
Instructor: Preethi Jyothi 
Apr 6, 2017  

Automatic Speech Recognition (CS753)
Lecture 21: End-to-End ASR Systems

Automatic Speech Recognition (CS753)



Recall: Hybrid DNN-HMM acoustic models

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Fixed window of  
5 speech frames

Triphone state labels 
(DNN posteriors)

…
39 features 
in one frame

……

• DNNs trained using triphone 
labels derived from a forced 
alignment “Viterbi” step.  

• DNNs give posteriors Pr(qt|ot) 
where ot is the acoustic vector 
at time t and qt is a triphone 
HMM state 

• Compute scaled posteriors 
Pr(ot|qt) which are used as 
emission probabilities for an 
HMM



Recall: (R)NN-based language models
BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

. . . . . .. . .

. . . . . .

. . . . . .

across words

most  computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Image from: Bengio et al., “A neural probabilistic language model”, JMLR, 03

NN Language models

ing units. The final unit is depicted in Fig. 1, where we have
included two modifications of the original LSTM unit proposed
in [12] and [13].

Figure 1: LSTM memory cell with gating units

A standard neural network unit i only consists of the input
activation ai and the output activation bi which are related—
when a tanh activation function is used—by

bi = tanh(ai).

The LSTM unit adds several intermediate steps: After applying
the activation function to ai, the result is multiplied by a fac-
tor b◆. Then the inner activation value of the previous time step,
multiplied by the quantity b� is added due to the recurrent self-
connection. Finally, the result is scaled by b! and fed to another
activation function, yielding bi. The factors b◆, b�, b! 2 (0, 1),
indicated by the small white circles, are controlled by additional
units (depicted as blue circles) called input, output, and forget
gate, respectively. The gating units sum the activations of the
previous hidden layer and the activations of the current layer
from the previous time step as well as the inner activation of
the LSTM unit. The resulting value is squashed by a logistic
sigmoid function which then is set to b◆, b�, or b! , respectively.

For brevity, we omit the rather extensive equations describ-
ing the LSTM network. These can be found e. g. in [14]1.

The whole LSTM unit including the gating units may be in-
terpreted as a differentiable version of computer memory ([14]).
For this reason, LSTM units sometimes are also referred to as
LSTM memory cells. Whether one adheres to the proposed in-
terpretation of the gating units or not, the LSTM architecture
solves the vanishing gradient problem at small computational
extra-costs. In addition, it has the desirable property of includ-
ing standard recurrent neural network units as a special case.

3. Neural network language models

Although there are several differences in the neural network lan-
guage models that have been successfully applied so far, all of
them share some basic principles:

• The input words are encoded by 1-of-K coding where K
is the number of words in the vocabulary.

• At the output layer, a softmax activation function is used
to produce correctly normalized probability values.

1As opposed to our LSTM version, in [14] the gating units do not
receive the activations of the previous hidden layer

• As training criterion the cross entropy error is used
which is equivalent to maximum likelihood.

We also follow this approach. It is generally advised to normal-
ize the input data of a neural network ([15]) which means that a
linear transformation is applied so that the data have zero mean
and unit variance. When using 1-of-K coding, this is obviously
not the case.

Giving up the sparseness of the input features (which is usu-
ally exploited to speed up matrix computations, cf. [16]), the
data can easily be normalized because there exist closed-form
solutions for the mean and variance of the 1-of-K encoded input
features that depend only on the unigram counts of the words
observed in the training data. On the contrary we observed that
convergence was considerably slowed down by normalization.
It seems that it suffices when the input data in each dimension
lie in the same [0, 1] range.

As the input features are highly correlated (e. g., we have
xi = 1 �

P
i 6=j xi) for the i-th dimension of an input vari-

able x), applying a whitening transform to the features appears
to be more promising. Because of the high dimensionality, this
seems practically unfeasible.

Regarding the network topology, in [6] a single recurrent
hidden layer was used, while in [3] an architecture with two
hidden layers was applied, the first layer having the interpreta-
tion of projecting the input words to a continuous space. In a
similar spirit, we stick to the topology shown in Fig. 2 where
we plug in LSTM units into the second recurrent layer, combin-
ing it with different projection layers of standard neural network
units.

Figure 2: Neural network LM architecture

For large-vocabulary language modeling, training is
strongly dominated by the computation of the input activa-
tions ai of the softmax output layer which in contrast to the
input layer is not sparse:

ai =
JX

j=1

!ijbj .

Here, J denotes the number of nodes in the last hidden layer,
!ij are the weights between the last hidden layer and the output
layer, and i = 1, . . . , V , where V is the vocabulary size.

To reduce the computational effort, in [17] (following an
idea from [18]), it was proposed to split the words into a set of
disjoint word classes. Then the probability p(wm|wm�1

1 ) can
be factorized as follows:

p(wm|wm�1
1 ) = p

�
wm|c(wm), wm�1

1

�
p

�
c(wm)|wm�1

1

�

RNN Language models



Neural network-based ASR components

• Significant improvements in ASR performance by using neural 
models for both these components within the ASR pipeline 

• However, there are limitations to using neural networks for a 
single component within such a complex pipeline



Motivation for end-to-end ASR systems

• Limitations: 

• Objective function optimized in neural networks very different 
from final evaluation metric (i.e. word transcription accuracy) 

• Additionally, frame-level training targets derived from HMM-
based alignments 

• Pronunciation dictionaries are used to map from words to 
phonemes; expensive resource to create 

• Can we build a single RNN architecture that represents the entire 
ASR pipeline?



End-to-End ASR Systems



Network Architecture

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

�!
h , the backward hid-

den sequence
 �
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

o

(10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
h

n are iteratively computed from n = 1 to N and t = 1 to
T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

o

(12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden
layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal Classification
Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

Image from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Figure 1. Long Short-term Memory Cell.

Figure 2. Bidirectional Recurrent Neural Network.

do this by processing the data in both directions with two
separate hidden layers, which are then fed forwards to the
same output layer. As illustrated in Fig. 2, a BRNN com-
putes the forward hidden sequence

�!
h , the backward hid-

den sequence
 �
h and the output sequence y by iterating the

backward layer from t = T to 1, the forward layer from
t = 1 to T and then updating the output layer:

�!
h

t

= H
⇣
W

x

�!
h

x

t

+W

�!
h

�!
h

�!
h

t�1 + b

�!
h

⌘
(8)

 �
h

t

= H
⇣
W

x

 �
h

x

t

+W

 �
h

 �
h

 �
h

t+1 + b

 �
h

⌘
(9)

y

t

= W

�!
h y

�!
h

t

+W

 �
h y

 �
h

t

+ b

o

(10)

Combing BRNNs with LSTM gives bidirectional
LSTM (Graves & Schmidhuber, 2005), which can
access long-range context in both input directions.

A crucial element of the recent success of hybrid systems
is the use of deep architectures, which are able to build up
progressively higher level representations of acoustic data.
Deep RNNs can be created by stacking multiple RNN hid-
den layers on top of each other, with the output sequence of
one layer forming the input sequence for the next, as shown
in Fig. 3. Assuming the same hidden layer function is used

Figure 3. Deep Recurrent Neural Network.

for all N layers in the stack, the hidden vector sequences
h

n are iteratively computed from n = 1 to N and t = 1 to
T :

h

n

t

= H �
W

h

n�1
h

n
h

n�1
t

+W

h

n
h

n
h

n

t�1 + b

n

h

�
(11)

where h

0
= x. The network outputs y

t

are

y

t

= W

h

N
y

h

N

t

+ b

o

(12)

Deep bidirectional RNNs can be implemented by replacing
each hidden sequence h

n with the forward and backward
sequences

�!
h

n and
 �
h

n, and ensuring that every hidden
layer receives input from both the forward and backward
layers at the level below. If LSTM is used for the hidden
layers the complete architecture is referred to as deep bidi-
rectional LSTM (Graves et al., 2013).

3. Connectionist Temporal Classification
Neural networks (whether feedforward or recurrent) are
typically trained as frame-level classifiers in speech recog-
nition. This requires a separate training target for ev-
ery frame, which in turn requires the alignment between
the audio and transcription sequences to be determined by
the HMM. However the alignment is only reliable once
the classifier is trained, leading to a circular dependency
between segmentation and recognition (known as Sayre’s
paradox in the closely-related field of handwriting recog-
nition). Furthermore, the alignments are irrelevant to most
speech recognition tasks, where only the word-level tran-
scriptions matter. Connectionist Temporal Classification
(CTC) (Graves, 2012, Chapter 7) is an objective function
that allows an RNN to be trained for sequence transcrip-
tion tasks without requiring any prior alignment between
the input and target sequences.

• Input: Acoustic feature vectors. Output: Characters 

• Long Short-Term Memory (LSTM) units (with in-built memory cells) are 
used to implement     (in eqns above) 

• Deep bidirectional LSTMs: Stack multiple bidirectional LSTM layers

H



Connectionist Temporal Classification (CTC)

• RNNs in ASR are trained at the frame-level and typically 
require alignments between the acoustics and the word 
sequence during training telling you which label (e.g. triphone 
state) should be output at each timestep 

• CTC tries to get around this!  

