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ASR Framework: Acoustic Models
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• Acoustic models are estimated using training data: {xi, yi}, i=1…N 
where xi corresponds to a sequence of acoustic feature vectors 
and yi corresponds to a sequence of words

“Hello world”

“sil hh ah l ow w er l d sil”

“sil sil/hh/ah hh/ah/l ah/l/ow l/ow/w er/w/l l/er/d er/l/d l/d/sil sil”

• For each xi, yi, a composite HMM is constructed using the HMMs that 
correspond to the triphone sequence in yi
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• Acoustic models are estimated using training data: {xi, yi}, i=1…N 
where xi corresponds to a sequence of acoustic feature vectors 
and yi corresponds to a sequence of words

• For each xi, yi, a composite HMM is constructed using the HMMs that 
correspond to the triphone sequence in yi

• These parameters are fit to the acoustic data {xi}, i=1…N using the 
Baum-Welch algorithm (EM)

• Parameters of these composite HMMs are the parameters of the  
constituent triphone HMMs.



Parameter θ determines Pr(x, z; θ) where x is observed and z is hidden 

Observed data: i.i.d samples xi, i=1, …, N 

Goal: Find                      where      

Initial parameters: θ0  

Iteratively compute θl  as follows: 

Recall EM: Fitting Parameters to Data

Q(✓, ✓

`�1
) =

NX

i=1

X

z

Pr(z|xi; ✓
`�1

) log Pr(xi, z; ✓)

✓` = argmax

✓
Q(✓, ✓`�1

)

L(✓) =
NX

i=1

log Pr(xi; ✓)argmax

✓
L(✓)

L(✓)� L(✓`�1) � Q(✓, ✓`�1)�Q(✓`�1, ✓`�1)

Estimate θl  cannot get worse over iterations because for all θ:

EM is guaranteed to converge to a local optimum [Wu83]



Coin example to illustrate EM

Coin�1 Coin�2 Coin�3

𝜌1 = Pr(H) = 0.3 𝜌2 = Pr(H) = 0.4 𝜌3 = Pr(H) = 0.6 

The following sequence is observed: “HH, TT, HH, TT, HH”

How do you estimate 𝜌1, 𝜌2 and 𝜌3?  

Toss Coin�1�privately  
if it shows H:  
    Toss Coin�2 twice 
else 
    Toss Coin�3 twice

Repeat:



Coin example to illustrate EM

Recall, for partially observed data, the likelihood is given by:

∈ • each observation xi

where, for the coin example:

• the hidden variable ∈z

X = {HH,HT,TH,TT}

Z = {H,T}

L(✓) =
NX

i=1

log Pr(xi; ✓) =

NX

i=1

log

X

z

Pr(xi, z; ✓)



Coin example to illustrate EM

Recall, for partially observed data, the likelihood is given by:

Pr(x, z; ✓) = Pr(x|z; ✓) Pr(z; ✓)

How do we compute                  ?Pr(x, z; ✓)

where Pr(z; ✓) =

(
⇢1 if z = H

1� ⇢1 if z = T

Coin�1
𝜌1 = Pr(H)

Coin�2 Coin�3

𝜌2 =Pr(H) 𝜌3 = Pr(H)

L(✓) =
NX

i=1

log Pr(xi; ✓) =

NX

i=1

log

X

z

Pr(xi, z; ✓)

h : number of heads, t : number of tails

Pr(x|z; ✓) =
(
⇢

h
2 (1� ⇢2)

t if z = H

⇢

h
3 (1� ⇢3)

t if z = T



Our observed data is: {HH, TT, HH, TT, HH}

Let’s use EM to estimate θ = (𝜌1, 𝜌2, 𝜌3)

= 0.16
= 0.49   What is 𝛾(H, TT)?              

What is 𝛾(H, HH)?              

Suppose θl -1  is 𝜌1 = 0.3, 𝜌2 = 0.4, 𝜌3 = 0.6:

[EM Iteration, E-step] 
Compute quantities involved in 

 
 where 𝛾(z, x) = Pr(z | x ;θl -1)

Q(✓, ✓

`�1
) =

NX

i=1

X

z

�(z, xi) log Pr(xi, z; ✓)

Coin example to illustrate EM

i.e., compute 𝛾(z, xi) for all z and all i



Our observed data is: {HH, TT, HH, TT, HH}

[EM Iteration, M-step] 
Find θ which maximises 

Q(✓, ✓

`�1
) =

NX

i=1

X

z

�(z, xi) log Pr(xi, z; ✓)

Coin example to illustrate EM

⇢2 =

PN
i=1 �(H, xi)hiPN

i=1 �(H, xi)(hi + ti)

⇢1 =

PN
i=1 �(H, xi)

N

⇢3 =

PN
i=1 �(T, xi)hiPN

i=1 �(T, xi)(hi + ti)

