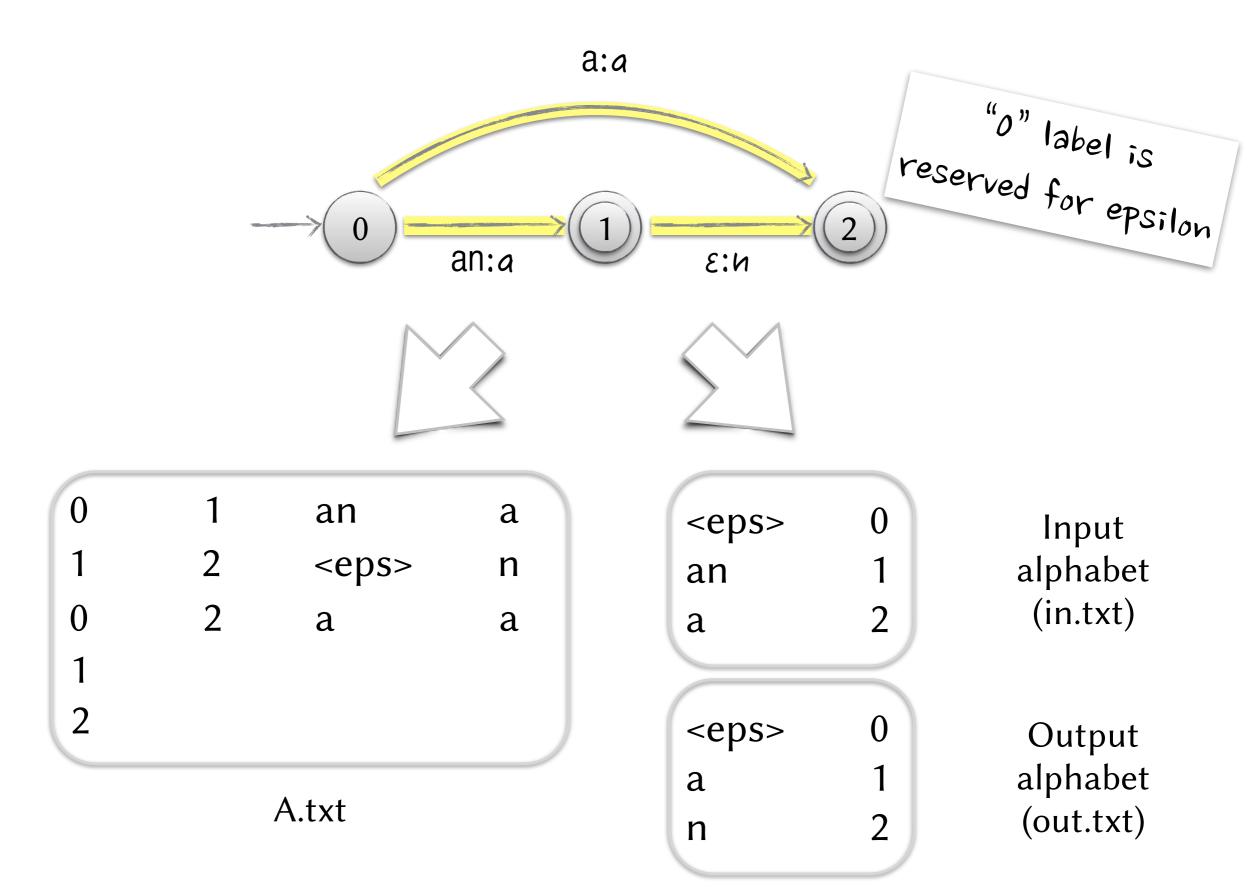


Automatic Speech Recognition (CS753) Lecture 5: Hidden Markov Models (Part I)

Instructor: Preethi Jyothi Lecture 5

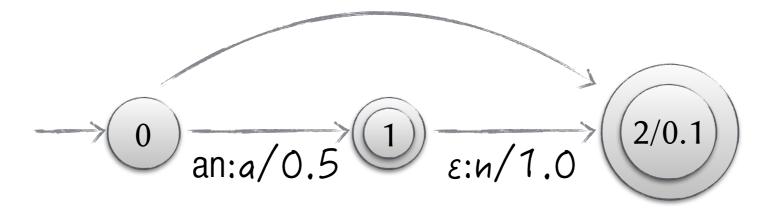
OpenFst Cheat Sheet

Quick Intro to OpenFst (<u>www.openfst.org</u>)