• This is an objective function that allows RNN training without 
this explicit alignment step: CTC considers all possible 
alignments 



CTC: Pre-requisites

• Augment the output vocabulary with an additional “blank” (_) 
label 

• For a given label sequence, there can be multiple alignments: 
(x, y, z) could correspond to (x, _, y, _, _, z) or (_, x, x, _, y, z) 

• Define a 2-step operator B that reduces a label sequence by 
first, removing repeating labels and second, removing blanks. 
B(“x, _, y, _, _, z”) = B(“_, x, x, _, y, z”) = “x, y, z”



CTC Objective Function
• CTC objective function is the probability of an output label 

sequence y given an utterance x 

• Here, we sum over all possible alignments for y, enumerated 
by B-1(y)  

• CTC assumes that Pr(a|x) can be computed as  

• i.e. CTC assumes that outputs at each time-step are 
conditionally independent given the input 

• Efficient dynamic programming algorithm to compute this loss 
function and its gradients [GJ14]

TY

t=1

Pr(at|x)

CTC(x, y) = Pr(y|x) =
X

a2B�1(y)

Pr(a|x)

[GJ14] Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14



Decoding

• Pick the single most probable output at every time step 

• Decoding is at the word level: Use a beam search algorithm to 
integrate a dictionary and a language model  

• Different algorithm from the one used with HMM-based 
systems

argmax

y
Pr(y|x) ⇡ B(argmax

a
Pr(a|x))



Experimental Results
Towards End-to-End Speech Recognition with Recurrent Neural Networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR
RNN-CTC NONE 74.2/30.9 30.1/9.2
RNN-CTC DICTIONARY 69.2/30.0 24.0/8.0
RNN-CTC MONOGRAM 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 27.3/8.4
RNN-WER DICTIONARY 69.7/31.0 21.9/7.3
RNN-WER MONOGRAM 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY 56.1 51.1
BASELINE MONOGRAM 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION TRIGRAM — 6.7

the language model to rerank the N-best lists and the WER
of the best resulting transcripts was recorded. The best re-
sults were obtained with an RNN score weight of 7.7 and a
language model weight of 16.

For the 81 hour training set, the oracle error rates for the
monogram, bigram and trigram candidates were 8.9%, 2%
and 1.4% resepectively, while the anti-oracle (rank 300) er-
ror rates varied from 45.5% for monograms and 33% for
trigrams. Using larger N-best lists (up to N=1000) did not
yield significant performance improvements, from which
we concluded that the list was large enough to approximate
the true decoding performance of the RNN.

An additional experiment was performed to measure the ef-
fect of combining the RNN and DNN. The candidate scores
for ‘RNN-WER’ trained on the 81 hour set were blended
with the DNN acoustic model scores and used to rerank
the candidates. Best results were obtained with a language
model weight of 11, an RNN score weight of 1 and a DNN
weight of 1.

The results in Table 1 demonstrate that on the full training
set the character level RNN outperforms the baseline model
when no language model is present. The RNN retrained to
minimise word error rate (labelled ‘RNN-WER’ to distin-
guish it from the original ‘RNN-CTC’ network) performed
particularly well in this regime. This is likely due to two
factors: firstly the RNN is able to learn a more powerful
acoustic model, as it has access to more acoustic context;
and secondly it is able to learn an implicit language model
from the training transcriptions. However the baseline sys-
tem overtook the RNN as the LM was strengthened: in this
case the RNN’s implicit LM may work against it by inter-

fering with the explicit model. Nonetheless the difference
was small, considering that so much more prior informa-
tion (audio pre-processing, pronunciation dictionary, state-
tying, forced alignment) was encoded into the baseline sys-
tem. Unsurprisingly, the gap between ‘RNN-CTC’ and
‘RNN-WER’ also shrank as the LM became more domi-
nant.

The baseline system improved only incrementally from the
14 hour to the 81 hour training set, while the RNN error
rate dropped dramatically. A possible explanation is that 14
hours of transcribed speech is insufficient for the RNN to
learn how to ‘spell’ enough of the words it needs for accu-
rate transcription—whereas it is enough to learn to identify
phonemes.

The combined model performed considerably better than
either the RNN or the baseline individually. The improve-
ment of more than 1% absolute over the baseline is consid-
erably larger than the slight gains usually seen with model
averaging; this is presumably due to the greater difference
between the systems.

7. Discussion
To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following
examples from the evaluation set, decoded with no dictio-
nary or language model, give some insight into how the
network operates:

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYST

IN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGN

output: TWO ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-

LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET

INDIGESTION LAST YEAR

output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-

KET IN TO JUSTIAN LAST YEAR

target: THERE’S UNREST BUT WE’RE NOT GOING TO LOSE THEM TO

DUKAKIS

output: THERE’S UNREST BUT WERE NOT GOING TO LOSE THEM TO

DEKAKIS

Like all speech recognition systems, the netwok makes
phonetic mistakes, such as ‘shingle’ instead of ‘single’, and
sometimes confuses homophones like ‘two’ and ‘to’. The

Table from: Graves & Jaitley, Towards End-to-End Speech Recognition with Recurrent Neural Networks, ICML 14

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR
RNN-CTC NONE 74.2/30.9 30.1/9.2
RNN-CTC DICTIONARY 69.2/30.0 24.0/8.0
RNN-CTC MONOGRAM 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 27.3/8.4
RNN-WER DICTIONARY 69.7/31.0 21.9/7.3
RNN-WER MONOGRAM 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY 56.1 51.1
BASELINE MONOGRAM 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION TRIGRAM — 6.7

the language model to rerank the N-best lists and the WER
of the best resulting transcripts was recorded. The best re-
sults were obtained with an RNN score weight of 7.7 and a
language model weight of 16.

For the 81 hour training set, the oracle error rates for the
monogram, bigram and trigram candidates were 8.9%, 2%
and 1.4% resepectively, while the anti-oracle (rank 300) er-
ror rates varied from 45.5% for monograms and 33% for
trigrams. Using larger N-best lists (up to N=1000) did not
yield significant performance improvements, from which
we concluded that the list was large enough to approximate
the true decoding performance of the RNN.

An additional experiment was performed to measure the ef-
fect of combining the RNN and DNN. The candidate scores
for ‘RNN-WER’ trained on the 81 hour set were blended
with the DNN acoustic model scores and used to rerank
the candidates. Best results were obtained with a language
model weight of 11, an RNN score weight of 1 and a DNN
weight of 1.

The results in Table 1 demonstrate that on the full training
set the character level RNN outperforms the baseline model
when no language model is present. The RNN retrained to
minimise word error rate (labelled ‘RNN-WER’ to distin-
guish it from the original ‘RNN-CTC’ network) performed
particularly well in this regime. This is likely due to two
factors: firstly the RNN is able to learn a more powerful
acoustic model, as it has access to more acoustic context;
and secondly it is able to learn an implicit language model
from the training transcriptions. However the baseline sys-
tem overtook the RNN as the LM was strengthened: in this
case the RNN’s implicit LM may work against it by inter-

fering with the explicit model. Nonetheless the difference
was small, considering that so much more prior informa-
tion (audio pre-processing, pronunciation dictionary, state-
tying, forced alignment) was encoded into the baseline sys-
tem. Unsurprisingly, the gap between ‘RNN-CTC’ and
‘RNN-WER’ also shrank as the LM became more domi-
nant.

The baseline system improved only incrementally from the
14 hour to the 81 hour training set, while the RNN error
rate dropped dramatically. A possible explanation is that 14
hours of transcribed speech is insufficient for the RNN to
learn how to ‘spell’ enough of the words it needs for accu-
rate transcription—whereas it is enough to learn to identify
phonemes.

The combined model performed considerably better than
either the RNN or the baseline individually. The improve-
ment of more than 1% absolute over the baseline is consid-
erably larger than the slight gains usually seen with model
averaging; this is presumably due to the greater difference
between the systems.

7. Discussion
To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following
examples from the evaluation set, decoded with no dictio-
nary or language model, give some insight into how the
network operates:

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYST

IN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGN

output: TWO ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-

LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET

INDIGESTION LAST YEAR

output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-

KET IN TO JUSTIAN LAST YEAR

target: THERE’S UNREST BUT WE’RE NOT GOING TO LOSE THEM TO

DUKAKIS

output: THERE’S UNREST BUT WERE NOT GOING TO LOSE THEM TO

DEKAKIS

Like all speech recognition systems, the netwok makes
phonetic mistakes, such as ‘shingle’ instead of ‘single’, and
sometimes confuses homophones like ‘two’ and ‘to’. The



Sample char-level transcripts

Towards End-to-End Speech Recognition with Recurrent Neural Networks

Table 1. Wall Street Journal Results. All scores are word er-
ror rate/character error rate (where known) on the evaluation set.
‘LM’ is the Language model used for decoding. ‘14 Hr’ and ‘81
Hr’ refer to the amount of data used for training.

