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Compiling & Printing FSTs

The text FSTs need to be “compiled” into binary objects before further 
use with OpenFst utilities 

• Command used to compile: 

fstcompile --isymbols=in.txt --osymbols=out.txt A.txt 
A.fst

• Get back the text FST using a print command with the binary file: 

fstprint --isymbols=in.txt --osymbols=out.txt A.fst A.txt



Drawing FSTs

Small FSTs can be visualized easily using the draw tool: 

fstdraw --isymbols=in.txt --osymbols=out.txt A.fst 
| dot -Tpdf > A.pdf
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Fairly large FST!



Hidden Markov Models (HMMs)

Following slides contain figures/material from “Hidden Markov Models”,  
Chapter 9, “Speech and Language Processing”, D. Jurafsky and J. H. Martin, 2016. 
(https://web.stanford.edu/~jurafsky/slp3/9.pdf)

https://web.stanford.edu/~jurafsky/slp3/9.pdf
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(a) (b)

Figure 9.2 Another representation of the same Markov chain for weather shown in Fig. 9.1.
Instead of using a special start state with a01 transition probabilities, we use the p vector,
which represents the distribution over starting state probabilities. The figure in (b) shows
sample probabilities.

that we see in the input) and hidden events (like part-of-speech tags) that we think
of as causal factors in our probabilistic model.

To exemplify these models, we’ll use a task conceived of by Jason Eisner (2002).
Imagine that you are a climatologist in the year 2799 studying the history of global
warming. You cannot find any records of the weather in Baltimore, Maryland, for
the summer of 2007, but you do find Jason Eisner’s diary, which lists how many ice
creams Jason ate every day that summer. Our goal is to use these observations to
estimate the temperature every day. We’ll simplify this weather task by assuming
there are only two kinds of days: cold (C) and hot (H). So the Eisner task is as
follows:

Given a sequence of observations O, each observation an integer cor-
responding to the number of ice creams eaten on a given day, figure
out the correct ‘hidden’ sequence Q of weather states (H or C) which
caused Jason to eat the ice cream.

Let’s begin with a formal definition of a hidden Markov model, focusing on how
it differs from a Markov chain. An HMM is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a11a12 . . .an1 . . .ann a transition probability matrix A, each ai j rep-

resenting the probability of moving from state i
to state j, s.t.

Pn
j=1 ai j = 1 8i

O = o1o2 . . .oT a sequence of T observations, each one drawn
from a vocabulary V = v1,v2, ...,vV

B = bi(ot) a sequence of observation likelihoods, also
called emission probabilities, each expressing
the probability of an observation ot being gen-
erated from a state i

q0,qF a special start state and end (final) state that are
not associated with observations, together with
transition probabilities a01a02 . . .a0n out of the
start state and a1F a2F . . .anF into the end state

As we noted for Markov chains, an alternative representation that is sometimes
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9.1 Markov Chains

The hidden Markov model is one of the most important machine learning models
in speech and language processing. To define it properly, we need to first introduce
the Markov chain, sometimes called the observed Markov model. Markov chains
and hidden Markov models are both extensions of the finite automata of Chapter 3.
Recall that a weighted finite automaton is defined by a set of states and a set of
transitions between states, with each arc associated with a weight. A Markov chainMarkov chain
is a special case of a weighted automaton in which weights are probabilities (the
probabilities on all arcs leaving a node must sum to 1) and in which the input se-
quence uniquely determines which states the automaton will go through. Because
it can’t represent inherently ambiguous problems, a Markov chain is only useful for
assigning probabilities to unambiguous sequences.
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Figure 9.1 A Markov chain for weather (a) and one for words (b). A Markov chain is specified by the
structure, the transition between states, and the start and end states.

Figure 9.1a shows a Markov chain for assigning a probability to a sequence of
weather events, for which the vocabulary consists of HOT, COLD, and WARM. Fig-
ure 9.1b shows another simple example of a Markov chain for assigning a probability
to a sequence of words w1...wn. This Markov chain should be familiar; in fact, it
represents a bigram language model. Given the two models in Fig. 9.1, we can as-
sign a probability to any sequence from our vocabulary. We go over how to do this
shortly.