Quick Intro to OpenFst (<u>www.openfst.org</u>)

a:a/0.5



0	1	an	а	0.5
1	2	<eps></eps>	n	1.0
0	2	а	а	0.5
1				
2	0.1			

Compiling & Printing FSTs

The text FSTs need to be "compiled" into binary objects before further use with OpenFst utilities

• Command used to compile:

fstcompile --isymbols=in.txt --osymbols=out.txt A.txt
A.fst

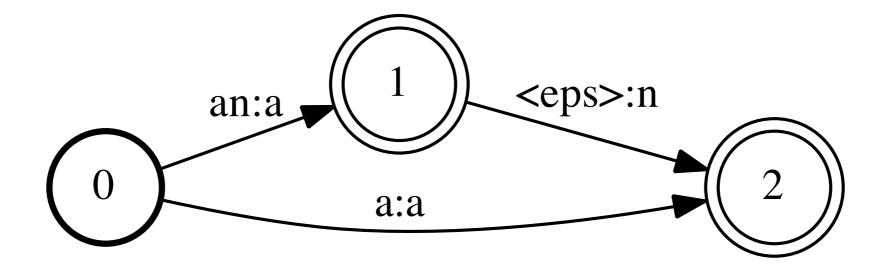
• Get back the text FST using a print command with the binary file:

fstprint --isymbols=in.txt --osymbols=out.txt A.fst A.txt

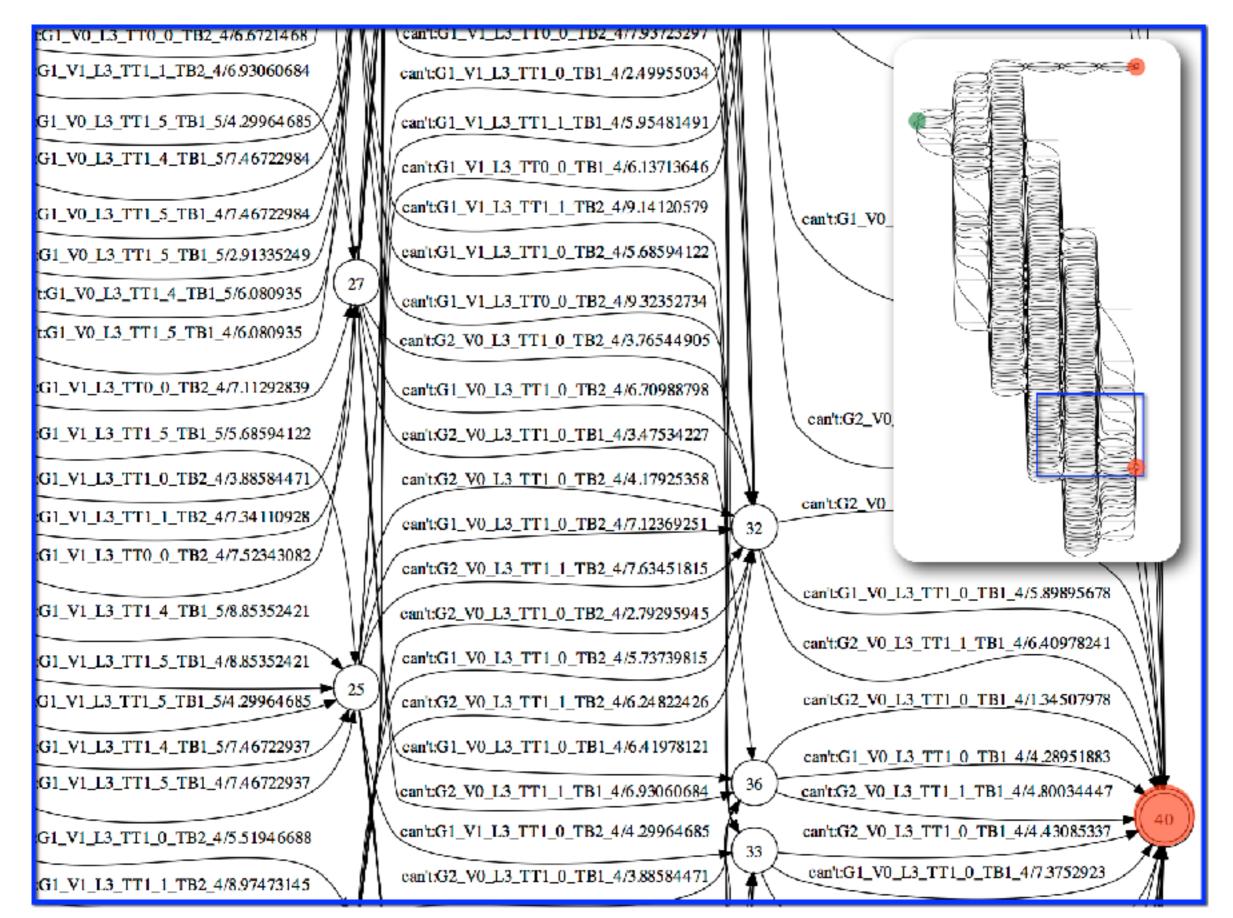
Drawing FSTs

Small FSTs can be visualized easily using the draw tool:

fstdraw --isymbols=in.txt --osymbols=out.txt A.fst
| dot -Tpdf > A.pdf

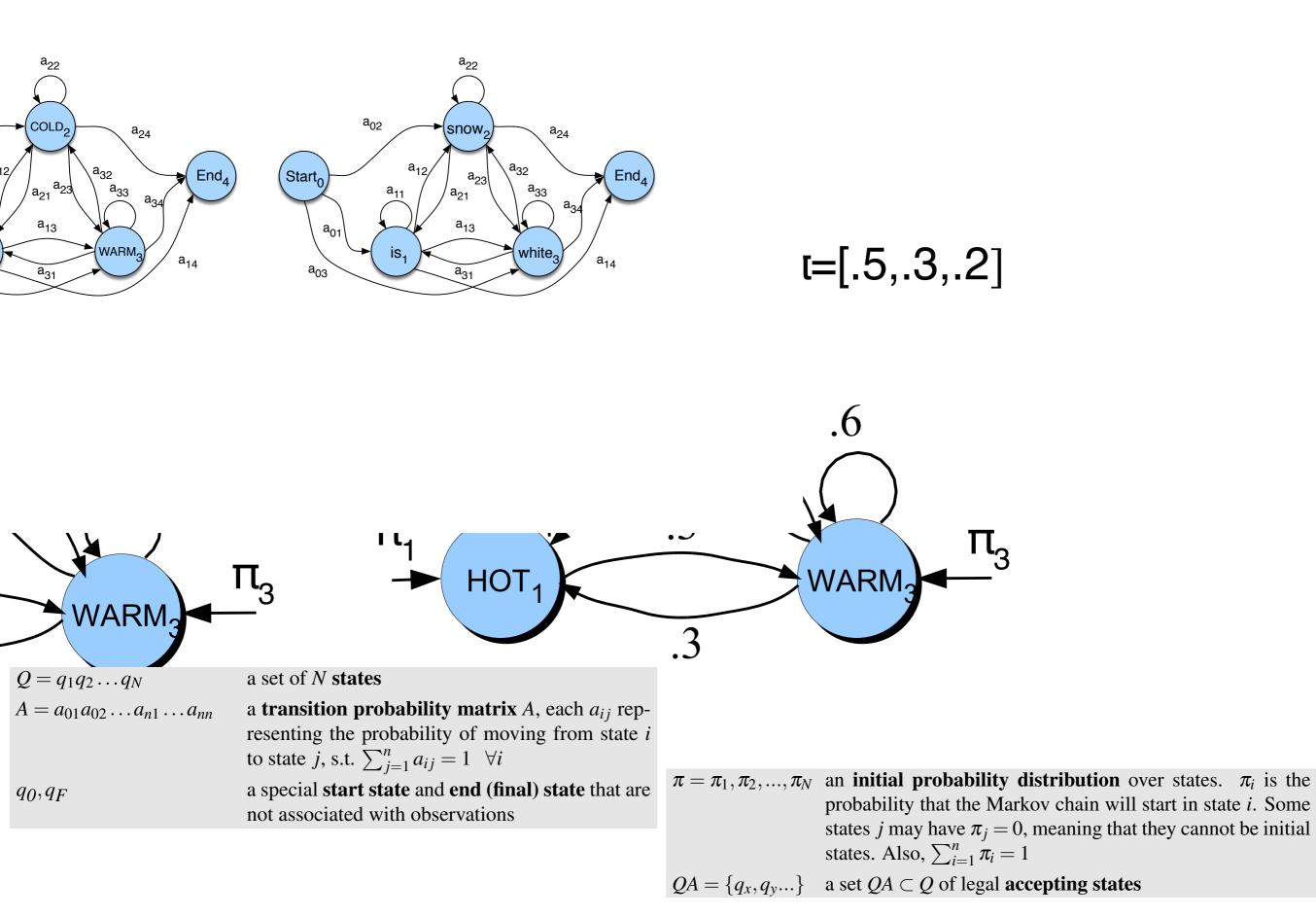


Fairly large FST!



Hidden Markov Models (HMMs)

Following slides contain figures/material from "Hidden Markov Models", Chapter 9, "Speech and Language Processing", D. Jurafsky and J. H. Martin, 2016. (https://web.stanford.edu/~jurafsky/slp3/9.pdf)



Hidden Markov Model

 $Q = q_1 q_2 \dots q_N$ $A = a_{11} a_{12} \dots a_{n1} \dots a_{nn}$

 $O = o_1 o_2 \dots o_T$

$$B = b_i(o_t)$$

 q_0, q_F

a set of N states

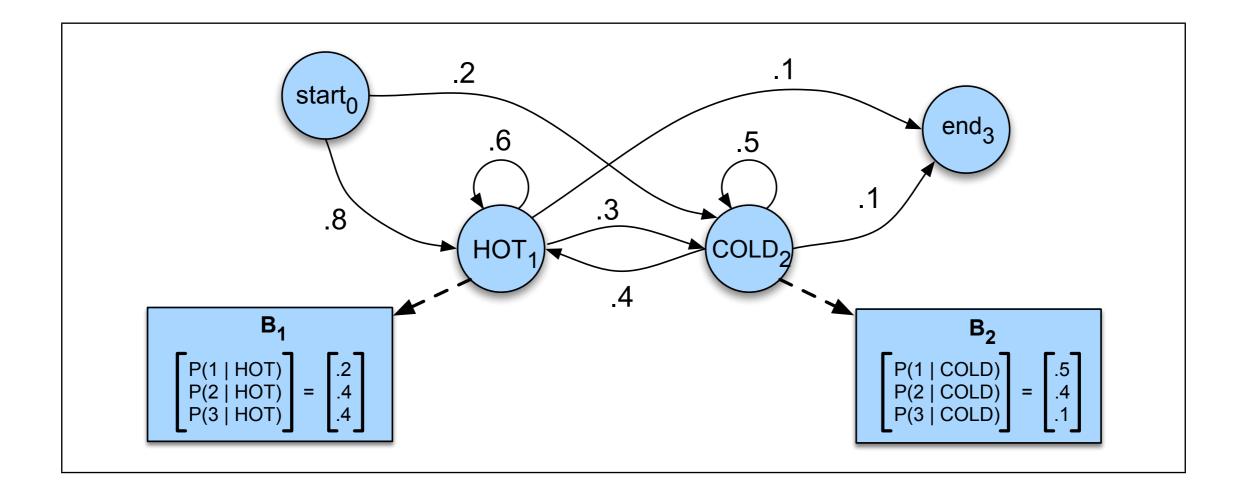
a **transition probability matrix** *A*, each a_{ij} representing the probability of moving from state *i* to state *j*, s.t. $\sum_{j=1}^{n} a_{ij} = 1 \quad \forall i$

a sequence of *T* **observations**, each one drawn from a vocabulary $V = v_1, v_2, ..., v_V$

a sequence of **observation likelihoods**, also called **emission probabilities**, each expressing the probability of an observation o_t being generated from a state *i*

a special start state and end (final) state that are not associated with observations, together with transition probabilities $a_{01}a_{02}...a_{0n}$ out of the start state and $a_{1F}a_{2F}...a_{nF}$ into the end state