SYSTEM LM 14 HR 81 HR
RNN-CTC NONE 74.2/30.9 30.1/9.2
RNN-CTC DICTIONARY 69.2/30.0 24.0/8.0
RNN-CTC MONOGRAM 25.8 15.8
RNN-CTC BIGRAM 15.5 10.4
RNN-CTC TRIGRAM 13.5 8.7
RNN-WER NONE 74.5/31.3 27.3/8.4
RNN-WER DICTIONARY 69.7/31.0 21.9/7.3
RNN-WER MONOGRAM 26.0 15.2
RNN-WER BIGRAM 15.3 9.8
RNN-WER TRIGRAM 13.5 8.2
BASELINE NONE — —
BASELINE DICTIONARY 56.1 51.1
BASELINE MONOGRAM 23.4 19.9
BASELINE BIGRAM 11.6 9.4
BASELINE TRIGRAM 9.4 7.8
COMBINATION TRIGRAM — 6.7

the language model to rerank the N-best lists and the WER
of the best resulting transcripts was recorded. The best re-
sults were obtained with an RNN score weight of 7.7 and a
language model weight of 16.

For the 81 hour training set, the oracle error rates for the
monogram, bigram and trigram candidates were 8.9%, 2%
and 1.4% resepectively, while the anti-oracle (rank 300) er-
ror rates varied from 45.5% for monograms and 33% for
trigrams. Using larger N-best lists (up to N=1000) did not
yield significant performance improvements, from which
we concluded that the list was large enough to approximate
the true decoding performance of the RNN.

An additional experiment was performed to measure the ef-
fect of combining the RNN and DNN. The candidate scores
for ‘RNN-WER’ trained on the 81 hour set were blended
with the DNN acoustic model scores and used to rerank
the candidates. Best results were obtained with a language
model weight of 11, an RNN score weight of 1 and a DNN
weight of 1.

The results in Table 1 demonstrate that on the full training
set the character level RNN outperforms the baseline model
when no language model is present. The RNN retrained to
minimise word error rate (labelled ‘RNN-WER’ to distin-
guish it from the original ‘RNN-CTC’ network) performed
particularly well in this regime. This is likely due to two
factors: firstly the RNN is able to learn a more powerful
acoustic model, as it has access to more acoustic context;
and secondly it is able to learn an implicit language model
from the training transcriptions. However the baseline sys-
tem overtook the RNN as the LM was strengthened: in this
case the RNN’s implicit LM may work against it by inter-

fering with the explicit model. Nonetheless the difference
was small, considering that so much more prior informa-
tion (audio pre-processing, pronunciation dictionary, state-
tying, forced alignment) was encoded into the baseline sys-
tem. Unsurprisingly, the gap between ‘RNN-CTC’ and
‘RNN-WER’ also shrank as the LM became more domi-
nant.

The baseline system improved only incrementally from the
14 hour to the 81 hour training set, while the RNN error
rate dropped dramatically. A possible explanation is that 14
hours of transcribed speech is insufficient for the RNN to
learn how to ‘spell’ enough of the words it needs for accu-
rate transcription—whereas it is enough to learn to identify
phonemes.

The combined model performed considerably better than
either the RNN or the baseline individually. The improve-
ment of more than 1% absolute over the baseline is consid-
erably larger than the slight gains usually seen with model
averaging; this is presumably due to the greater difference
between the systems.

7. Discussion
To provide character-level transcriptions, the network must
not only learn how to recognise speech sounds, but how to
transform them into letters. In other words it must learn
how to spell. This is challenging, especially in an ortho-
graphically irregular language like English. The following
examples from the evaluation set, decoded with no dictio-
nary or language model, give some insight into how the
network operates:

target: TO ILLUSTRATE THE POINT A PROMINENT MIDDLE EAST ANALYST

IN WASHINGTON RECOUNTS A CALL FROM ONE CAMPAIGN

output: TWO ALSTRAIT THE POINT A PROMINENT MIDILLE EAST ANA-

LYST IM WASHINGTON RECOUNCACALL FROM ONE CAMPAIGN

target: T. W. A. ALSO PLANS TO HANG ITS BOUTIQUE SHINGLE IN AIR-

PORTS AT LAMBERT SAINT

output: T. W. A. ALSO PLANS TOHING ITS BOOTIK SINGLE IN AIRPORTS AT

LAMBERT SAINT

target: ALL THE EQUITY RAISING IN MILAN GAVE THAT STOCK MARKET

INDIGESTION LAST YEAR

output: ALL THE EQUITY RAISING IN MULONG GAVE THAT STACRK MAR-

KET IN TO JUSTIAN LAST YEAR

target: THERE’S UNREST BUT WE’RE NOT GOING TO LOSE THEM TO

DUKAKIS

output: THERE’S UNREST BUT WERE NOT GOING TO LOSE THEM TO

DEKAKIS

Like all speech recognition systems, the netwok makes
phonetic mistakes, such as ‘shingle’ instead of ‘single’, and
sometimes confuses homophones like ‘two’ and ‘to’. The



Another end-to-end system

• Decoding is still at the word level. Out-of-vocabulary (OOV) 
words cannot be handled. 

• Build a system that is trained and decoded entirely at the 
character-level. 

• This would enable the transcription of OOV words, 
disfluencies, etc. 

• [M et al.]: Shows results on the Switchboard task. Matches a 
GMM-HMM baseline system but underperforms compared to 
an HMM-DNN baseline.

[M et al.]:Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”,  NAACL 15



Model Specifics

character probabilities. The CTC collapsing func-
tion achieves this by introducing a special blank
symbol, which we denote using “ ”, and collapsing
any repeating characters in the original length T out-
put. This output symbol contains the notion of junk
or other so as to not produce a character in the fi-
nal output hypothesis. Our transcripts W come from
some set of symbols ⇣ 0 but we reason over ⇣ = ⇣ 0[ .

We denote the collapsing function by (·) which
takes an input string and produces the unique col-
lapsed version of that string. As an example, here
are the set of strings Z of length T = 3 such that
(z) = hi, 8z 2 Z:

Z = {hhi,hii, hi,h i,hi }.

There are a large number of possible length T
sequences corresponding to a final length ⌧ tran-
script hypothesis. The CTC objective function
LCTC(X,W ) is a likelihood of the correct final tran-
script W which requires integrating over the prob-
abilities of all length T character sequences CW =

{C : (C) = W} consistent with W after applying
the collapsing function,

LCTC(X, W ) =

X

CW

p(C|X)

=

X

CW

TY

t=1

p(ct|X).

(2)

Using a dynamic programming approach we can ex-
actly compute this loss function efficiently as well as
its gradient with respect to our probabilities p(ct|X).

2.2 Deep Bi-Directional Recurrent Neural

Networks

Our loss function requires at each time t a probabil-
ity distribution p(c|xt) over characters c given in-
put features xt. We model this distribution using
a DBRNN because it provides an expressive model
which explicitly accounts for the sequential relation-
ships that should exist in our task. Moreover, the
DBRNN is a relatively straightforward neural net-
work architecture to specify, and allows us to learn
parameters from data rather than more explicitly
specifying how to convert audio features into char-
acters. Figure 1 shows a DBRNN with two hidden
layers.

W

(1)
W

(1)
W

(1)

W

(2)
W

(2)
W

(2)

W

(f)
W

(f)

W

(b)
W

(b)
W

(s)
W

(s)
W

(s)

+ + +

x

h

(1)

h

(f)

h

(b)

p(c|x)

t� 1
t

t+ 1

Figure 1: Deep bi-directional recurrent neural net-
work to map input audio features X to a distribu-
tion p(c|xt) over output characters at each timestep
t. The network contains two hidden layers with the
second layer having bi-directional temporal recur-
rence.

A DBRNN computes the distribution p(c|xt) us-
ing a series of hidden layers followed by an output
layer. Given an input vector xt the first hidden layer
activations are a vector computed as,

h(1)
= �(W (1)Txt + b(1)), (3)

where the matrix W (1) and vector b(1) are the
weight matrix and bias vector. The function �(·)
is a point-wise nonlinearity. We use �(z) =

min(max(z, 0), µ). This is a rectified linear acti-
vation function clipped to a maximum possible ac-
tivation of µ to prevent overflow. Rectified linear
hidden units have been show to work well in gen-
eral for deep neural networks, as well as for acoustic
modeling of speech data (Glorot et al., 2011; Zeiler
et al., 2013; Dahl et al., 2013; Maas et al., 2013)

We select a single hidden layer j of the network
to have temporal connections. Our temporal hidden
layer representation h(j) is the sum of two partial
hidden layer representations,

h
(j)
t = h

(f)
t + h

(b)
t . (4)

The representation h(f) uses a weight matrix W (f)

to propagate information forwards in time. Sim-
ilarly, the representation h(b) propagates informa-
tion backwards in time using a weight matrix W (b).
These partial hidden representations both take input
from the previous hidden layer h(j�1) using a weight

• Approach consists of two neural models:  

• A deep bidirectional RNN (DBRNN) mapping acoustic features 
to character sequences (Trained using CTC.) 