First, let’s be more formal and view a Markov chain as a kind of probabilistic
graphical model: a way of representing probabilistic assumptions in a graph. A
Markov chain is specified by the following components:

Q = q1q2 . . .qN a set of N states
A = a01a02 . . .an1 . . .ann a transition probability matrix A, each ai j rep-

resenting the probability of moving from state i
to state j, s.t.

Pn
j=1 ai j = 1 8i

q0,qF a special start state and end (final) state that are
not associated with observations

Figure 9.1 shows that we represent the states (including start and end states) as
nodes in the graph, and the transitions as edges between nodes.

A Markov chain embodies an important assumption about these probabilities. In
a first-order Markov chain, the probability of a particular state depends only on theFirst-order

Markov chain
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previous state:

Markov Assumption: P(qi|q1...qi�1) = P(qi|qi�1) (9.1)

Note that because each ai j expresses the probability p(q j|qi), the laws of prob-
ability require that the values of the outgoing arcs from a given state must sum to
1:

nX

j=1

ai j = 1 8i (9.2)

An alternative representation that is sometimes used for Markov chains doesn’t
rely on a start or end state, instead representing the distribution over initial states and
accepting states explicitly:

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i. Some
states j may have p j = 0, meaning that they cannot be initial
states. Also,

Pn
i=1 pi = 1

QA = {qx,qy...} a set QA ⇢ Q of legal accepting states

Thus, the probability of state 1 being the first state can be represented either as
a01 or as p1. Note that because each pi expresses the probability p(qi|START ), all
the p probabilities must sum to 1:

nX

i=1

pi = 1 (9.3)

Before you go on, use the sample probabilities in Fig. 9.2b to compute the prob-
ability of each of the following sequences:

(9.4) hot hot hot hot
(9.5) cold hot cold hot

What does the difference in these probabilities tell you about a real-world weather
fact encoded in Fig. 9.2b?

9.2 The Hidden Markov Model

A Markov chain is useful when we need to compute a probability for a sequence
of events that we can observe in the world. In many cases, however, the events
we are interested in may not be directly observable in the world. For example, in
Chapter 10we’ll introduce the task of part-of-speech tagging, assigning tags like
Noun and Verb to words.

we didn’t observe part-of-speech tags in the world; we saw words and had to in-
fer the correct tags from the word sequence. We call the part-of-speech tags hidden
because they are not observed. The same architecture comes up in speech recogni-
tion; in that case we see acoustic events in the world and have to infer the presence
of “hidden” words that are the underlying causal source of the acoustics. A hidden
Markov model (HMM) allows us to talk about both observed events (like wordsHidden

Markov model
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used for HMMs doesn’t rely on a start or end state, instead representing the distri-
bution over initial and accepting states explicitly. We don’t use the p notation in this
textbook, but you may see it in the literature1:

p = p1,p2, ...,pN an initial probability distribution over states. pi is the
probability that the Markov chain will start in state i. Some
states j may have p j = 0, meaning that they cannot be initial
states. Also,

Pn
i=1 pi = 1

QA = {qx,qy...} a set QA ⇢ Q of legal accepting states

A first-order hidden Markov model instantiates two simplifying assumptions.
First, as with a first-order Markov chain, the probability of a particular state depends
only on the previous state:

Markov Assumption: P(qi|q1...qi�1) = P(qi|qi�1) (9.6)

Second, the probability of an output observation oi depends only on the state that
produced the observation qi and not on any other states or any other observations:

Output Independence: P(oi|q1 . . .qi, . . . ,qT ,o1, . . . ,oi, . . . ,oT ) = P(oi|qi) (9.7)

Figure 9.3 shows a sample HMM for the ice cream task. The two hidden states
(H and C) correspond to hot and cold weather, and the observations (drawn from the
alphabet O = {1,2,3}) correspond to the number of ice creams eaten by Jason on a
given day.

start0

COLD2HOT1

B2
P(1 | COLD)          .5
P(2 | COLD)    =    .4
P(3 | COLD)          .1

.2

.8

.5.6
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.3

P(1 | HOT)          .2
P(2 | HOT)    =    .4
P(3 | HOT)          .4

B1

end3

.1

.1

Figure 9.3 A hidden Markov model for relating numbers of ice creams eaten by Jason (the
observations) to the weather (H or C, the hidden variables).

