Automatic Speech Recognition (CS753)
Lecture 20: Discriminative Training for HMMs
Discriminative Training
Recall: MLE for HMMs

Maximum likelihood estimation (MLE) sets HMM parameters so as to maximise the objective function:

$$\mathcal{L} = \sum_{i=1}^{N} \log P_\lambda(X_i | M_i)$$

where

- $X_1, ..., X_i, ... X_N$ are training utterances
- M_i is the HMM corresponding to the word sequence of X_i
- λ corresponds to the HMM parameters

What are some conceptual problems with this approach?
Discriminative Learning

• *Discriminative models* directly model the class posterior probability or learn the parameters of a joint probability model discriminatively so that classification errors are minimised

• As opposed to *generative models* that attempt to learn a probability model of the data distribution

• [Vapnik] “*one should solve the (classification/recognition) problem directly and never solve a more general problem as an intermediate step*”

[Vapnik]: V. Vapnik, Statistical Learning Theory, 1998
Discriminative Learning

- Two central issues in developing discriminative learning methods:
 1. Constructing suitable objective functions for optimisation
 2. Developing optimization techniques for these objective functions
Maximum mutual information (MMI) estimation: Discriminative Training

- MMI aims to directly maximise the posterior probability (criterion also referred to as conditional maximum likelihood)

\[
\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log P_{\lambda}(M_i|X_i)
\]

\[
= \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i|M_i)P(W_i)}{\sum_{W'} P_{\lambda}(X_i|M_{W'})P(W')}
\]

- \(P(W) \) is the language model probability
Why is it called MMI?

- Mutual information $I(X, W)$ between acoustic data X and word labels W is defined as:

\[
I(X, W) = \sum_{x,w} \Pr(X, W) \log \frac{\Pr(X, W)}{\Pr(X) \Pr(W)}
\]

\[
= \sum_{x,w} \Pr(X, W) \log \frac{\Pr(W|X)}{\Pr(W)}
\]

\[
= H(W) - H(W|X)
\]

where $H(W)$ is the entropy of W and $H(W|X)$ is the conditional entropy.
Why is it called MMI?

- Assume $H(W)$ is given via the language model. Then, maximizing mutual information becomes equivalent to minimizing conditional entropy

$$H(W|X) = \frac{-1}{N} \sum_{i=1}^{N} \log \Pr(W_i|X_i)$$

$$= \frac{-1}{N} \sum_{i=1}^{N} \log \frac{\Pr(X_i|W_i) \Pr(W_i)}{\sum_{W'} \Pr(X_i|W') \Pr(W')}$$

- Thus, MMI is equivalent to maximizing:

$$\mathcal{F}_{\text{MMI}} = \sum_{i=1}^{N} \log \frac{P_{\lambda}(X_i|M_i) P(W_i)}{\sum_{W'} P_{\lambda}(X_i|M_{W'}) P(W')}$$
MMI estimation

\[F_{\text{MMI}} = \sum_{i=1}^{N} \log \frac{P_\lambda(X_i|M_i) P(W_i)}{\sum_{W'} P_\lambda(X_i|M_{W'}) P(W')} \]

- Numerator: Likelihood of data given correct word sequence
- Denominator: Total likelihood of the data given all possible word sequences
Recall: Word Lattices

- A word lattice is a pruned version of the decoding graph for an utterance
- Acyclic directed graph with arc costs computed from acoustic model and language model scores
- Lattice nodes implicitly capture information about time within the utterance

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008
MMI estimation

\[
F_{\text{MMI}} = \sum_{i=1}^{N} \log \frac{P_\lambda(X_i|M_i)P(W_i)}{\sum_{W'} P_\lambda(X_i|M_{W'})P(W')}
\]

- **Numerator**: Likelihood of data given correct word sequence
- **Denominator**: Total likelihood of the data given all possible word sequences
 - Estimate by generating lattices, and summing over all the word sequences in the lattice
MMI Training and Lattices

• Computing the denominator: Estimate by generating lattices, and summing over all the words in the lattice

• Numerator lattices: Restrict G to a linear chain acceptor representing the words in the correct word sequence. Lattices are usually only computed once for MMI training.

• HMM parameter estimation for MMI uses the extended Baum-Welch algorithm [V96,WP00]

• Like HMMs, can DNNs also be trained with an MMI-type objective function? Yes! (More about this next week.)

[V96]: Valtchev et al., Lattice-based discriminative training for large vocabulary speech recognition, 1996
[WP00]: Woodland and Povey, Large scale discriminative training for speech recognition, 2000
MMI results on Switchboard

- Switchboard results on two eval sets (SWB, CHE). Trained on 300 hours of speech. Comparing maximum likelihood (ML) against discriminatively trained GMM systems and MMI-trained DNNs.