• A neural network character language model

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”,  NAACL 15



Decoding
• Simplest form: Decode without any language model 

• Beam Search decoding: 

• Combine DBRNN outputs with a char-level language model 

• Char-level language model applied at every time step (unlike 
word models) 

• Circumvents the issue of handling OOV words during decoding



Experimental Results

Method CER EV CH SWBD

HMM-GMM 23.0 29.0 36.1 21.7
HMM-DNN 17.6 21.2 27.1 15.1
HMM-SHF NR NR NR 12.4

CTC no LM 27.7 47.1 56.1 38.0
CTC+5-gram 25.7 39.0 47.0 30.8
CTC+7-gram 24.7 35.9 43.8 27.8
CTC+NN-1 24.5 32.3 41.1 23.4
CTC+NN-3 24.0 30.9 39.9 21.8
CTC+RNN 24.9 33.0 41.7 24.2
CTC+RNN-3 24.7 30.8 40.2 21.4

Table 1: Character error rate (CER) and word er-
ror rate results on the Eval2000 test set. We re-
port word error rates on the full test set (EV) which
consists of the Switchboard (SWBD) and CallHome
(CH) subsets. As baseline systems we use an HMM-
GMM system and HMM-DNN system. We evaluate
our DBRNN trained using CTC by decoding with
several character-level language models: 5-gram, 7-
gram, densely connected neural networks with 1 and
3 hidden layers (NN-1, and NN-3), as well as recur-
rent neural networks s with 1 and 3 hidden layers.
We additionally include results from a state-of-the-
art HMM-based system (HMM-DNN-SHF) which
does not report performance on all metrics we eval-
uate (NR).

First, we build an HMM-GMM system using the
Kaldi open-source toolkit2 (Povey et al., 2011). The
baseline recognizer has 8,986 sub-phone states and
200K Gaussians trained using maximum likelihood.
Input features are speaker-adapted MFCCs. Overall,
the baseline GMM system setup largely follows the
existing s5b Kaldi recipe, and we defer to previous
work for details (Vesely et al., 2013).

We additionally built an HMM-DNN system
by training a DNN acoustic model using maxi-
mum likelihood on the alignments produced by our
HMM-GMM system. The DNN consists of five hid-
den layers, each with 2,048 hidden units, for a total
of approximately 36 million (M) free parameters in
the acoustic model.

Both baseline systems use a bigram language

2
http://kaldi.sf.net

model built from the 3M words in the Switch-
board transcripts interpolated with a second bi-
gram language model built from 11M words on the
Fisher English Part 1 transcripts (LDC2004T19).
Both LMs are trained using interpolated Kneser-
Ney smoothing. For context we also include WER
results from a state-of-the-art HMM-DNN system
built with quinphone phonetic context and Hessian-
free sequence-discriminative training (Sainath et al.,
2014).

4.2 DBRNN Training

We train a DBRNN using the CTC loss function on
the entire 300hr training corpus. The input features
to the DBRNN at each timestep are MFCCs with
context window of ±10 frames. The DBRNN has
5 hidden layers with the third containing recurrent
connections. All layers have 1824 hidden units, giv-
ing about 20M trainable parameters. In preliminary
experiments we found that choosing the middle hid-
den layer to have recurrent connections led to the
best results.

The output symbol set ⇣ consists of 33 characters
including the special blank character. Note that be-
cause speech recognition transcriptions do not con-
tain proper casing or punctuation, we exclude capi-
tal letters and punctuation marks with the exception
of “-”, which denotes a partial word fragment, and
“’”, as used in contractions such as “can’t.”

We train the DBRNN from random initial pa-
rameters using the gradient-based Nesterov’s accel-
erated gradient (NAG) algorithm as this technique
is sometimes beneficial as compared with standard
stochastic gradient descent for deep recurrent neural
network training (Sutskever et al., 2013). The NAG
algorithm uses a step size of 10

�5 and a momentum
of 0.95. After each epoch we divide the learning rate
by 1.3. Training for 10 epochs on a single GTX 570
GPU takes approximately one week.

4.3 Character Language Model Training

The Switchboard corpus transcripts alone are too
small to build CLMs which accurately model gen-
eral orthography in English. To learn how to spell
words more generally we train our CLMs using a
corpus of 31 billion words gathered from the web
(Heafield et al., 2013). Our language models use
sentence start and end tokens, <s> and </s>, as

Method CER EV CH SWBD

HMM-GMM 23.0 29.0 36.1 21.7
HMM-DNN 17.6 21.2 27.1 15.1
HMM-SHF NR NR NR 12.4

CTC no LM 27.7 47.1 56.1 38.0
CTC+5-gram 25.7 39.0 47.0 30.8
CTC+7-gram 24.7 35.9 43.8 27.8
CTC+NN-1 24.5 32.3 41.1 23.4
CTC+NN-3 24.0 30.9 39.9 21.8
CTC+RNN 24.9 33.0 41.7 24.2
CTC+RNN-3 24.7 30.8 40.2 21.4

Table 1: Character error rate (CER) and word er-
ror rate results on the Eval2000 test set. We re-
port word error rates on the full test set (EV) which
consists of the Switchboard (SWBD) and CallHome
(CH) subsets. As baseline systems we use an HMM-
GMM system and HMM-DNN system. We evaluate
our DBRNN trained using CTC by decoding with
several character-level language models: 5-gram, 7-
gram, densely connected neural networks with 1 and
3 hidden layers (NN-1, and NN-3), as well as recur-
rent neural networks s with 1 and 3 hidden layers.
We additionally include results from a state-of-the-
art HMM-based system (HMM-DNN-SHF) which
does not report performance on all metrics we eval-
uate (NR).

First, we build an HMM-GMM system using the
Kaldi open-source toolkit2 (Povey et al., 2011). The
baseline recognizer has 8,986 sub-phone states and
200K Gaussians trained using maximum likelihood.
Input features are speaker-adapted MFCCs. Overall,
the baseline GMM system setup largely follows the
existing s5b Kaldi recipe, and we defer to previous
work for details (Vesely et al., 2013).

We additionally built an HMM-DNN system
by training a DNN acoustic model using maxi-
mum likelihood on the alignments produced by our
HMM-GMM system. The DNN consists of five hid-
den layers, each with 2,048 hidden units, for a total
of approximately 36 million (M) free parameters in
the acoustic model.

Both baseline systems use a bigram language

2
http://kaldi.sf.net

model built from the 3M words in the Switch-
board transcripts interpolated with a second bi-
gram language model built from 11M words on the
Fisher English Part 1 transcripts (LDC2004T19).
Both LMs are trained using interpolated Kneser-
Ney smoothing. For context we also include WER
results from a state-of-the-art HMM-DNN system
built with quinphone phonetic context and Hessian-
free sequence-discriminative training (Sainath et al.,
2014).

4.2 DBRNN Training

We train a DBRNN using the CTC loss function on
the entire 300hr training corpus. The input features
to the DBRNN at each timestep are MFCCs with
context window of ±10 frames. The DBRNN has
5 hidden layers with the third containing recurrent
connections. All layers have 1824 hidden units, giv-
ing about 20M trainable parameters. In preliminary
experiments we found that choosing the middle hid-
den layer to have recurrent connections led to the
best results.

The output symbol set ⇣ consists of 33 characters
including the special blank character. Note that be-
cause speech recognition transcriptions do not con-
tain proper casing or punctuation, we exclude capi-
tal letters and punctuation marks with the exception
of “-”, which denotes a partial word fragment, and
“’”, as used in contractions such as “can’t.”

We train the DBRNN from random initial pa-
rameters using the gradient-based Nesterov’s accel-
erated gradient (NAG) algorithm as this technique
is sometimes beneficial as compared with standard
stochastic gradient descent for deep recurrent neural
network training (Sutskever et al., 2013). The NAG
algorithm uses a step size of 10

�5 and a momentum
of 0.95. After each epoch we divide the learning rate
by 1.3. Training for 10 epochs on a single GTX 570
GPU takes approximately one week.

4.3 Character Language Model Training

The Switchboard corpus transcripts alone are too
small to build CLMs which accurately model gen-
eral orthography in English. To learn how to spell
words more generally we train our CLMs using a
corpus of 31 billion words gathered from the web
(Heafield et al., 2013). Our language models use
sentence start and end tokens, <s> and </s>, as

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”,  NAACL 15



Sample Test Utterances

# Method Transcription

(1)
Truth yeah i went into the i do not know what you think of fidelity but
HMM-GMM yeah when the i don’t know what you think of fidel it even them
CTC+CLM yeah i went to i don’t know what you think of fidelity but um

(2)

Truth no no speaking of weather do you carry a altimeter slash barometer
HMM-GMM no i’m not all being the weather do you uh carry a uh helped emitters last

brahms her
CTC+CLM no no beating of whether do you uh carry a uh a time or less barometer

(3)
Truth i would ima- well yeah it is i know you are able to stay home with them
HMM-GMM i would amount well yeah it is i know um you’re able to stay home with them
CTC+CLM i would ima- well yeah it is i know uh you’re able to stay home with them

Table 2: Example test set utterances with a ground truth transcription and hypotheses from our method
(CTC+CLM) and a baseline HMM-GMM system of comparable overall WER. The words fidelity and
barometer are not in the lexicon of the HMM-GMM system.