HMM Assumptions



Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

_ / I

``

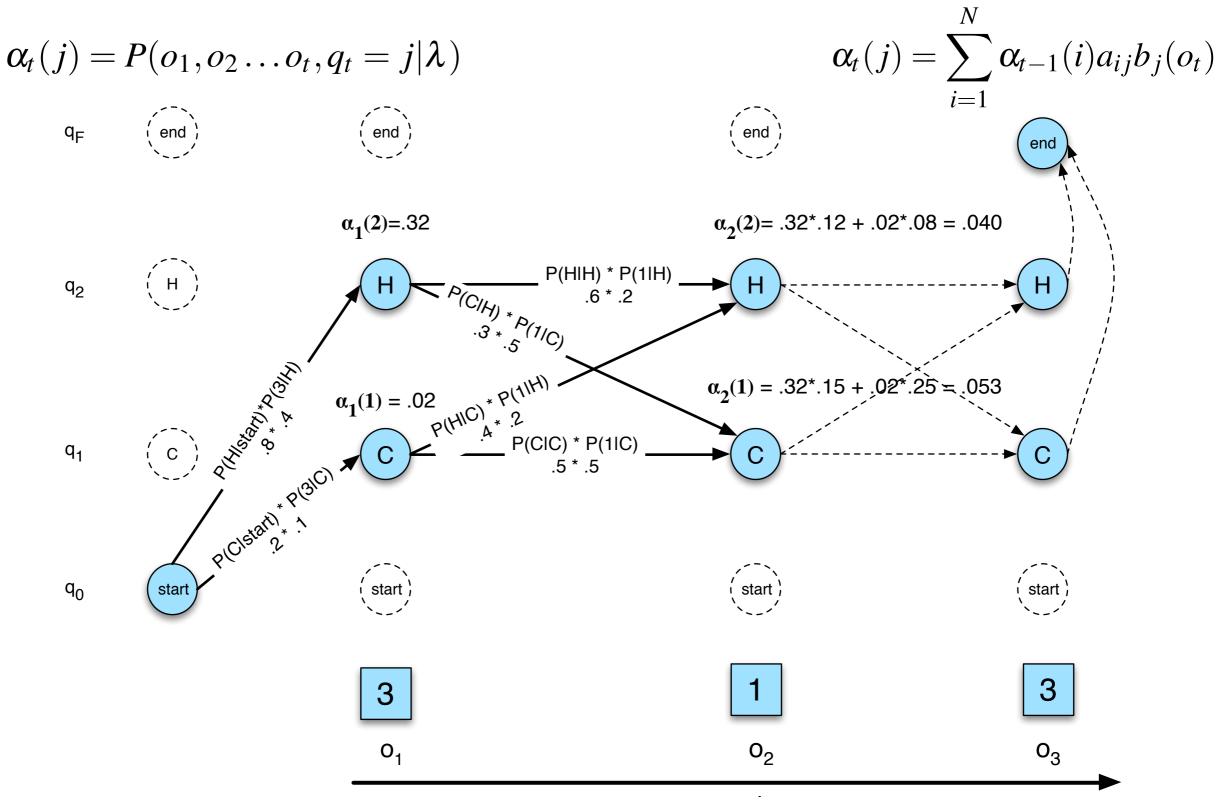
_ / I

Output I

Pro	נ	n se-
Pro		$\lambda =$
		<i>)</i> .
Proviem 3 (Learning).	Orven an observation sequence of and the set of st	tates
	in the HMM, learn the HMM parameters A and I	В.

Computing Likelihood: Given an HMM $\lambda = (A, B)$ and an observation sequence *O*, determine the likelihood $P(O|\lambda)$.