<table>
<thead>
<tr>
<th></th>
<th>SWB</th>
<th>CHE</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM ML</td>
<td>21.2</td>
<td>36.4</td>
<td>28.8</td>
</tr>
<tr>
<td>GMM MMI</td>
<td>18.6</td>
<td>33.0</td>
<td>25.8</td>
</tr>
<tr>
<td>DNN CE</td>
<td>14.2</td>
<td>25.7</td>
<td>20.0</td>
</tr>
<tr>
<td>DNN MMI</td>
<td>12.9</td>
<td>24.6</td>
<td>18.8</td>
</tr>
</tbody>
</table>

[V et al.]: Vesely et al., Sequence discriminative training of DNNs, Interspeech 2013
Another Discriminative Training Objective: Minimum Phone/Word Error (MPE/MWE)

• MMI is an optimisation criterion at the sentence-level. Change the criterion so that it is directly related to sub-sentence (i.e. word or phone) error rate.

• MPE/MWE objective function is defined as:

\[F_{\text{MPE/MWE}} = \sum_{i=1}^{N} \log \frac{\sum_{W} P_{\lambda}(X_i|M_W)P(W)A(W, W_i)}{\sum_{W'} P_{\lambda}(X_i|M_{W'})P(W')} \]

where \(A(W, W_i) \) is phone/word accuracy of the sentence \(W \) given the reference sentence \(W_i \) i.e. the total phone count in \(W_i \) minus the sum of insertion/deletion/substitution errors of \(W \).
MPE/MWE training

\[\mathcal{F}_{\text{MPE/MWE}} = \sum_{i=1}^{N} \log \frac{\sum_{W} P_{\lambda}(X_i|M_W)P(W)A(W, W_i)}{\sum_{W'} P_{\lambda}(X_i|M_{W'})P(W')} \]

- The MPE/MWE criterion is a weighted average of the phone/word accuracy over all the training instances

- \(A(W, W_i) \) can be computed either at the phone or word level for the MPE or MWE criterion, respectively

- The weighting given by MPE/MWE depends on the number of incorrect phones/words in the string while MMI looks at whether the entire sentence is correct or not
MPE results on Switchboard

- Switchboard results on eval set SWB. Trained on 68 hours of speech. Comparing maximum likelihood (MLE) against discriminatively trained (MMI/MPE/MWE) GMM systems.

<table>
<thead>
<tr>
<th></th>
<th>SWB</th>
<th>%WER redn</th>
</tr>
</thead>
<tbody>
<tr>
<td>GMM MLE</td>
<td>46.6</td>
<td>-</td>
</tr>
<tr>
<td>GMM MMI</td>
<td>44.3</td>
<td>2.3</td>
</tr>
<tr>
<td>GMM MPE</td>
<td>43.1</td>
<td>3.5</td>
</tr>
<tr>
<td>GMM MWE</td>
<td>43.3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

[V et al.]: Vesely et al., Sequence discriminative training of DNNs, Interspeech 2013
How does this fit within an ASR system?
Estimating acoustic model parameters

- If A: speech utterance and O_A: acoustic features corresponding to the utterance A,

\[W^* = \arg \max_W P_\lambda(O_A|W)P_\beta(W) \]

- ASR decoding: Return the word sequence that jointly assigns the highest probability to O_A

- How do we estimate λ in $P_\lambda(O_A|W)$?
 - MLE estimation
 - MMI estimation
 - MPE/MWE estimation

Covered in this class
Another way to improve ASR performance: System Combination
System Combination

- Combining recognition outputs from multiple systems to produce a hypothesis that is more accurate than any of the original systems

- Most widely used technique: ROVER [ROVER].

- 1-best word sequences from each system are aligned using a greedy dynamic programming algorithm

- Voting-based decision made for words aligned together

- Can we do better than just looking at 1-best sequences?

Image from [ROVER]: Fiscus, Post-processing method to yield reduced word error rates, 1997
Recall: Word Confusion Networks

Word confusion networks are normalised word lattices that provide alignments for a fraction of word sequences in the word lattice.

(a) Word Lattice

(b) Confusion Network

Image from [GY08]: Gales & Young, Application of HMMs in speech recognition, NOW book, 2008
System Combination

- Combining recognition outputs from multiple systems to produce a hypothesis that is more accurate than any of the original systems

- Most widely used technique: ROVER [ROVER].

 - 1-best word sequences from each system are aligned using a greedy dynamic programming algorithm

 - Voting-based decision made for words aligned together

 - Could align confusion networks instead of 1-best sequences

Image from [ROVER]: Fiscus, Post-processing method to yield reduced word error rates, 1997