Figure 2: DBRNN character probabilities over time
for a single utterance along with the per-frame most
likely character string s and the collapsed output
(s). Due to space constraints we only show a dis-
tinction in line type between the blank symbol and
non-blank symbols.

GMM and DBRNN+NN-3 systems.
The DBRNN sometimes correctly transcribes

OOV words with respect to our audio training cor-
pus. We find that OOVs tend to trigger clusters of
errors in the HMM-GMM system, an observation
that has been systematically explored in previous
work (Goldwater et al., 2010). As shown in ex-
ample utterance (3), HMM-GMM errors can intro-
duce word substitution errors which may alter mean-
ing whereas the DBRNN system outputs word frag-
ments or non-words which are phonetically similar
and may be useful input features for SLU systems.
Unfortunately the Eval2000 test set does not offer a

rich set of utterances containing OOVs or fragments
to perform a deeper analysis. The HMM-GMM and
best DBRNN system achieve identical WERs on the
subset of test utterances containing OOVs and the
subset of test utterances containing fragments.

Finally, we quantitatively compare how character
probabilities from the DBRNN align with phonetic
segments from the HMM-GMM system. We gener-
ate HMM-GMM forced alignments on a large sam-
ple of the training set, and separate utterances into
monophone segments. For each monophone, we
compute the average character probabilities from the
DBRNN by aligning the beginning of each mono-
phone segment, treating it as time 0. We measure
time using feature frames rather than seconds. Fig-
ure 3 shows character probabilities over time for the
phones k, sh, w, and uw.

Although the CTC model does not explicitly com-
pute a forced alignment as part of training, we
see significant rises in character probabilities corre-
sponding to particular phones during HMM-GMM-
aligned monophone segments. This indicates that
the CTC model automatically learns a reasonable
alignment of characters to the audio. Generally, the
CTC model tends to produce character spikes to-
wards the beginning of monophone segments. This
is especially evident in plosive consonants such as
k and t. For liquids and glides (r, l, w, y), the CTC
model does not produce characters until later in the
monophone segment. For vowels the CTC character

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”,  NAACL 15



Analysis

�5 0 5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

k
c

e

k

�5 0 5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

sh
i

h

s

t

�5 0 5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

w
w

�5 0 5 10 15 20 25

0.05

0.10

0.15

0.20

0.25

uw
d

o

u

y

Figure 3: Character probabilities from the CTC-trained neural network averaged over monophone segments
created by a forced alignment of the HMM-GMM system. Time is measured in frames, with 0 indicating the
start of the monophone segment. The vertical dotted line indicates the average duration of the monophone
segment. We show only characters with non-trivial probability for each phone while excluding the blank
and space symbols.

probabilities generally rise slightly later in the phone
segment as compared to consonants. This may occur
to avoid the large contextual variations in vowel pro-
nunciations at phone boundaries. For certain conso-
nants we observe CTC probability spikes before the
monophone segment begins, as is the case for sh.
The probabilities for sh additionally exhibit multiple
modes, suggesting that CTC may learn different be-
haviors for the two common spellings of the sibilant
sh: the letter sequence “sh” and the letter sequence
“ti”.

6 Conclusion

We presented an LVCSR system consisting of two
neural networks integrated via beam search decod-
ing that matches the performance of an HMM-GMM
system on the challenging Switchboard corpus. We
built on the foundation of Graves and Jaitly (2014)
to vastly reduce the overall complexity required for
LVCSR systems. Our method yields a complete
first-pass LVCSR system with about 1,000 lines of
code — roughly an order of magnitude less than
high performance HMM-GMM systems. Operat-
ing entirely at the character level yields a system
which does not require assumptions about a lexicon

or pronunciation dictionary, instead learning orthog-
raphy and phonics directly from data. We hope the
simplicity of our approach will facilitate future re-
search in improving LVCSR with CTC-based sys-
tems and jointly training LVCSR systems for SLU
tasks. DNNs have already shown great results as
acoustic models in HMM-DNN systems. We free
the neural network from its complex HMM infras-
tructure, which we view as the first step towards
the next wave of advances in speech recognition and
language understanding.

Acknowledgments

We thank Awni Hannun for his contributions to the
software used for experiments in this work. We also
thank Peng Qi and Thang Luong for insightful dis-
cussions, and Kenneth Heafield for help with the
KenLM toolkit. Our work with HMM-GMM sys-
tems was possible thanks to the Kaldi toolkit and its
contributors. Some of the GPUs used in this work
were donated by the NVIDIA Corporation. AM was
supported as an NSF IGERT Traineeship Recipient
under Award 0801700. ZX was supported by an
NDSEG Graduate Fellowship.

Image from Maas et al., “Lexicon Free Conversational Speech Recognition with Neural Networks”,  NAACL 15



A truly end-to-end system

• Build a truly end-to-end model that subsumes all the standard 
ASR components (ideally, without any additional language 
model during decoding) 

• Listen, Attend and Spell [LAS)]: Makes no independence 
assumptions (unlike the CTC models) about the prob. 
distribution of the output sequences given the input 

• Based on the sequence-to-sequence learning framework with 
attention

[LAS]: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

LISTEN, ATTEND AND SPELL: A NEURAL NETWORK FOR
LARGE VOCABULARY CONVERSATIONAL SPEECH RECOGNITION

William Chan

Carnegie Mellon University

Navdeep Jaitly, Quoc Le, Oriol Vinyals

Google Brain

ABSTRACT

We present Listen, Attend and Spell (LAS), a neural speech recog-
nizer that transcribes speech utterances directly to characters with-
out pronunciation models, HMMs or other components of traditional
speech recognizers. In LAS, the neural network architecture sub-
sumes the acoustic, pronunciation and language models making it
not only an end-to-end trained system but an end-to-end model. In
contrast to DNN-HMM, CTC and most other models, LAS makes no
independence assumptions about the probability distribution of the
output character sequences given the acoustic sequence. Our system
has two components: a listener and a speller. The listener is a pyra-
midal recurrent network encoder that accepts filter bank spectra as
inputs. The speller is an attention-based recurrent network decoder
that emits each character conditioned on all previous characters, and
the entire acoustic sequence. On a Google voice search task, LAS
achieves a WER of 14.1% without a dictionary or an external lan-
guage model and 10.3% with language model rescoring over the top
32 beams. In comparison, the state-of-the-art CLDNN-HMM model
achieves a WER of 8.0% on the same set.

Index Terms— Recurrent neural network, neural attention, end-
to-end speech recognition

1. INTRODUCTION

State-of-the-art speech recognizers of today are complicated systems
comprising of various components - acoustic models, language mod-
els, pronunciation models and text normalization. Each of these
components make assumptions about the underlying probability dis-
tributions they model. For example n-gram language models and
Hidden Markov Models (HMMs) make strong Markovian indepen-
dence assumptions between words/symbols in a sequence. Connec-
tionist Temporal Classification (CTC) and DNN-HMM systems as-
sume that neural networks make independent predictions at different
times and use HMMs or language models (which make their own in-
dependence assumptions) to introduce dependencies between these
predictions over time [1, 2, 3]. End-to-end training of such mod-
els attempts to mitigate these problems by training the components
jointly [4, 5, 6]. In these models, acoustic models are updated based
on a WER proxy, while the pronunciation and language models are
rarely updated [7], if at all.

In this paper we introduce Listen, Attend and Spell (LAS), a
neural network that learns to transcribe an audio sequence signal to
a word sequence, one character at a time, without using explicit lan-
guage models, pronunciation models, HMMs, etc. LAS does not
make any independence assumptions about the nature of the prob-
ability distribution of the output character sequence, given the in-
put acoustic sequence. This method is based on the sequence-to-
sequence learning framework with attention [8, 9, 10, 11, 12, 13]. It
consists of an encoder Recurrent Neural Network (RNN), which is

named the listener, and a decoder RNN, which is named the speller.
The listener is a pyramidal RNN that converts speech signals into
high level features. The speller is an RNN that transduces these
higher level features into output utterances by specifying a proba-
bility distribution over the next character, given all of the acoustics
and the previous characters. At each step the RNN uses its inter-
nal state to guide an attention mechanism [10, 11, 12] to compute a
“context” vector from the high level features of the listener. It uses
this context vector, and its internal state to both update its internal
state and to predict the next character in the sequence. The entire
model is trained jointly, from scratch, by optimizing the probability
of the output sequence using a chain rule decomposition. We call
this an end-to-end model because all the components of a traditional
speech recognizer are integrated into its parameters, and optimized
together during training, unlike end-to-end training of conventional
models that attempt to adjust acoustic models to work well with the
other fixed components of a speech recognizer.

Our model was inspired by [11, 12] that showed how end-to-
end recognition could be performed on the TIMIT phone recognition
task. We note a recent paper from the same group that describes
an application of these ideas to WSJ [14]. Our paper independently
explores the challenges associated with the application of these ideas
to large scale conversational speech recognition on a Google voice
search task. We defer a discussion of the relationship between these
and other methods to section 5.

