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Automatic Speech Recognition (CS753)

Lecture 6: Hidden Markov Models (Part I1)

Instructor: Preethi Jyothi
Lecture 6



Recall: Computing Likelihood

[Problem 1 (Likelihood): Given an HMM A = (A, B) and an observation se—)
quence O, determine the likelihood P(O|A).
Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

Computing Likelihood: Given an HMM A = (A, B) and an observa-
tion sequence O, determine the likelihood P(O|A).



Recall: Decoding best state sequence

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).
[Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A.B), discover the best hidden state sequence O.

Problem 3 (Learning): Given an observation sequence O and the set of states
in the HMM, learn the HMM parameters A and B.

Decoding: Given as input an HMM A = (A, B) and a sequence of ob-
servations O = 01,0»,...,0T, 1ind the most probable sequence of states

0 =4q19293-.-4T.



Learning HMM Parameters

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).
Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Problem 3 (Learning): Given an observation sequence O and the set of states
[ in the HMM, learn the HMM parameters A and B. J

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

Standard algorithm for HMM training: Forward-backward or
Baum-Welch algorithm



Fitting Parameters to Data

Given:

1. a probabilistic model with yet-to-be-determined parameters for generating
data samples

2. a collection of (independent) data samples

Goal:

Determine the “best” values for the parameters: probability assigned to the
observed data be made as large as possible (a.k.a. MLE parameters)

arg maxg Lpata(0), where Lpata(0) = Prmodeley[ Data]

How?



Fitting Parameters to Data: EM

High-level idea/structure of the Expectation-Maximization (EM) algorithm:

In many models, if the data included all the state variables (i.e., no hidden
variables), can find MLE parameters analytically

When hidden variables involved, iteratively estimate the parameters as follows:
roughly, use parameters from previous rounds to estimate hidden variables and
then recompute optimal parameters
Actually, works with distributions over hidden variables
Q(0, 0"") = Emodelot-1) [ log(Lpata,tidden(0) | Data) ] E step
0' = arg maxe Q(0,0"") M step

EM is guaranteed to converge to a local optimum [Wu83, Jeff Wu, “On the
Convergence Properties of the EM Algorithm”, Ann. Statist, 11(1), 1983].



Learning HMM Parameters

Problem 1 (Likelihood): Given an HMM A = (A,B) and an observation se-
quence O, determine the likelihood P(O|A).
Problem 2 (Decoding): Given an observation sequence O and an HMM A =
(A, B), discover the best hidden state sequence Q.
Problem 3 (Learning): Given an observation sequence O and the set of states
[ in the HMM, learn the HMM parameters A and B. J

Learning: Given an observation sequence O and the set of possible
states in the HMM, learn the HMM parameters A and B.

Standard algorithm for HMM training: Forward-backward or
Baum-Welch algorithm (special case of EM)



Forward/Backward Probabilities

Require two probabilities to compute estimates for the transition
and observation probabilities

1. Forward probability: Recall o (j) = P(01,02...0:,q: = j|A)

2. Backward probability: B;(i) = P(0sy1,0142...0r|q: = i,A)



Backward probability

1. Initialization:

2. Recursion (again since states 0 and gy are non-emitting):

N
Bi()) =) aijbj(01) Br1(j), 1<i<N,1<i<T
j=1
3. Termination:

N

P(OIA) = ar(qr) = Pi(q0) = » aoj bj(01) Bi (/)

j=1



1. Baum-Welch: Estimating a;;

Define a new quantity & (%, 7)to estimate a;;
where & (i, j) = P(g: =i,q1+1 = j|O, 1)

0 (1) aijb(0r+1)Br+1(J)
or(qr)

which works out as & (i,j) =

Zt 1 6e(isJ)
:1 Zkzl él‘(lak)

Then, él\ij —

— aijbj(o\t+1)

Ot-1 Ot Ot+1 Ot+2




2. Baum-Welch: Estimating bi(0;)

Define a new quantity ¢(J) to estimate bi(o:)
where %(j) =P(g: = j|O, 1)

which works out as % (j) = a;)({gﬁ(),l)
T o
Then, ];j(vk) — Zt:lS;-Otzvko%(])
thl % (J)

Ot-1 O Ot+1




Bringing it all together: Baum-Welch

Estimating HMM parameters iteratively using the EM algorithm. For
each iteration, do:

E step For all time-state pairs, compute the state occupation
probabilities y4j) and &(i, j)

M step Reestimate the HMM parameters based on the estimates

derived in the E step: transition probabilities, observation
probabilities



Baum-Welch algorithm (pseudocode)

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden
state set Q) returns HMM=(A,B)

initialize A and B
iterate until convergence

E-step
: oy (] ] :
i = 4L i,
EiL) = at(l)aij];jT(?tq;l))ﬁtJrl(]) v, i and j
M-step
T—-1
&t(lml)
A =1
4%j = T-1 N
Z&t(lvk)
t=1 k=1
T
> n)
Bj(‘/k) _ t=1s.t. O;,=v;

T
> 1w
=1

return A, B



Gaussian (normal) distribution

A common probability distribution that can be used for HMM
observation probabilities bi(0;)

1 1 2
N ,CCI[L7O'2 — 6_20—2(33_:“)
@ ) V2mo?2
M ©| X is the mean
o’ var| X | is the variance

X ~ N(z|p,0%) p(X =1z = N (x|, 0°)

Real data is not always Gaussian! More generally, use an
arbitrary number of Gaussians a.k.a mixture of Gaussians



Next class: Gaussian Mixtures and EM



