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Speaker variations

• Major cause of variability in speech is the differences between 
speakers 

• Speaking styles, accents, gender, physiological differences, etc. 

• Speaker independent (SI) systems: Treat speech from all different 
speakers as though it came from one and train acoustic models 

• Speaker dependent (SD) systems: Train models on data from a 
single speaker 

• Speaker adaptation (SA): Start with an SI system and adapt 
using a small amount of SD training data



Types of speaker adaptation

• Batch/Incremental adaptation: User supplies adaptation 
speech beforehand vs. system makes use of speech collected as 
the user uses a system 

• Supervised/Unsupervised adaptation: Knowing 
transcriptions for the adaptation speech vs. not knowing them 

• Training/Normalization: Modify only parameters of the 
models observed in the adaptation speech vs. find 
transformation for all models to reduce cross-speaker variation 

• Feature/Model transformation: Modify the input feature 
vectors vs. modifying the model parameters. 



Normalization

• Cepstral mean and variance normalization: Effectively reduce 
variations due to channel distortions
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• Mean subtracted from the cepstral features to nullify the 
channel characteristics
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Maximum a posterior adaptation

• Let λ characterise the parameters of an HMM and Pr(λ) be 
prior knowledge. For observed data X, the maximum a 
posterior (MAP) estimate is defined as: 

• If Pr(λ) is uniform, then MAP estimate is the same as the 
maximum likelihood (ML) estimate
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Recall: ML estimation of GMM parameters

• where 𝛾t(j, m) is the probability of occupying mixture 
component m of state j at time t

ML estimate:
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MAP estimation

• where 𝛾t(j, m) is the probability of occupying mixture 
component m of state j at time t

• where μ̅jm is ML estimate of the mean of the adaptation data,  
μjm is prior mean chosen from previous EM iteration, τ controls 
the bias between prior and information from the adaptation data 

ML estimate:

MAP estimate:
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MAP estimation

• MAP estimate is derived after 1) choosing a specific prior 
distribution for λ = (c1,…,cm, µ1,…,µm, Σ1,…,Σm) 2) updating 
model parameters using EM 

• Property of MAP: Asymptotically converges to ML estimate as 
the amount of adaptation data increases 

• Updates only those parameters which are observed in the 
adaptation data
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Linear transform-based adaptation

• Estimate a linear transform from the adaptation data to modify 
HMM parameters 

• Estimate transformations for each HMM parameter? Would 
require very large amounts of training data.  

• Tie several HMM states and estimate one transform for all 
tied parameters 

• Could also estimate a single transform for all the model 
parameters 

• Main approach: Maximum Likelihood Linear Regression (MLLR)



MLLR
• In MLLR, the mean of the m-th Gaussian mixture component 
μm is adapted in the following form: 

where μ̂m is the adapted mean, W = [A, b] is the linear transform 
and ξm is the extended mean vector, [µmT, 1]T 

• W is estimated by maximising the likelihood of the adaptation 
data X: 

• EM algorithm is used to derive this ML estimate

µ̂m = Aµm + bm = W ⇠m

W ⇤
= argmax

W
{log Pr(X;�,W )}



Regression classes

• So far, assumed that all Gaussian components are tied to a global 
transform 

• Untie the global transform: Cluster Gaussian components into 
groups and each group is associated with a different transform 

• E.g. group the components based on phonetic knowledge 

• Broad phone classes: silence, vowels, nasals, stops, etc. 

• Could build a decision tree to determine clusters of 
components



Lexicons and Pronunciation Models



Pronunciation Dictionary/Lexicon

• Link between phone-based HMMs in the acoustic model and 
words in the language model 

• Derived from language experts: Sequence of phones written 
down for each word 

• Dictionary construction involves: 

1. Selecting what words to include in the dictionary 

2. Pronunciation of each word (also, check for multiple 
pronunciations)



Graphemes vs. Phonemes

• Instead of a pronunciation dictionary, could represent a 
pronunciation as a sequence of graphemes (or letters) 

• Main advantages: 

1. Avoid the need for phone-based pronunciations 

2. Avoid the need for a phone alphabet 

3. Works pretty well for languages with a direct link 
between graphemes (letters) and phonemes (sounds)



Grapheme-based ASR

Image from: Gales et al., Unicode-based graphemic systems for limited resourcee languages, ICASSP 15

Language System Script Graphemes†

Kurmanji Kurdish Alphabet Latin 62
Tok Pisin Alphabet Latin 52
Cebuano Alphabet Latin 53
Kazakh Alphabet Cyrillic/Latin 126
Telugu Abugida Telugu 60
Lithuanian Alphabet Latin 62
Levantine Arabic Abjad Arabic 36

Table 2: Attributes of Babel Option Period 2 Languages. † the num-
ber of graphemes in the FLP, excluding apostrophe.

Table 2 shows some of the attributes of the seven languages
investigated. Three different writing schemes were evaluated: Al-
phabet, Abugida, and Abjad. Four forms of writing script were ex-
amined: Latin, Cyrillic, Arabic and Telugu. Additionally the table
gives the number of “raw” graphemes, with no mappings, that are
observed in the FLP training transcriptions, or the complete Levan-
tine Arabic training transcriptions.

Language Grapheme Mapping #
Pack — cap scr atr sgn Phn
FLP 126 67 62 54 52 59
LLP 117 66 61 53 51 59

VLLP 95 59 54 46 44 59
ALP 81 55 51 43 42 59

Table 3: Number of unique tokens in Kazakh (302) (incrementally)
removing: cap capitalisation; scr writing script; attr attributes;
sgn signs

It is interesting to see how the number of graphemes varies with
the form of grapheme mapping used, and the size of the data (or
LP). Table 3 shows the statistics for Kazakh, which has the greatest
number of observed graphemes as both Cyrillic and Latin script are
used. The first point to note is that going from the FLP to the ALP,
45 graphemes are not observed in the ALP compared to the FLP.