2. MODEL

In this section, we formally describe LAS. Let x = (x1, . . . , xT )

be the input sequence of filter bank spectra features and y =

(hsosi, y1, . . . , yS , heosi), yi 2 {a, · · · , z, 0, · · · , 9, hspacei,
hcommai, hperiodi, hapostrophei, hunki} be the output sequence
of characters. Here hsosi and heosi are the special start-of-sentence
token, and end-of-sentence tokens, respectively, and hunki are
unknown tokens such as accented characters.

LAS models each character output yi as a conditional distribu-
tion over the previous characters y<i and the input signal x using the
chain rule for probabilities:

P (y|x) =
Y

i

P (yi|x, y<i) (1)

This objective makes the model a discriminative, end-to-end
model, because it directly predicts the conditional probability of
character sequences, given the acoustic signal.

LAS consists of two sub-modules: the listener and the speller.
The listener is an acoustic model encoder that performs an operation
called Listen. The Listen operation transforms the original signal x
into a high level representation h = (h1, . . . , hU ) with U  T . The
speller is an attention-based character decoder that performs an op-
eration we call AttendAndSpell. The AttendAndSpell operation

��������������������������������������,((( ,&$663�����



The Model

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

����

• The Listen, Attend & Spell (LAS) 
architectures consists of 

• the listener (Listen): an acoustic model 
encoder. Deep BLSTMs with a 
pyramidal structure: reduces the time 
resolution by a factor of 2 in each layer 

• the speller (AttendAndSpell): an 
attention-based decoder. Consumes h 
and produces a prob. distr. over 
characters

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

����

Image from: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

����



Attend and spell

• Produces a distribution over characters conditioned on all 
characters seen previously 

• At each decoder time-step i, AttentionContext computes a score for 
each encoder step u, which is then converted into softmax 
probabilities that are linearly combined to compute ci

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

����

x1 x2 xT

hUh1

x3 x4

h = (h1, . . . , hU)

y2 y3

hsosi

heosi

y2 y3

y4

yS�1

c1 c2

Speller

Listener

s1 s2

h h h

Fig. 1: Listen, Attend and Spell (LAS) model: the listener is a pyra-
midal BLSTM encoding our input sequence x into high level fea-
tures h, the speller is an attention-based decoder generating the y

characters from h.

consumes h and produces a probability distribution over character
sequences:

h = Listen(x) (2)
P (yi|x, y<i) = AttendAndSpell(y<i,h) (3)

Figure 1 depicts these two components. We provide more details of
these components in the following sections.

2.1. Listen

The Listen operation uses a Bidirectional Long Short Term Memory
RNN (BLSTM) [15, 16, 2] with a pyramidal structure. This modi-
fication is required to reduce the length U of h, from T , the length
of the input x, because the input speech signals can be hundreds to
thousands of frames long. A direct application of BLSTM for the
operation Listen converged slowly and produced results inferior to
those reported here, even after a month of training time. This is
presumably because the operation AttendAndSpell has a hard time
extracting the relevant information from a large number of input time
steps.

We circumvent this problem by using a pyramidal BLSTM
(pBLSTM). In each successive stacked pBLSTM layer, we reduce
the time resolution by a factor of 2. In a typical deep BLSTM
architecture, the output at the i-th time step, from the j-th layer is
computed as follows:

hj
i = BLSTM(hj

i�1, h
j�1
i ) (4)

In the pBLSTM model, we concatenate the outputs at consecutive
steps of each layer before feeding it to the next layer, i.e.:

hj
i = pBLSTM(hj

i�1,
h
hj�1
2i , hj�1

2i+1

i
) (5)

In our model, we stack 3 pBLSTMs on top of the bottom
BLSTM layer to reduce the time resolution 2

3
= 8 times. This

allows the attention model (described in the next section) to extract
the relevant information from a smaller number of times steps. In
addition to reducing the resolution, the deep architecture allows the
model to learn nonlinear feature representations of the data. See
Figure 1 for a visualization of the pBLSTM.

The pyramidal structure also reduces the computational com-
plexity. The attention mechanism in the speller U has a computa-
tional complexity of O(US). Thus, reducing U speeds up learning
and inference significantly. Other neural network architectures have
been described in literature with similar motivations, including the
hierarchical RNN [17], clockwork RNN [18] and CNN [19].

2.2. Attend and Spell

The AttendAndSpell function is computed using an attention-
based LSTM transducer [10, 12]. At every output step, the trans-
ducer produces a probability distribution over the next character
conditioned on all the characters seen previously. The distribution
for yi is a function of the decoder state si and context ci. The de-
coder state si is a function of the previous state si�1, the previously
emitted character yi�1 and context ci�1. The context vector ci is
produced by an attention mechanism. Specifically,

ci = AttentionContext(si,h) (6)
si = RNN(si�1, yi�1, ci�1) (7)

P (yi|x, y<i) = CharacterDistribution(si, ci) (8)

where CharacterDistribution is an MLP with softmax outputs
over characters, and where RNN is a 2 layer LSTM.

At each time step, i, the attention mechanism, AttentionContext
generates a context vector, ci encapsulating the information in the
acoustic signal needed to generate the next character. The attention
model is content based - the contents of the decoder state si are
matched to the contents of hu representing time step u of h, to
generate an attention vector ↵i. The vectors hu are linearly blended
using ↵i to create ci.

Specifically, at each decoder timestep i, the AttentionContext

function computes the scalar energy ei,u for each time step u, using
vector hu 2 h and si. The scalar energy ei,u is converted into
a probability distribution over times steps (or attention) ↵i using
a softmax function. The softmax probabilities are used as mixing
weights for blending the listener features hu to the context vector ci
for output time step i:

ei,u = h�(si), (hu)i (9)

↵i,u =

exp(ei,u)P
u0 exp(ei,u0

)

(10)

ci =
X

u

↵i,uhu (11)

����



Training and Decoding

• Training 

• Train the parameters of the model to maximize the log 
probability of the training instances 

• Decoding 

• Simple left-to-right beam search 

• Beams can be rescored with a language model

where � and  are MLP networks. After training, the ↵i distribution
is typically very sharp and focuses on only a few frames of h; ci can
be seen as a continuous bag of weighted features of h. Figure 1
shows the LAS architecture.

2.3. Learning

We train the parameters of our model to maximize the log probability
of the correct sequences. Specifically,

˜✓ = max

✓

X

i

logP (yi|x, ỹ<i; ✓) (12)

where ỹi�1 is the ground truth previous character or a charac-
ter randomly sampled (with 10% probability) from the model, i.e.
CharacterDistribution(si�1, ci�1) using the procedure from [20].

2.4. Decoding and Rescoring

During inference we want to find the most likely character sequence
given the input acoustics:

ˆ

y = argmax

y
logP (y|x) (13)

We use a simple left-to-right beam search similar to [8]. We can also
apply language models trained on large external text corpora alone,
similar to conventional speech systems [21]. We simply rescore our
beams with the language model. We find that our model has a small
bias for shorter utterances so we normalize our probabilities by the
number of characters |y|c in the hypothesis and combine it with a
language model probability PLM(y):

s(y|x) = logP (y|x)
|y|c

+ � logPLM(y) (14)

where � is our language model weight and can be determined by a
held-out validation set.

3. EXPERIMENTS

We used a dataset with three million Google Voice Search utterances
(representing 2000 hours of data) for our experiments. Approxi-
mately 10 hours of utterances were randomly selected as a held-out
validation set. Data augmentation was performed using a room sim-
ulator, adding different types of noise and reverberations; the noise
sources were obtained from YouTube and environmental recordings
of daily events [22]. This increased the amount of audio data by
20 times with a SNR between 5dB and 30dB [22]. We used 40-
dimensional log-mel filter bank features computed every 10ms as the
acoustic inputs to the listener. A separate set of 22K utterances repre-
senting approximately 16 hours of data were used as the test data. A
noisy test set was also created using the same corruption strategy that
was applied to the training data. All training sets are anonymized and
hand-transcribed, and are representative of Google’s speech traffic.

The text was normalized by converting all characters to lower
case English alphanumerics (including digits). The punctuations:
space, comma, period and apostrophe were kept, while all other to-
kens were converted to the unknown hunki token. As mentioned
earlier, all utterances were padded with the start-of-sentence hsosi
and the end-of-sentence heosi tokens.

The state-of-the-art model on this dataset is a CLDNN-HMM
system that was described in [22]. The CLDNN system achieves
a WER of 8.0% on the clean test set and 8.9% on the noisy test

Table 1: WER comparison on the clean and noisy Google voice
search task. The CLDNN-HMM system is the state-of-the-art, the
Listen, Attend and Spell (LAS) models are decoded with a beam
size of 32. Language Model (LM) rescoring can be beneficial.

Model Clean WER Noisy WER
CLDNN-HMM [22] 8.0 8.9
LAS 14.1 16.5
LAS + LM Rescoring 10.3 12.0

set. However, we note that the CLDNN uses unidirectional LSTMs
and would certainly benefit from the use of a BLSTM architecture.
Additionally, the LAS model does not use convolutional filters which
have been reported to yield 5-7% WER relative improvement [22].