Notice that in the HMM in Fig. 9.3, there is a (non-zero) probability of transition-
ing between any two states. Such an HMM is called a fully connected or ergodic
HMM. Sometimes, however, we have HMMs in which many of the transitions be-Ergodic HMM

tween states have zero probability. For example, in left-to-right (also called Bakis)Bakis network
HMMs, the state transitions proceed from left to right, as shown in Fig. 9.4. In a
Bakis HMM, no transitions go from a higher-numbered state to a lower-numbered
state (or, more accurately, any transitions from a higher-numbered state to a lower-
numbered state have zero probability). Bakis HMMs are generally used to model
temporal processes like speech; we show more of them in Chapter 29.

1 It is also possible to have HMMs without final states or explicit accepting states. Such HMMs define a
set of probability distributions, one distribution per observation sequence length, just as language models
do when they don’t have explicit end symbols. This isn’t a problem since for most tasks in speech and
language processing the lengths of the observations are fixed.
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Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l ).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the
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Figure 9.7 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1
3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions.
The figure shows the computation of at( j) for two states at two time steps. The computation in each cell
follows Eq. 9.14: at( j) =

PN
i=1 at�1(i)ai jb j(ot). The resulting probability expressed in each cell is Eq. 9.13:

at( j) = P(o1,o2 . . .ot ,qt = j|l ).

Consider the computation in Fig. 9.7 of a2(2), the forward probability of being at
time step 2 in state 2 having generated the partial observation 3 1. We compute by ex-
tending the a probabilities from time step 1, via two paths, each extension consisting
of the three factors above: a1(1)⇥P(H|H)⇥P(1|H) and a1(2)⇥P(H|C)⇥P(1|H).

Figure 9.8 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. 9.9 and a statement of the definitional recursion here.

1. Initialization:

a1( j) = a0 jb j(o1) 1  j  N (9.15)

2. Recursion (since states 0 and F are non-emitting):

at( j) =
NX

i=1

at�1(i)ai jb j(ot); 1  j  N,1 < t  T (9.16)

3. Termination:

P(O|l ) = aT (qF) =
NX

i=1

aT (i)aiF (9.17)
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Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,

P(3 1 3) = P(3 1 3,cold cold cold)+P(3 1 3,cold cold hot)+P(3 1 3,hot hot cold)+ ...

For an HMM with N hidden states and an observation sequence of T observa-
tions, there are NT possible hidden sequences. For real tasks, where N and T are
both large, NT is a very large number, so we cannot compute the total observation
likelihood by computing a separate observation likelihood for each hidden state se-
quence and then summing them.

Instead of using such an extremely exponential algorithm, we use an efficient
O(N2T ) algorithm called the forward algorithm. The forward algorithm is a kindForward

algorithm
of dynamic programming algorithm, that is, an algorithm that uses a table to store
intermediate values as it builds up the probability of the observation sequence. The
forward algorithm computes the observation probability by summing over the prob-
abilities of all possible hidden state paths that could generate the observation se-
quence, but it does so efficiently by implicitly folding each of these paths into a
single forward trellis.

Figure 9.7 shows an example of the forward trellis for computing the likelihood
of 3 1 3 given the hidden state sequence hot hot cold.

Each cell of the forward algorithm trellis at( j) represents the probability of be-
ing in state j after seeing the first t observations, given the automaton l . The value
of each cell at( j) is computed by summing over the probabilities of every path that
could lead us to this cell. Formally, each cell expresses the following probability:

at( j) = P(o1,o2 . . .ot ,qt = j|l ) (9.13)

Here, qt = j means “the tth state in the sequence of states is state j”. We compute
this probability at( j) by summing over the extensions of all the paths that lead to
the current cell. For a given state q j at time t, the value at( j) is computed as

at( j) =
NX

i=1

at�1(i)ai jb j(ot) (9.14)

The three factors that are multiplied in Eq. 9.14 in extending the previous paths
to compute the forward probability at time t are

at�1(i) the previous forward path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j
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Figure 9.6 The computation of the joint probability of the ice-cream events 3 1 3 and the
hidden state sequence hot hot cold.

