.ctm	there's	the	labs	@	@	like	societies	@	for	women	engineers	1	think
cu-htk2.ctm	there's	the	last	@	@	like	societies	@	true	of	engineers	and	like
dragon1.ctm	was	@	alive	@	the	legal	society	is	for	women	engineers	and	like
sril.ctm	there's	a	lot	of	@	like	society's	@	@	through	engineers	<u>@</u>	like

Image from [ROVER]: Fiscus, Post-processing method to yield reduced word error rates, 1997