For the Listen function we used 3 layers of 512 pBLSTM nodes
(i.e., 256 nodes per direction) on top of a BLSTM that operates on
the input. This reduced the time resolution by 8 = 2

3 times. The
Spell function used a two layer LSTM with 512 nodes each. The
weights were initialized with a uniform distribution U(�0.1, 0.1).
Asynchronous Stochastic Gradient Descent (ASGD) was used for
training our model [23]. A learning rate of 0.2 was used with a ge-
ometric decay of 0.98 per 3M utterances (i.e., 1/20-th of an epoch).
We used the DistBelief framework [23] with 32 replicas, each with
a minibatch of 32 utterances. In order to further speed up train-
ing, the sequences were grouped into buckets based on their frame
length [8]. The model was trained until the results on the validation
set stopped improving, taking approximately two weeks. The model
was decoded using N-best list decoding with beam size of N = 32.

4. RESULTS AND DISCUSSION

We achieved 14.1% WER on the clean test set and 16.5% WER on
the noisy test set without any dictionary or language model. We
found that constraining the beam search with a dictionary had no
impact on the WER. Rescoring the top 32 beams with the same n-
gram language model that was used by the CLDNN system using
a language model weight of � = 0.008 improved the results for
the clean and noisy test sets to 10.3% and 12.0% respectively. Note
that for convenience, we did not decode with a language model, but
rather only rescored the top 32 beams. It is possible that further
gains could have been achieved by using the language model during
decoding. Table 1 summarizes the WER results.

The content-based attention mechanism creates an explicit
alignment between the characters and audio signal. We can visual-
ize the attention mechanism by recording the attention distribution
on the acoustic sequence at every character output timestep. Fig-
ure 2 visualizes the attention alignment between the characters and
the filterbanks for the utterance “how much would a woodchuck
chuck”. For this particular utterance, the model learnt a monotonic
distribution without any location priors. The words “woodchuck”
and “chuck” have acoustic similarities, the attention mechanism was
slightly confused when emitting “woodchuck” with a dilution in the
distribution. The attention model was also able to identify the start
and end of the utterance properly.

We observed that LAS can learn multiple spelling variants given
the same acoustics. Table 2 shows top beams for the utterance that
includes “triple a”. As can be seen, the model produces both “triple
a” and “aaa” within the top four beams. The decoder is able to gener-
ate such varied parses, because the next step prediction model makes
no assumptions on the probability distribution by using the chain rule

����



Experiments

where � and  are MLP networks. After training, the ↵i distribution
is typically very sharp and focuses on only a few frames of h; ci can
be seen as a continuous bag of weighted features of h. Figure 1
shows the LAS architecture.

2.3. Learning

We train the parameters of our model to maximize the log probability
of the correct sequences. Specifically,

˜✓ = max

✓

X

i

logP (yi|x, ỹ<i; ✓) (12)

where ỹi�1 is the ground truth previous character or a charac-
ter randomly sampled (with 10% probability) from the model, i.e.
CharacterDistribution(si�1, ci�1) using the procedure from [20].

2.4. Decoding and Rescoring

During inference we want to find the most likely character sequence
given the input acoustics:

ˆ

y = argmax

y
logP (y|x) (13)

We use a simple left-to-right beam search similar to [8]. We can also
apply language models trained on large external text corpora alone,
similar to conventional speech systems [21]. We simply rescore our
beams with the language model. We find that our model has a small
bias for shorter utterances so we normalize our probabilities by the
number of characters |y|c in the hypothesis and combine it with a
language model probability PLM(y):

s(y|x) = logP (y|x)
|y|c

+ � logPLM(y) (14)

where � is our language model weight and can be determined by a
held-out validation set.

3. EXPERIMENTS

We used a dataset with three million Google Voice Search utterances
(representing 2000 hours of data) for our experiments. Approxi-
mately 10 hours of utterances were randomly selected as a held-out
validation set. Data augmentation was performed using a room sim-
ulator, adding different types of noise and reverberations; the noise
sources were obtained from YouTube and environmental recordings
of daily events [22]. This increased the amount of audio data by
20 times with a SNR between 5dB and 30dB [22]. We used 40-
dimensional log-mel filter bank features computed every 10ms as the
acoustic inputs to the listener. A separate set of 22K utterances repre-
senting approximately 16 hours of data were used as the test data. A
noisy test set was also created using the same corruption strategy that
was applied to the training data. All training sets are anonymized and
hand-transcribed, and are representative of Google’s speech traffic.

The text was normalized by converting all characters to lower
case English alphanumerics (including digits). The punctuations:
space, comma, period and apostrophe were kept, while all other to-
kens were converted to the unknown hunki token. As mentioned
earlier, all utterances were padded with the start-of-sentence hsosi
and the end-of-sentence heosi tokens.

The state-of-the-art model on this dataset is a CLDNN-HMM
system that was described in [22]. The CLDNN system achieves
a WER of 8.0% on the clean test set and 8.9% on the noisy test

Table 1: WER comparison on the clean and noisy Google voice
search task. The CLDNN-HMM system is the state-of-the-art, the
Listen, Attend and Spell (LAS) models are decoded with a beam
size of 32. Language Model (LM) rescoring can be beneficial.

Model Clean WER Noisy WER
CLDNN-HMM [22] 8.0 8.9
LAS 14.1 16.5
LAS + LM Rescoring 10.3 12.0

set. However, we note that the CLDNN uses unidirectional LSTMs
and would certainly benefit from the use of a BLSTM architecture.
Additionally, the LAS model does not use convolutional filters which
have been reported to yield 5-7% WER relative improvement [22].

For the Listen function we used 3 layers of 512 pBLSTM nodes
(i.e., 256 nodes per direction) on top of a BLSTM that operates on
the input. This reduced the time resolution by 8 = 2

3 times. The
Spell function used a two layer LSTM with 512 nodes each. The
weights were initialized with a uniform distribution U(�0.1, 0.1).
Asynchronous Stochastic Gradient Descent (ASGD) was used for
training our model [23]. A learning rate of 0.2 was used with a ge-
ometric decay of 0.98 per 3M utterances (i.e., 1/20-th of an epoch).
We used the DistBelief framework [23] with 32 replicas, each with
a minibatch of 32 utterances. In order to further speed up train-
ing, the sequences were grouped into buckets based on their frame
length [8]. The model was trained until the results on the validation
set stopped improving, taking approximately two weeks. The model
was decoded using N-best list decoding with beam size of N = 32.

4. RESULTS AND DISCUSSION

We achieved 14.1% WER on the clean test set and 16.5% WER on
the noisy test set without any dictionary or language model. We
found that constraining the beam search with a dictionary had no
impact on the WER. Rescoring the top 32 beams with the same n-
gram language model that was used by the CLDNN system using
a language model weight of � = 0.008 improved the results for
the clean and noisy test sets to 10.3% and 12.0% respectively. Note
that for convenience, we did not decode with a language model, but
rather only rescored the top 32 beams. It is possible that further
gains could have been achieved by using the language model during
decoding. Table 1 summarizes the WER results.

The content-based attention mechanism creates an explicit
alignment between the characters and audio signal. We can visual-
ize the attention mechanism by recording the attention distribution
on the acoustic sequence at every character output timestep. Fig-
ure 2 visualizes the attention alignment between the characters and
the filterbanks for the utterance “how much would a woodchuck
chuck”. For this particular utterance, the model learnt a monotonic
distribution without any location priors. The words “woodchuck”
and “chuck” have acoustic similarities, the attention mechanism was
slightly confused when emitting “woodchuck” with a dilution in the
distribution. The attention model was also able to identify the start
and end of the utterance properly.

We observed that LAS can learn multiple spelling variants given
the same acoustics. Table 2 shows top beams for the utterance that
includes “triple a”. As can be seen, the model produces both “triple
a” and “aaa” within the top four beams. The decoder is able to gener-
ate such varied parses, because the next step prediction model makes
no assumptions on the probability distribution by using the chain rule

����

• Listen function used 3 layers of BLSTM (512 nodes); AttendAndSpell 
used a 2-layer LSTM (256 nodes) 

• Constraining the beam search with a dictionary had no impact on 
WER



Analysis

Fig. 2: Alignments between character outputs and audio signal pro-
duced by the Listen, Attend and Spell (LAS) model for the utterance
“how much would a woodchuck chuck”. The content based atten-
tion mechanism was able to identify the start position in the audio
sequence for the first character correctly. The alignment produced is
generally monotonic without a need for any location based priors.

Table 2: Example 1: “triple a” vs. “aaa” spelling variants.

Beam Text logP WER
Truth call aaa roadside assistance - -
1 call aaa roadside assistance -0.57 0.00
2 call triple a roadside assistance -1.54 50.00
3 call trip way roadside assistance -3.50 50.00
4 call xxx roadside assistance -4.44 25.00

decomposition. It would be difficult to produce such differing tran-
scripts using CTC due to the conditional independence assumptions,
where the distribution of the output yi at time i is conditionally inde-
pendent of distribution yi+1 at time i+1. Conventional DNN-HMM
systems would require both spellings to be in the pronunciation dic-
tionary to generate both transcriptions.

