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Automatic Speech Recognition (CS753)

Lecture 9: Brief Introduction to Neural Networks

Instructor: Preethi Jyothi
Feb 2, 2017
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Feed-forward Neural Network
Brain Metaphor

v

S
/

Single neuron

v

Cell ‘bod y

Axon TL-.deendnd 7
\ ~ 7 \ -4
. / \ ' h
\\/ \ / \{ - \
Nuclaus N \ y. \_/L(/ g
‘)” 7 Wi
\\" \\\\ ) \ ‘
e

. X i3 (activation YL
Synapt ¢ terminals
}\«

i . function)
7 % .
f ’ /’l \ "Golqi apparatus
Endoolasmic /
reticulum %
/

\Mcchondnon ‘

‘ ~Dendrite

y,'=g(Z,' Wi . Xi)
/ \\:\\-\ Dendrit ¢ branches

Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png
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Feed-forward Neural Network
Parameterized Model

i Parameters of
as = g(wss - as + wus - as) the network: all w;

Was - (g(WM‘ ar+ Wog - az))) shown here)

If x is a 2-dimensional vector and the layer above it is a 2-dimensional
vector h, a fully-connected layer is associated with:

h=xW+Db

where wij in W is the weight of the connection between ith neuron in the
input row and jt neuron in the first hidden layer and b is the bias vector



Feed-forward Neural Network
Parameterized Model

as = g(W35 - a3 + Was + As)
= g(wss - (g(Wiz- ar+wa- ay)) +
Wys5 - (g(WM' ai;+ Wzq - 612)))
The simplest neural network is the perceptron:
Perceptron(x) = xW + b

A 1-layer feedforward neural network has the form:
MLP(x) = g(xW1 + b1) W2 + b,



Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + €%

nonlinear activation functions
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Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + €%

Hyperbolic tangent (tanh): tanh(x) = (¢* - 1)/(e* + 1)
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Common Activation Functions (g)

Sigmoid: o(x) = 1/(1 + €%
Hyperbolic tangent (tanh): tanh(x) = (e* - 1)/(e* + 1)
Rectified Linear Unit (ReLU): RELU(x) = max(0, x)

nonlinear activation functions

B RelLU
tanh

B sigmoid




Optimization Problem

To train a neural network, define a loss function L(y,y):
a function of the true output y and the predicted output y

L(y,y) assigns a non-negative numerical score to the neural
network’s output, y

The parameters of the network are set to minimise L over the
training examples (i.e. a sum of losses over different training

samples)

L is typically minimised using a gradient-based method



Stochastic Gradient Descent (SGD)

SGD Algorithm

Inputs:
Function NN(x; 0), Training examples, x; ... xn and
outputs, yi... yn and Loss function L.

do until stopping criterion
Pick a training example x;, y;
Compute the loss L(NN(x;; 0), yi

Compute gradient of L, VL with respect to 0

0<«—0-nVL
done

Return: 0



Training a Neural Network

Define the Loss function to be minimised as a node L
Goal: Learn weights for the neural network which minimise L

Gradient Descent: Find 0L/Oow for every weight w, and update it as
W <«— w-n oL/ ow

How do we efficiently compute 0L/0w for all w?
Will compute 0L/0u for every node u in the network!

oL/0ow = OL/0u - ou/ow where u is the node which uses w



Training a Neural Network

New goal: compute 0L/Ou for every node u in the network
Simple algorithm: Backpropagation
Key fact: Chain rule of differentiation

If L can be written as a function of variables vu,..., va, which in turn
depend (partially) on another variable u, then

OL/ou = X; OL/0Ov; + Ovi/Ou



Backpropagation

If L can be written as a function of variables vs,..., vn, which in turn
depend (partially) on another variable u, then

OL/Ou = X; OL/0v; - Ovi/Ou
t

w
T

Consider v,..., vn as the layer
above u, I'(u) m ‘\

V) ‘ ®
X |
s

Then, the chain rule gives

OL/0u = Tyerw OL/Av - ov/du



Backpropagation

OL/Ou =Xy erw) OL/Ov - Ov/Ou

Backpropagation

Forward Pass

Base case: OL/OL =1

For each u (top to

— ()~

First compute all
values of u given an

07

bottom): ® input, in a forward
For each v E1'(u): T pass
ductivelv. h (The values of each node

Inductively, have /‘ f will be needed during
computed OL/Ov ¢ backprop)
Directly compute 0v/0u T>< ><

Compute 0L/0u @ ©

Compute 0L/Ow

. Where values computed in the
where OL/ow = OL/0u - 5%/8W\ forward pass may be needed



Neural Network Acoustic Models

- Input layer takes a window of acoustic feature vectors

- Output layer corresponds to classes (e.g. monophone labels,
triphone states, etc.)

Phone posteriors
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Image adapted from: Dahl et al., "Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition”, TASL'12



Neural Network Acoustic Models

- Input layer takes a window of acoustic feature vectors
- Hybrid NN/HMM systems: replace GMMs with outputs of NNs

Transition Probabilities
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Image from: Dahl et al., "Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition”, TASL'12