For our particular case, we would sum over the eight 3-event sequences cold cold
cold, cold cold hot, that is,
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Figure 9.7 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1
3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal transitions.
The figure shows the computation of at( j) for two states at two time steps. The computation in each cell
follows Eq. 9.14: at( j) =

PN
i=1 at�1(i)ai jb j(ot). The resulting probability expressed in each cell is Eq. 9.13:

at( j) = P(o1,o2 . . .ot ,qt = j|l ).

Consider the computation in Fig. 9.7 of a2(2), the forward probability of being at
time step 2 in state 2 having generated the partial observation 3 1. We compute by ex-
tending the a probabilities from time step 1, via two paths, each extension consisting
of the three factors above: a1(1)⇥P(H|H)⇥P(1|H) and a1(2)⇥P(H|C)⇥P(1|H).

Figure 9.8 shows another visualization of this induction step for computing the
value in one new cell of the trellis.

We give two formal definitions of the forward algorithm: the pseudocode in
Fig. 9.9 and a statement of the definitional recursion here.

1. Initialization:

a1( j) = a0 jb j(o1) 1  j  N (9.15)

2. Recursion (since states 0 and F are non-emitting):

at( j) =
NX

i=1

at�1(i)ai jb j(ot); 1  j  N,1 < t  T (9.16)

3. Termination:

P(O|l ) = aT (qF) =
NX

i=1

aT (i)aiF (9.17)
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Figure 9.8 Visualizing the computation of a single element at(i) in the trellis by summing
all the previous values at�1, weighted by their transition probabilities a, and multiplying by
the observation probability bi(ot+1). For many applications of HMMs, many of the transition
probabilities are 0, so not all previous states will contribute to the forward probability of the
current state. Hidden states are in circles, observations in squares. Shaded nodes are included
in the probability computation for at(i). Start and end states are not shown.

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1] a0,s ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

forward[s, t] 
NX

s0=1

forward[s0, t�1] ⇤ as0,s ⇤ bs(ot)

forward[qF ,T] 
NX

s=1

forward[s,T ] ⇤ as,qF ; termination step

return forward[qF ,T ]

Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
at(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .
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Figure 9.4 Two 4-state hidden Markov models; a left-to-right (Bakis) HMM on the left and
a fully connected (ergodic) HMM on the right. In the Bakis model, all transitions not shown
have zero probability.

Now that we have seen the structure of an HMM, we turn to algorithms for
computing things with them. An influential tutorial by Rabiner (1989), based on
tutorials by Jack Ferguson in the 1960s, introduced the idea that hidden Markov
models should be characterized by three fundamental problems:

Problem 1 (Likelihood): Given an HMM l = (A,B) and an observation se-
quence O, determine the likelihood P(O|l ).

Problem 2 (Decoding): Given an observation sequence O and an HMM l =
(A,B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

We already saw an example of Problem 2 in Chapter 10. In the next three sec-
tions we introduce all three problems more formally.

9.3 Likelihood Computation: The Forward Algorithm

Our first problem is to compute the likelihood of a particular observation sequence.
For example, given the HMM in Fig. 9.3, what is the probability of the sequence 3
1 3? More formally:

Computing Likelihood: Given an HMM l = (A,B) and an observa-
tion sequence O, determine the likelihood P(O|l ).

For a Markov chain, where the surface observations are the same as the hidden
events, we could compute the probability of 3 1 3 just by following the states labeled
3 1 3 and multiplying the probabilities along the arcs. For a hidden Markov model,
things are not so simple. We want to determine the probability of an ice-cream
observation sequence like 3 1 3, but we don’t know what the hidden state sequence
is!

