A0
%’

Automatic Speech Recognition (CS753)

Lecture 7: Hidden Markov Models (Part 1)

Instructor: Preethi Jyothi
Jan 23, 2017
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ASR Framework: Acoustic Models
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- Acoustic models are estimated using training data: {x;, yi}, i=1...N
where x; corresponds to a sequence of acoustic feature vectors
and y; corresponds to a sequence of words

- For each x;, y;, a composite HMM is constructed using the HMMs that
correspond to the triphone sequence in y;

“Hello world”

!

“sil hh ah  ow w er | d sil”

!
“sil sil’/hh/ah hh/ah/l ah/l/ow l/ow/w er/w/l I/er/d er/l/d |/d/sil sil”




ASR Framework: Acoustic Models
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Acoustic models are estimated using training data: {x;, y;}, i=1...N
where x; corresponds to a sequence of acoustic feature vectors
and y; corresponds to a sequence of words

For each Xx;, y;, a composite HMM is constructed using the HMMs that
correspond to the triphone sequence in y;

Parameters of these composite HMMs are the parameters of the
constituent triphone HMM:s.

These parameters are fit to the acoustic data {x;}, i=1...N using the
Baum-Welch algorithm (EM)



Recall EM: Fitting Parameters to Data

Parameter 6 determines Pr(x, z; ) where x is observed and z is hidden
Observed data: i.i.d samples x; i=1, ..., N

Goal: Find arg;naxﬁ(@) where L(0) = f:log Pr(xz;;0)

Initial parameters: 6° -

Iteratively compute 6 as follows:

N
Q0,671 ) =) > Pr(z|z;; 0 ") log Pr(z, 2; 6)

1=1 =z

p¢ = argmax Q(6,6° 1)
7

Estimate 6/ cannot get worse over iterations because for all &
L(0) = LO1) > Q0,071) — Q0,07 )

EM is guaranteed to converge to a local optimum [Wu83]



Coin example to illustrate EM

Repeat:

Toss Com | privately
if it shows H:

Toss Coin 2 twice
else

Toss Coivn % twice

The following sequence is observed: "HH, TT, HH, TT, HH”

How do you estimate p1, p» and p3?



Coin example to illustrate EM

Recall, for partially observed data, the likelihood is given by:
N N
L(0) = Z log Pr(z;;0) = ZlogZPr(xi, 2;0)
1=1 1=1 z

where, for the coin example:

- each observation z; € X = {HH,HT,TH,TT}
« the hidden variable z € Z = {H, T}



Coin example to illustrate EM

Recall, for partially observed data, the likelihood is given by:

N N
= Z log Pr(x;;0) = ZlogZPr(xi, 2;0)
1=1 1=1 z

How do we compute Pr(z, z;0)? i \
COuV\w/ Cown L ‘ COiV\y
@;‘& . g

Pr(x, z;0) = Pr(x|z;0 = Pr(H) p2 =Pr(H) p3 = Pr(H)

if 2z = H
where Pr(z;0) = {'01 1 :
l—py iz =T

A(1—po)t ifz =H
Pr(z|z;0) = /0]21( ,02)t 1 :
p3(1—ps)t ifz =T

h . number of heads, ¢ : number of tails




Coin example to illustrate EM

Our observed data is: {HH, TT, HH, TT, HH}
Let’s use EM to estimate 0 = (p1, p2, p3)

[EM Iteration, E-step]

Compute quantities involved in
N

Q0,6 => > ~(z,2;) log Pr(z;, 2; 6)

=1 =z

where y(z, x) = Pr(z | x;0¢1)

i.e., compute y(z, x;) for all z and all i

Suppose 0¢°1 is p1=0.3, p2= 0.4, p3=0.6:
What is y(H, HH)? =0.16
What is y(H, TT)? =0.49



Coin example to illustrate EM

Our observed data is: {HH, TT, HH, TT, HH}
Let’s use EM to estimate 0 = (p1, p2, p3)

[EM Iteration, M-step]

Find 8 which maximises
N

Q0,6 => > ~(z,2;) log Pr(z;, 2; 6)

=1 =z

qu;i1 /7<H7 ZCZ)

Dy = Zf\il V(Ha aj’b)hz
SN vH, @) (b + )
p3 = 27],\;1 7(T7 xl)hz

S (T a) (hi + t;)



