
Instructor: Preethi Jyothi
Feb 2, 2017  

Automatic Speech Recognition (CS753)
Lecture 9: Brief Introduction to Neural Networks
Automatic Speech Recognition (CS753)

Final Project Landscape

Audio Synthesis
Using LSTMs

Automatic
authorised ASR

Automatic Tongue
Twister Generator

Bird call
Recognition

Emotion
Recognition from

speech

Speaker Adaptation
End-to-end

Audio-Visual
Speech

Recognition

InfoGAN for  
music

Keyword spotting
for continuous

speech

Music Genre
Classification

Nationality
detection from

speech accents

Sanskrit Synthesis
and Recognition

Speech synthesis
& ASR for Indic

languages

Swapping
instruments in

recordings

Transcribing TED
Talks

Programming
with speech-based

commands

Voice-based music
player

Tabla bol
transcription

Singer  
Identification

Speaker  
Verification Ad detection in live

radio streams

Hidden  
Layer

Feed-forward Neural Network

Input  
Layer

Output  
Layer

Feed-forward Neural Network 
Brain Metaphor

g
(activation 
function)

wi yi

yi=g(Σi wi ⋅ xi)

xi

Single neuron

Image from: https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

https://upload.wikimedia.org/wikipedia/commons/1/10/Blausen_0657_MultipolarNeuron.png

Feed-forward Neural Network 
Parameterized Model

1

2

3

4

5

w24

w13

w14 w23

w35

w45

a5

a5 = g(w35 ⋅ a3 + w45 ⋅ a4)

= g(w35 ⋅ (g(w13 ⋅ a1 + w23 ⋅ a2)) +  
 w45 ⋅ (g(w14 ⋅ a1 + w24 ⋅ a2)))

If x is a 2-dimensional vector and the layer above it is a 2-dimensional
vector h, a fully-connected layer is associated with:

 h = xW + b
where wij in W is the weight of the connection between ith neuron in the
input row and jth neuron in the first hidden layer and b is the bias vector

Parameters of  
the network: all wij  
(and biases not 
shown here)

x1

x2

Feed-forward Neural Network 
Parameterized Model

A 1-layer feedforward neural network has the form:

MLP(x) = g(xW1 + b1) W2 + b2

1

2

3

4

5

w24

w13

w14 w23

w35

w45

a5

x1

x2

a5 = g(w35 ⋅ a3 + w45 ⋅ a4)

= g(w35 ⋅ (g(w13 ⋅ a1 + w23 ⋅ a2)) +  
 w45 ⋅ (g(w14 ⋅ a1 + w24 ⋅ a2)))

The simplest neural network is the perceptron:

 Perceptron(x) = xW + b

Common Activation Functions (g)

sigmoid

−10 −5 0 5 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

nonlinear activation functions

x

ou
tp
ut

Sigmoid: σ(x) = 1/(1 + e-x)

Common Activation Functions (g)

sigmoid

−10 −5 0 5 10

−1
.0

−0
.5

0.
0

0.
5

1.
0

nonlinear activation functions

x

ou
tp
ut

tanh

Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2x + 1)
Sigmoid: σ(x) = 1/(1 + e-x)

Common Activation Functions (g)

sigmoid
tanh
ReLU

−10 −5 0 5 10

0
2

4
6

8
10

nonlinear activation functions

x

ou
tp
ut

Rectified Linear Unit (ReLU): RELU(x) = max(0, x)
Hyperbolic tangent (tanh): tanh(x) = (e2x - 1)/(e2x + 1)
Sigmoid: σ(x) = 1/(1 + e-x)

Optimization Problem

• To train a neural network, define a loss function L(y,ỹ):  
a function of the true output y and the predicted output ỹ

• L(y,ỹ) assigns a non-negative numerical score to the neural
network’s output, ỹ

• The parameters of the network are set to minimise L over the
training examples (i.e. a sum of losses over different training
samples)

• L is typically minimised using a gradient-based method

Stochastic Gradient Descent (SGD)

Inputs:  
 Function NN(x; θ), Training examples, x1 … xn and  
 outputs, y1 … yn and Loss function L.

do until stopping criterion 
 Pick a training example xi, yi 
 Compute the loss L(NN(xi; θ), yi) 
 Compute gradient of L, ∇L with respect to θ 
 θ ← θ - η ∇L  
done

Return: θ

SGD Algorithm

Training a Neural Network

Define the Loss function to be minimised as a node L

Goal: Learn weights for the neural network which minimise L

Gradient Descent: Find ∂L/∂w for every weight w, and update it as  
w ← w - η ∂L/ ∂w

How do we efficiently compute ∂L/∂w for all w?

Will compute ∂L/∂u for every node u in the network!