Let’s start with a slightly simpler situation. Suppose we already knew the weather
and wanted to predict how much ice cream Jason would eat. This is a useful part
of many HMM tasks. For a given hidden state sequence (e.g., hot hot cold), we can
easily compute the output likelihood of 3 1 3.

Let’s see how. First, recall that for hidden Markov models, each hidden state
produces only a single observation. Thus, the sequence of hidden states and the
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function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix forward[N+2,T]
for each state s from 1 to N do ; initialization step

forward[s,1] a0,s ⇤ bs(o1)
for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do
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NX
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Figure 9.9 The forward algorithm. We’ve used the notation forward[s, t] to represent
at(s).

9.4 Decoding: The Viterbi Algorithm

For any model, such as an HMM, that contains hidden variables, the task of deter-
mining which sequence of variables is the underlying source of some sequence of
observations is called the decoding task. In the ice-cream domain, given a sequenceDecoding

of ice-cream observations 3 1 3 and an HMM, the task of the decoder is to find theDecoder
best hidden weather sequence (H H H). More formally,

Decoding: Given as input an HMM l = (A,B) and a sequence of ob-
servations O = o1,o2, ...,oT , find the most probable sequence of states
Q = q1q2q3 . . .qT .
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We might propose to find the best sequence as follows: For each possible hid-
den state sequence (HHH, HHC, HCH, etc.), we could run the forward algorithm
and compute the likelihood of the observation sequence given that hidden state se-
quence. Then we could choose the hidden state sequence with the maximum obser-
vation likelihood. It should be clear from the previous section that we cannot do this
because there are an exponentially large number of state sequences.

Instead, the most common decoding algorithms for HMMs is the Viterbi algo-
rithm. Like the forward algorithm, Viterbi is a kind of dynamic programmingViterbi

algorithm
that makes uses of a dynamic programming trellis. Viterbi also strongly resembles
another dynamic programming variant, the minimum edit distance algorithm of
Chapter 3.
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Figure 9.10 The Viterbi trellis for computing the best path through the hidden state space for the ice-cream
eating events 3 1 3. Hidden states are in circles, observations in squares. White (unfilled) circles indicate illegal
transitions. The figure shows the computation of vt( j) for two states at two time steps. The computation in each
cell follows Eq. 9.19: vt( j) = max1iN�1 vt�1(i) ai j b j(ot). The resulting probability expressed in each cell is
Eq. 9.18: vt( j) = P(q0,q1, . . . ,qt�1,o1,o2, . . . ,ot ,qt = j|l ).

Figure 9.10 shows an example of the Viterbi trellis for computing the best hid-
den state sequence for the observation sequence 3 1 3. The idea is to process the
observation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q0,q1, ...,qt�1, given
the automaton l . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q0,q1,...,qt�1

P(q0,q1...qt�1,o1,o2 . . .ot ,qt = j|l ) (9.18)
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Figure 9.10 shows an example of the Viterbi trellis for computing the best hid-
den state sequence for the observation sequence 3 1 3. The idea is to process the
observation sequence left to right, filling out the trellis. Each cell of the trellis, vt( j),
represents the probability that the HMM is in state j after seeing the first t obser-
vations and passing through the most probable state sequence q0,q1, ...,qt�1, given
the automaton l . The value of each cell vt( j) is computed by recursively taking the
most probable path that could lead us to this cell. Formally, each cell expresses the
probability

vt( j) = max
q0,q1,...,qt�1

P(q0,q1...qt�1,o1,o2 . . .ot ,qt = j|l ) (9.18)
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Note that we represent the most probable path by taking the maximum over all
possible previous state sequences max

q0,q1,...,qt�1
. Like other dynamic programming al-

gorithms, Viterbi fills each cell recursively. Given that we had already computed the
probability of being in every state at time t�1, we compute the Viterbi probability
by taking the most probable of the extensions of the paths that lead to the current
cell. For a given state q j at time t, the value vt( j) is computed as

vt( j) =
N

max
i=1

vt�1(i) ai j b j(ot) (9.19)