As the forms of mapping are increased: removing capitalisation;
writing script; remaining grapheme attributes; and sign information,
the number of graphemes decreases. However comparing the FLP
and ALP, there are still 10 graphemes not seen in the ALP. If the
language model is only based on the acoustic data transcriptions
this is not an issue. However if additional language model training
data is available, then acoustic models are required for these unseen
graphemes. In contrast all the phones are observed in all LPs. Note
for all the phonetic systems, diphthongs are mapped to their individ-
ual constituents.

4. EXPERIMENTAL RESULTS

This section contrasts the performance of the proposed unicode-
based graphemic systems with phonetic systems, and also an expert
derived Levantine Arabic graphemic system. The performance us-
ing limited resources on CTS data is poor compared to using larger
amounts of resources, or simpler tasks.

4.1. Acoustic and Language Models

The acoustic and language models built on the six Babel languages
were built in a Babel BaseLR configuration [14]. Thus no additional
information from other languages, or LPs, was used in building the

systems. HTK [15] was used for training and test, with MLPs trained
using QuickNet [16]. All acoustic models were constructed from a
flat-start based on PLP-features, including HLDA and MPE training.
The decision trees used to construct the context-dependent models
were based on state-specific roots. This enables unseen phones and
graphemes to be synthesised and recognised, even if they do not oc-
cur in the acoustic model training data [17]. Additionally it allows
rarely seen phones and graphemes to be handled without always
backing off to monophone models. These baseline acoustic mod-
els were then extended to Tandem-SAT systems. Here Bottle-Neck
(BN) features were derived using DNNs with PLP plus pitch and
probability of voicing (PoV) obtained using the Kaldi toolkit [18] 4.
Context-dependent targets were used. These 26-dimensional BN
features were added to the HLDA projected PLP features and pitch
features to yield a 71-dimensional feature vector. The baseline mod-
els for the Levantine Arabic system were identical to the Babel sys-
tems. However the Tandem-SAT system did not include any pitch or
PoV features, so the final feature-vector size was 65.

For all systems only the manual transcriptions for the audio
training data were used for training the language models. To give
an idea of the available data for Kazakh the number of words are:
FLP 290.9K; LLP 71.2K; VLLP 25.5K; and ALP 8.8K. Trigram
language models were built for all languages. For all experiments
in this section, manual segmentation of the test data was used. This
allows the impact of the quantity of data and lexicon to be assessed
without having to consider changes in the segmentation.

4.2. Full Language Pack Systems

Language ID System WER (%)
Vit CN CNC

Kurmanji 205 Phonetic 67.6 65.8 64.1Kurdish Graphemic 67.0 65.3

Tok Pisin 207 Phonetic 41.8 40.6 39.4Graphemic 42.1 41.1

Cebuano 301 Phonetic 55.5 54.0 52.6Graphemic 55.5 54.2

Kazakh 302 Phonetic 54.9 53.5 51.5Graphemic 54.0 52.7

Telugu 303 Phonetic 70.6 69.1 67.5Graphemic 70.9 69.5

Lithuanian 304 Phonetic 51.5 50.2 48.3Graphemic 50.9 49.5

Table 4: Babel FLP Tandem-SAT Performance: Vit Viterbi decod-
ing, CN confusion network (CN) decoding, CNC CN-combination.

To give an idea of relative performance when all available data
is used, FLP graphemic and phonetic systems were built for all six
Babel languages. The results for these are shown in Table 4. For
all languages the graphemic and phonetic systems yield compara-
ble performance. It is clear that some languages, such as Kurmanji
Kurdish and Telugu are harder to recognise, with Tok Pisin (a Cre-
ole language) being the easiest. As expected combining the phonetic
and graphemic systems together yields consistent performance gains
of 1.2% to 1.6% absolute over the best individual systems.

4Though performance gains were obtained using FBANK features over
PLP, these gains disappeared when pitch features were added in initial exper-
iments.

5188



Graphemes vs. Phonemes

• Instead of a pronunciation dictionary, could represent a 
pronunciation as a sequence of graphemes (or letters) 

• Main advantages: 

1. Avoid the need for phone-based pronunciations 

2. Avoid the need for a phone alphabet 

3. Works pretty well for languages with a direct link 
between graphemes (letters) and phonemes (sounds)



Grapheme to phoneme (G2P) conversion

• Produce a pronunciation (phoneme sequence) given a written 
word (grapheme sequence) 

• Useful for: 

• ASR systems in languages with no pre-built lexicons 

• Speech synthesis systems 

• Deriving pronunciations for out-of-vocabulary (OOV) words



G2P conversion (I)

• One popular paradigm: Joint sequence models [BN12] 

• Grapheme and phoneme sequences are first aligned using 
EM-based algorithm 

• Results in a sequence of graphones (joint G-P tokens) 

• Ngram models trained on these graphone sequences   

• WFST-based implementation of such a joint graphone model 
[Phonetisaurus] 

[BN12]:Bisani & Ney , “Joint sequence models for grapheme-to-phoneme conversion”,Specom 2012 
[Phonetisaurus] J. Novak, Phonetisaurus Toolkit



G2P conversion (II)

• Neural network based methods are the new state-of-the-art 
for G2P 

• Bidirectional LSTM-based networks using a CTC output 
layer [Rao15]. Comparable to Ngram models. 

• Incorporate alignment information [Yao15]. Beats Ngram 
models.

[Rao15] Grapheme-to-phoneme conversion using LSTM RNNs, ICASSP 2015 
[Yao15] Sequence-to-sequence neural net models for G2P conversion, Interspeech 2015