Forward Trellis



Forward Algorithm

1. Initialization:

$$\alpha_1(j) = a_{0j}b_j(o_1) \quad 1 \le j \le N$$

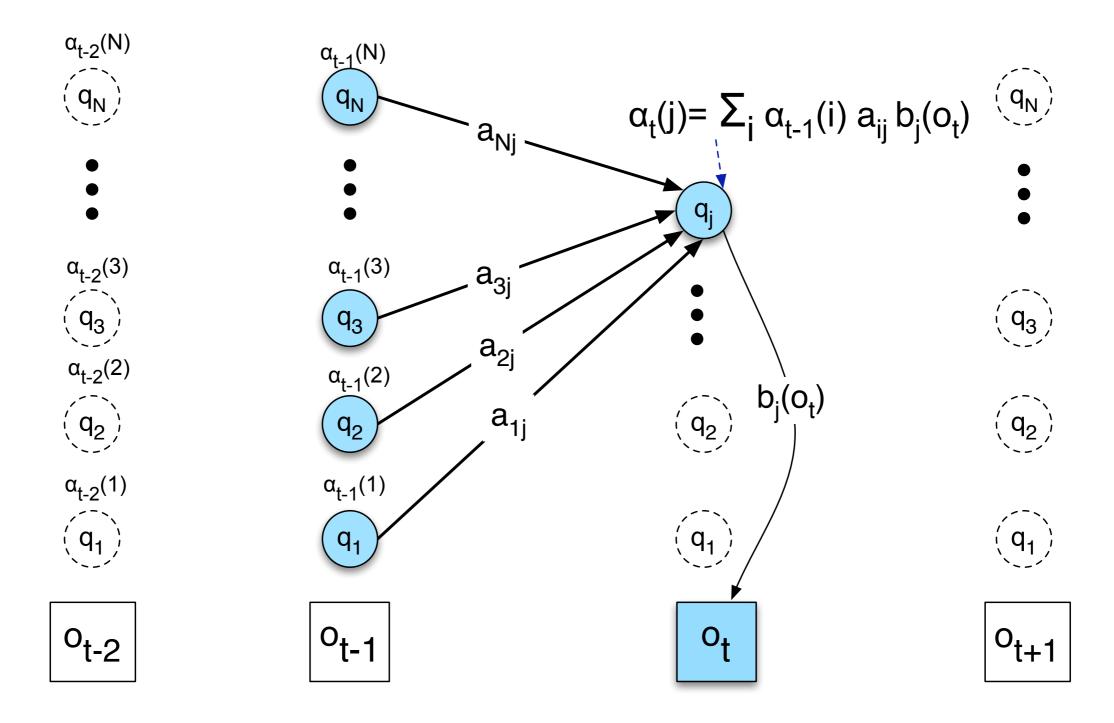
2. Recursion (since states 0 and F are non-emitting):

$$\alpha_t(j) = \sum_{i=1}^N \alpha_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