5. RELATED WORK

There has recently been an explosion in methods for end-to-end
trained speech models because of their inherent simplicity compared
to current speech recognition systems [2, 24, 6, 25, 14]. However
these methods have inherent shortcomings that our model attempts
to address. Here we describe in more detail the relationship between
our work and prior approaches.

Initially, [2] showed that CTC could perform end-to-end speech
recognition on WSJ, going straight from audio to character se-
quences. [24, 25] subsequently showed strong results with CTC
on larger datasets and Switchboard. However it was noted in [24,
2] that good accuracy could only be achieved through the use of a
strong language model during beam search decoding; the language
models use are themselves fixed and trained independently of the
CTC objective.

CTC has also been applied to end-to-end training with phoneme
targets and n-gram language models using FSTs in [26, 27, 6]. How-
ever, unlike the methods above, these methods use pronunciation
dictionaries and language models within FSTs. End-to-end training
here implies training of the acoustic models with fixed dictionaries
and language models, instead of training models that recognize char-
acter sequences directly. In this respect these models are end-to-end
trained systems, rather than end-to-end models.

While CTC has shown tremendous promise in end-to-end
speech recognition, it is limited by the assumptions of indepen-
dence between frames - the output at one frame has no influence
at the outputs at the other frames - much like the unary potential
of Conditional Random Fields. The only way to ameliorate this
problem is through the use of a strong language model [2].

The model proposed here is based on the sequence-to-sequence
architecture [8, 10] and does not suffer from the above shortcoming.
LAS models the output sequence given the input sequence using the
chain rule decomposition, starting at the first character. As such this
model makes no assumptions about the probability distribution and
is only limited by the capacity of the recurrent neural network in
modeling such a complicated distribution. Further, this single model
encompasses all aspects of a speech recognition system - the acous-
tic, pronunciation and language models are all encoded within its pa-
rameters. We argue that this makes it not only an end-to-end trained
system, but an end-to-end model. This makes it a very powerful
model for end-to-end speech recognition. Future work is likely to
explore how to use increasingly more complicated models for im-
proved performance over what was achieved in this paper. Further,
these models are likely to benefit from even larger datasets since the
decoder is able to overfit the small number of transcripts1.

The model described in [14] is the closest to our model, with
some slight differences. We use a pyramidal encoder while they use
an encoder in which the higher layers subsample the hidden states of
the layers below. In addition they use an FST to incorporate a lan-
guage model, while we use language model rescoring and a length-
dependent language model blending (see section 2.4). We note that
these two works were performed concurrently and independently.

6. CONCLUSIONS

We have presented Listen, Attend and Spell (LAS), a neural speech
recognizer that can transcribe acoustic signals to characters directly
without using any of the traditional components of a speech recogni-
tion system, such as HMMs, language models and pronunciation dic-
tionaries. We submit that it is not only an end-to-end trained system,
but an end-to-end model. LAS accomplishes this goal by making no
conditional independence assumptions about the output sequence us-
ing the sequence-to-sequence framework. This distinguishes it from
models like CTC, DNN-HMM and other models that can be trained
end-to-end but make various conditional independence assumptions
to accomplish this. We showed how this model learns an implicit
language model that can generate multiple spelling variants given the
same acoustics. We also showed how an external language model,
trained on additional text, can be used to re-rank the top hypotheses.
We demonstrated that such an end-to-end model can be trained and
be competitive with state-of-the-art CLDNN-HMM systems. We are
optimistic that this approach will pave the way to new neural speech
recognizers that are simpler to train and achieve even better accura-
cies than the best current speech recognition systems.

1We note that we used three million utterances for training but that is a
very small corpus for an RNN language model

����

Fig. 2: Alignments between character outputs and audio signal pro-
duced by the Listen, Attend and Spell (LAS) model for the utterance
“how much would a woodchuck chuck”. The content based atten-
tion mechanism was able to identify the start position in the audio
sequence for the first character correctly. The alignment produced is
generally monotonic without a need for any location based priors.

Table 2: Example 1: “triple a” vs. “aaa” spelling variants.

Beam Text logP WER
Truth call aaa roadside assistance - -
1 call aaa roadside assistance -0.57 0.00
2 call triple a roadside assistance -1.54 50.00
3 call trip way roadside assistance -3.50 50.00
4 call xxx roadside assistance -4.44 25.00

decomposition. It would be difficult to produce such differing tran-
scripts using CTC due to the conditional independence assumptions,
where the distribution of the output yi at time i is conditionally inde-
pendent of distribution yi+1 at time i+1. Conventional DNN-HMM
systems would require both spellings to be in the pronunciation dic-
tionary to generate both transcriptions.

5. RELATED WORK

There has recently been an explosion in methods for end-to-end
trained speech models because of their inherent simplicity compared
to current speech recognition systems [2, 24, 6, 25, 14]. However
these methods have inherent shortcomings that our model attempts
to address. Here we describe in more detail the relationship between
our work and prior approaches.

Initially, [2] showed that CTC could perform end-to-end speech
recognition on WSJ, going straight from audio to character se-
quences. [24, 25] subsequently showed strong results with CTC
on larger datasets and Switchboard. However it was noted in [24,
2] that good accuracy could only be achieved through the use of a
strong language model during beam search decoding; the language
models use are themselves fixed and trained independently of the
CTC objective.

CTC has also been applied to end-to-end training with phoneme
targets and n-gram language models using FSTs in [26, 27, 6]. How-
ever, unlike the methods above, these methods use pronunciation
dictionaries and language models within FSTs. End-to-end training
here implies training of the acoustic models with fixed dictionaries
and language models, instead of training models that recognize char-
acter sequences directly. In this respect these models are end-to-end
trained systems, rather than end-to-end models.

While CTC has shown tremendous promise in end-to-end
speech recognition, it is limited by the assumptions of indepen-
dence between frames - the output at one frame has no influence
at the outputs at the other frames - much like the unary potential
of Conditional Random Fields. The only way to ameliorate this
problem is through the use of a strong language model [2].

The model proposed here is based on the sequence-to-sequence
architecture [8, 10] and does not suffer from the above shortcoming.
LAS models the output sequence given the input sequence using the
chain rule decomposition, starting at the first character. As such this
model makes no assumptions about the probability distribution and
is only limited by the capacity of the recurrent neural network in
modeling such a complicated distribution. Further, this single model
encompasses all aspects of a speech recognition system - the acous-
tic, pronunciation and language models are all encoded within its pa-
rameters. We argue that this makes it not only an end-to-end trained
system, but an end-to-end model. This makes it a very powerful
model for end-to-end speech recognition. Future work is likely to
explore how to use increasingly more complicated models for im-
proved performance over what was achieved in this paper. Further,
these models are likely to benefit from even larger datasets since the
decoder is able to overfit the small number of transcripts1.

The model described in [14] is the closest to our model, with
some slight differences. We use a pyramidal encoder while they use
an encoder in which the higher layers subsample the hidden states of
the layers below. In addition they use an FST to incorporate a lan-
guage model, while we use language model rescoring and a length-
dependent language model blending (see section 2.4). We note that
these two works were performed concurrently and independently.

6. CONCLUSIONS

We have presented Listen, Attend and Spell (LAS), a neural speech
recognizer that can transcribe acoustic signals to characters directly
without using any of the traditional components of a speech recogni-
tion system, such as HMMs, language models and pronunciation dic-
tionaries. We submit that it is not only an end-to-end trained system,
but an end-to-end model. LAS accomplishes this goal by making no
conditional independence assumptions about the output sequence us-
ing the sequence-to-sequence framework. This distinguishes it from
models like CTC, DNN-HMM and other models that can be trained
end-to-end but make various conditional independence assumptions
to accomplish this. We showed how this model learns an implicit
language model that can generate multiple spelling variants given the
same acoustics. We also showed how an external language model,
trained on additional text, can be used to re-rank the top hypotheses.
We demonstrated that such an end-to-end model can be trained and
be competitive with state-of-the-art CLDNN-HMM systems. We are
optimistic that this approach will pave the way to new neural speech
recognizers that are simpler to train and achieve even better accura-
cies than the best current speech recognition systems.

1We note that we used three million utterances for training but that is a
very small corpus for an RNN language model

����

Image from: Chan et al., Listen, Attend and Spell: A NN for LVCSR, ICASSP 2016



Summary

• We saw three ASR systems progressing from: 

A. BiRNN-based models that directly transcribe audio data into text (without 
any intermediate phonetic representation) 

• However, decoding is still at the word level (integrating a dictionary and 
language model) 

B. BiRNN-based models operating entirely at the character level 

• Still needs a char-based language model to perform competitively   with 
a baseline GMM-HMM system 

C. BiRNN-based end-to-end model consisting of encoder-decoder RNNs: 
Entire model, including the LM, is trained jointly.  

None of these systems match the performance of an HMM-DNN system yet.