The three factors that are multiplied in Eq. 9.19 for extending the previous paths
to compute the Viterbi probability at time t are

vt�1(i) the previous Viterbi path probability from the previous time step
ai j the transition probability from previous state qi to current state q j

b j(ot) the state observation likelihood of the observation symbol ot given
the current state j

function VITERBI(observations of len T, state-graph of len N) returns best-path

create a path probability matrix viterbi[N+2,T]
for each state s from 1 to N do ; initialization step

viterbi[s,1] a0,s ⇤ bs(o1)
backpointer[s,1] 0

for each time step t from 2 to T do ; recursion step
for each state s from 1 to N do

viterbi[s,t] N
max

s0=1
viterbi[s0, t�1] ⇤ as0,s ⇤ bs(ot)

backpointer[s,t] N
argmax

s0=1

viterbi[s0, t�1] ⇤ as0,s

viterbi[qF ,T ] N
max

s=1
viterbi[s,T ] ⇤ as,qF ; termination step

backpointer[qF ,T ] N
argmax

s=1

viterbi[s,T ] ⇤ as,qF ; termination step

return the backtrace path by following backpointers to states back in
time from backpointer[qF ,T ]

Figure 9.11 Viterbi algorithm for finding optimal sequence of hidden states. Given an
observation sequence and an HMM l = (A,B), the algorithm returns the state path through
the HMM that assigns maximum likelihood to the observation sequence. Note that states 0
and qF are non-emitting.

Figure 9.11 shows pseudocode for the Viterbi algorithm. Note that the Viterbi
algorithm is identical to the forward algorithm except that it takes the max over the
previous path probabilities whereas the forward algorithm takes the sum. Note also
that the Viterbi algorithm has one component that the forward algorithm doesn’t
have: backpointers. The reason is that while the forward algorithm needs to pro-
duce an observation likelihood, the Viterbi algorithm must produce a probability and
also the most likely state sequence. We compute this best state sequence by keeping
track of the path of hidden states that led to each state, as suggested in Fig. 9.12, and
then at the end backtracing the best path to the beginning (the Viterbi backtrace).Viterbi

backtrace
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Figure 9.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.

Finally, we can give a formal definition of the Viterbi recursion as follows:

1. Initialization:

v1( j) = a0 jb j(o1) 1  j  N (9.20)

bt1( j) = 0 (9.21)

2. Recursion (recall that states 0 and qF are non-emitting):

vt( j) =
N

max
i=1

vt�1(i)ai j b j(ot); 1  j  N,1 < t  T (9.22)

btt( j) =
N

argmax
i=1

vt�1(i)ai j b j(ot); 1  j  N,1 < t  T (9.23)

3. Termination:

The best score: P⇤= vT (qF) =
N

max
i=1

vT (i)⇤aiF (9.24)

The start of backtrace: qT⇤= btT (qF) =
N

argmax
i=1

vT (i)⇤aiF (9.25)

9.5 HMM Training: The Forward-Backward Algorithm

We turn to the third problem for HMMs: learning the parameters of an HMM, that
is, the A and B matrices. Formally,



Viterbi backtrace
9.5 • HMM TRAINING: THE FORWARD-BACKWARD ALGORITHM 13

start

H

C

H

C

H

C

end

P(C|sta
rt) 

* P
(3|C)

.2 * .
1

P(H|H) * P(1|H)
.6 * .2

P(C|C) * P(1|C)
.5 * .5

P(C|H) * P(1|C)
.3 * .5

P(H|C) * P
(1|H)

.4 * .2

P(
H|

sta
rt)

*P
(3

|H
)

.8
 * 

.4
v1(2)=.32

v1(1) = .02

v2(2)= max(.32*.12, .02*.08) = .038

v2(1) = max(.32*.15, .02*.25) = .048

start start start

t

C

H

end end endqF

q2

q1

q0

o1 o2 o3

3 1 3

Figure 9.12 The Viterbi backtrace. As we extend each path to a new state account for the next observation,
we keep a backpointer (shown with broken lines) to the best path that led us to this state.
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We turn to the third problem for HMMs: learning the parameters of an HMM, that
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