Coin example to illustrate EM y
P2

This was a very simple HMM £/p @ 1/1-p2
(with observations from 3 steps) Q

—

State remains the same after the first transition  ¢/1-p; @ T/1-p3
v estimated the distribution of this state H/p3

More generally, will need the distribution of the state and the
transition at each time step

EM for general HMMs: Baum-Welch algorithm (1972)
predates the general formulation of EM (1977)



Baum-Welch Algorithm as EM

Observed data: N sequences, xi = (xi1, ..., xit;), i=1...N where x;E R4
Parameters 0 : transition matrix A, observation probabilities B

[EM Iteration, E-step]
Compute quantities involved in Q(6,0¢1)

Vit () = Pr(z: = j | xi ;0¢1)
§i,t(f,k) = Pr(z:1 =], = k | Xi ;95-1)



Baum-Welch Algorithm as EM

Observed data: N sequences, xi = (xi1, ..., xit;), i=1...N where x;E R4
Parameters 0 : transition matrix A, observation probabilities B

[EM Iteration, M-step]
Find 6 which maximises Q(6,6¢1)

A, = Z’fil 23;2 fz’,t(ja k)
J’k - N T; : /
Z¢:1 ZtZQ Zk/ fz’,t(]a k )

N :

Bjav — N T .
Zizl Zél ’Yz‘,t(])




Gaussian Observation Model

So far we considered HMMs with discrete outputs
In acoustic models, HMMs output real valued vectors

Hence, observation probabilities are defined using probability
density functions

A widely used model: Gaussian distribution

1 1
N (], 0%) = N

HMM emission/observation probabilities bj(x) = A (x | wj, 6/°)
where 1 is the mean associated with state j and o7 is its variance.
For multivariate Gaussians, bj(x) = A (x | uj, 2;) where 2'is the

covariance associated with state j



BW for Gaussian Observation Model

Observed data: N sequences, x; = (xi1, ..., Xit;), i=1...N where x;;& R4
Parameters 0: transition matrix A, observation prob. B = {(11;,2))} for all j

[EM Iteration, M-step]
Find 6 which maximises Q(6,6¢1)

A and m same as with discrete outputs

N T; .
Zizl thl %',t(J)fCit
N T, .
Z’izl thl ’Yz’,t(J)

N T .
s 2uimt 2am Vit (U (Tie — 1) (@it — py
=

N T; .
Zi:l Zt:l ’Yi,t(J)

by =

)T




Gaussian Mixture Model

A single Gaussian observation model assumes that the
observed acoustic feature vectors are unimodal
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Gaussian Mixture Model

A single Gaussian observation model assumes that the
observed acoustic feature vectors are unimodal

More generally, we use a “mixture of Gaussians” to model
multiple modes in the data



iIxture Models
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Gaussian Mixture Model

A single Gaussian observation model assumes that the
observed acoustic feature vectors are unimodal

More generally, we use a “mixture of Gaussians” to model
multiple modes in the data

Instead of bj(x) = N (x| i, 2j) in the single Gaussian case,
bi(x) now becomes:

M

bi(x) = Y cimN (|tjm, Sjm)

m=1

where ¢ is the mixing probability for Gaussian component m of state j
M

Zij:L ijZO

m=1



BW for Gaussian Mixture Model

Observed data: N sequences, x; = (xi1, ..., Xit;), i=1...N where x;;& R4
Parameters 0 : transition matrix A, observation prob. B = {(1jm,2jm,Cim)} for all jm

[EM Iteration, M-step]
Find 6 which maximises Q(6,6¢1)

Zz’zl thl %,t(Ja m)%t

N T .
Zi:l Zt:1 ”Yi,t(]a m)
N T; .
o Z@':1 thl %’,t(]a m) (xz‘t — Mjm)(fﬁit — Uim
— N T .
Z¢:1 Zt:1 %,t(]a m) /\/\ixing

g\ SN, 5T qgum) . probabiliies
Cim = . ]
’ S S ik ()

Hjm =

)T

Psiorn




Number of HMM-GMM Parameters

Number of triphones that appear in data ~ 1000s or 10,000s

If each triphone HMM has 3 states and each state generates
m-component GMMs (m = 64), for d-dimensional acoustic
feature vectors (d = 40) with X having d? parameters

Results in millions of HMM-GMM parameters!
How do we effectively estimate these parameters?

One solution is “parameter tying” at the state level



Next class: Tied-state Triphone HMMs