Let’s use EM to estimate θ = (𝜌1, 𝜌2, 𝜌3)



Coin example to illustrate EM

This was a very simple HMM  
(with observations from 3 steps) 

State remains the same after the first transition 

γ estimated the distribution of this state 

More generally, will need the distribution of the state and the 
transition at each time step 

EM for general HMMs: Baum-Welch algorithm (1972) 
                                            predates the general formulation of EM (1977)

H

T

ε/𝜌1

ε/1-𝜌1

H/𝜌2

T/1-𝜌2

H/𝜌3

T/1-𝜌3



Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

Parameters θ : transition matrix A, observation probabilities B  

[EM Iteration, E-step] 
Compute quantities involved in Q(θ,θl -1)  
𝛾i,t (j) = Pr(zt = j | xi ;θl -1)  
𝛏i,t(j,k) = Pr(zt-1 = j, zt = k | xi ;θl -1)

Baum-Welch Algorithm as EM



Parameters θ : transition matrix A, observation probabilities B  

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)  

Baum-Welch Algorithm as EM

Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

Aj,k =

PN
i=1

PTi

t=2 ⇠i,t(j, k)PN
i=1

PTi

t=2

P
k0 ⇠i,t(j, k0)

B
j,v

=

P
N

i=1

P
t:xit=v

�
i,t

(j)
P

N

i=1

P
Ti

t=1 �i,t(j)



Gaussian Observation Model
• So far we considered HMMs with discrete outputs 

• In acoustic models, HMMs output real valued vectors 

• Hence, observation probabilities are defined using probability 
density functions 

• A widely used model: Gaussian distribution

N (x|µ,�2) =
1p
2⇡�2

e

� 1
2�2 (x�µ)2

• HMM emission/observation probabilities bj(x) = 𝒩(x | µj, σj2) 
where µj is the mean associated with state j and σj2 is its variance.

• For multivariate Gaussians,  bj(x) = 𝒩(x | µj, Σj) where Σ is the 
covariance associated with state j



BW for Gaussian Observation Model

Parameters θ : transition matrix A, observation prob. B = {(µj,Σj)} for all j    

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)  

µj =

PN
i=1

PTi

t=1 �i,t(j)xitPN
i=1

PTi

t=1 �i,t(j)

⌃j =

PN
i=1

PTi

t=1 �i,t(j)(xit � µj)(xit � µj)TPN
i=1

PTi

t=1 �i,t(j)

A and π same as with discrete outputs

Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

B = {(µj,Σj)} for all j 



Gaussian Mixture Model
• A single Gaussian observation model assumes that the 

observed acoustic feature vectors are unimodal 



Unimodal 
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Gaussian Mixture Model
• A single Gaussian observation model assumes that the 

observed acoustic feature vectors are unimodal 

• More generally, we use a “mixture of Gaussians” to model 
multiple modes in the data



Mixture Models 



Gaussian Mixture Model

• More generally, we use a “mixture of Gaussians” to model 
multiple modes in the data 

• Instead of bj(x) = 𝒩(x | µj, Σj) in the single Gaussian case,  
bj(x) now becomes: 
 

bj(x) =
MX

m=1

cjmN (x|µjm,⌃jm)

where cjm is the mixing probability for Gaussian component m of state j
MX

m=1

cjm = 1, cjm � 0

• A single Gaussian observation model assumes that the 
observed acoustic feature vectors are unimodal 



BW for Gaussian Mixture Model

Parameters θ : transition matrix A, observation prob. B = {(µjm,Σjm,cjm)} for all j,m    

[EM Iteration, M-step] 
Find θ which maximises Q(θ,θl -1)  

µjm =

PN
i=1

PTi

t=1 �i,t(j,m)xitPN
i=1

PTi

t=1 �i,t(j,m)

⌃jm =

PN
i=1

PTi

t=1 �i,t(j,m)(xit � µjm)(xit � µjm)T
PN

i=1

PTi

t=1 �i,t(j,m)

cjm =

PN
i=1

PTi

t=1 �i,t(j,m)
PN

i=1

PTi

t=1 �i,t(j)

Observed data: N sequences, xi = (xi1, …, xiTi), i=1…N where xit ∈ ℝd 

Mixing 
 probabilities

B = {(µjm,Σjm,cjm)} for all j,m

γi,t(j)=Pr(qt=j|xi)



Number of HMM-GMM Parameters

• Number of triphones that appear in data ≈ 1000s or 10,000s 

• If each triphone HMM has 3 states and each state generates 
m-component GMMs (m ≈ 64), for d-dimensional acoustic 
feature vectors (d ≈ 40) with Σ having d2 parameters 

• Results in millions of HMM-GMM parameters! 

• How do we effectively estimate these parameters? 

• One solution is “parameter tying” at the state level



Next class: Tied-state Triphone HMMs 