$$P(O|\lambda) = \alpha_T(q_F) = \sum_{i=1}^N \alpha_T(i) a_{iF}$$

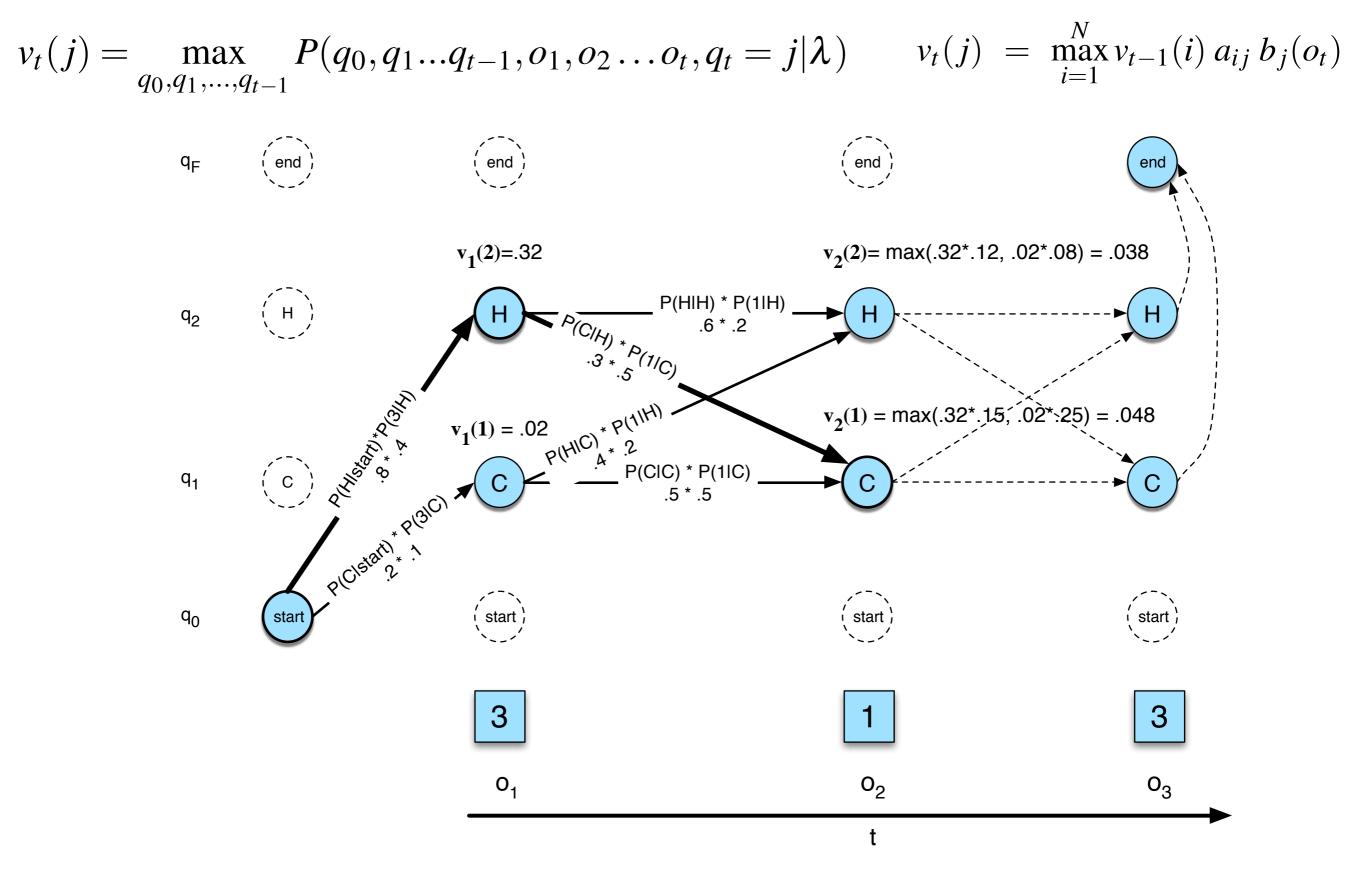
Visualizing the forward recursion



Problem 1 (Likelihood):	Given an HMM $\lambda = (A, B)$ and an observation se-	
	quence <i>O</i> , determine the likelihood $P(O \lambda)$.	
Problem 2 (Decoding):	Given an observation sequence <i>O</i> and an HMM $\lambda =$	
	(A,B), discover the best hidden state sequence Q .	
Problem 3 (Learning):	Given an observation sequence O and the set of states	
	in the HMM, learn the HMM parameters A and B.	

Decoding: Given as input an HMM $\lambda = (A, B)$ and a sequence of observations $O = o_1, o_2, ..., o_T$, find the most probable sequence of states $Q = q_1 q_2 q_3 ... q_T$.

Viterbi Trellis



Vitert

1. Initialization:

$$v_1(j) = a_{0j}b_j(o_1) \quad 1 \le j \le N$$
$$bt_1(j) = 0$$

t

2. **Recursion** (recall that states 0 and q_F are non-emitting):

$$v_t(j) = \max_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

$$bt_t(j) = \arg_{i=1}^N v_{t-1}(i) a_{ij} b_j(o_t); \quad 1 \le j \le N, 1 < t \le T$$

3. Termination:

The best score:
$$P * = v_T(q_F) = \max_{i=1}^N v_T(i) * a_{iF}$$

The start of backtrace: $q_T * = bt_T(q_F) = \arg_{i=1}^N v_T(i) * a_{iF}$

Viterbi backtrace