 ∂L/∂w = ∂L/∂u ⋅ ∂u/∂w where u is the node which uses w

Training a Neural Network

New goal: compute ∂L/∂u for every node u in the network

Simple algorithm: Backpropagation

Key fact: Chain rule of differentiation

If L can be written as a function of variables v1,…, vn, which in turn
depend (partially) on another variable u, then

∂L/∂u = Σi ∂L/∂vi ⋅ ∂vi/∂u

Backpropagation
If L can be written as a function of variables v1,…, vn, which in turn
depend (partially) on another variable u, then

∂L/∂u = Σi ∂L/∂vi ⋅ ∂vi/∂u

Then, the chain rule gives

∂L/∂u = Σv ∈ Γ(u) ∂L/∂v ⋅ ∂v/∂u

u

L
Consider v1,…, vn as the layer  
above u, Γ(u)

v

Backpropagation

u

L

v

∂L/∂u = Σv ∈ Γ(u) ∂L/∂v ⋅ ∂v/∂u

Backpropagation
Base case: ∂L/∂L = 1
For each u (top to
bottom):

For each v ∈ Γ(u):

Inductively, have 
computed ∂L/∂v
Directly compute ∂v/∂u

Compute ∂L/∂u

Where values computed in the
forward pass may be needed

Forward Pass
First compute all
values of u given an
input, in a forward
pass  
(The values of each node
will be needed during
backprop)

Compute ∂L/∂w  
where ∂L/∂w = ∂L/∂u ⋅ ∂u/∂w

Neural Network Acoustic Models
• Input layer takes a window of acoustic feature vectors
• Output layer corresponds to classes (e.g. monophone labels,

triphone states, etc.)

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

Phone posteriors

Image adapted from: Dahl et al., "Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition”, TASL’12

Neural Network Acoustic Models

DAHL et al.: CONTEXT-DEPENDENT PRE-TRAINED DEEP NEURAL NETWORKS FOR LVSR 35

Fig. 1. Diagram of our hybrid architecture employing a deep neural network.
The HMM models the sequential property of the speech signal, and the DNN
models the scaled observation likelihood of all the senones (tied tri-phone
states). The same DNN is replicated over different points in time.

A. Architecture of CD-DNN-HMMs

Fig. 1 illustrates the architecture of our proposed CD-DNN-
HMMs. The foundation of the hybrid approach is the use of a
forced alignment to obtain a frame level labeling for training the
ANN. The key difference between the CD-DNN-HMM archi-
tecture and earlier ANN-HMM hybrid architectures (and con-
text-independent DNN-HMMs) is that we model senones as the
DNN output units directly. The idea of using senones as the
modeling unit has been proposed in [22] where the posterior
probabilities of senones were estimated using deep-structured
conditional random fields (CRFs) and only one audio frame
was used as the input of the posterior probability estimator.
This change offers two primary advantages. First, we can im-
plement a CD-DNN-HMM system with only minimal modifica-
tions to an existing CD-GMM-HMM system, as we will show
in Section II-B. Second, any improvements in modeling units
that are incorporated into the CD-GMM-HMM baseline system,
such as cross-word triphone models, will be accessible to the
DNN through the use of the shared training labels.

If DNNs can be trained to better predict senones, then
CD-DNN-HMMs can achieve better recognition accu-
racy than tri-phone GMM-HMMs. More precisely, in our
CD-DNN-HMMs, the decoded word sequence is determined
as

(13)

where is the language model (LM) probability, and

(14)

(15)

is the acoustic model (AM) probability. Note that the observa-
tion probability is

(16)

where is the state (senone) posterior probability esti-
mated from the DNN, is the prior probability of each state
(senone) estimated from the training set, and is indepen-
dent of the word sequence and thus can be ignored. Although
dividing by the prior probability (called scaled likelihood
estimation by [38], [40], [41]) may not give improved recog-
nition accuracy under some conditions, we have found it to be
very important in alleviating the label bias problem, especially
when the training utterances contain long silence segments.

B. Training Procedure of CD-DNN-HMMs

CD-DNN-HMMs can be trained using the embedded Viterbi
algorithm. The main steps involved are summarized in Algo-
rithm 1, which takes advantage of the triphone tying structures
and the HMMs of the CD-GMM-HMM system. Note that the
logical triphone HMMs that are effectively equivalent are clus-
tered and represented by a physical triphone (i.e., several log-
ical triphones are mapped to the same physical triphone). Each
physical triphone has several (typically 3) states which are tied
and represented by senones. Each senone is given a
as the label to fine-tune the DNN. The mapping maps
each physical triphone state to the corresponding .

Algorithmic 1 Main Steps to Train CD-DNN-HMMs

1) Train a best tied-state CD-GMM-HMM system where
state tying is determined based on the data-driven
decision tree. Denote the CD-GMM-HMM gmm-hmm.

2) Parse gmm-hmm and give each senone name an
ordered starting from 0. The will
be served as the training label for DNN fine-tuning.

3) Parse gmm-hmm and generate a mapping from
each physical tri-phone state (e.g., b-ah t.s2) to
the corresponding . Denote this mapping

.
4) Convert gmm-hmm to the corresponding

CD-DNN-HMM – by borrowing the
tri-phone and senone structure as well as the transition
probabilities from – .

5) Pre-train each layer in the DNN bottom-up layer by
layer and call the result ptdnn.

6) Use – to generate a state-level alignment on
the training set. Denote the alignment – .

7) Convert – to where each physical
tri-phone state is converted to .

8) Use the associated with each frame in
to fine-tune the DBN using back-propagation or other
approaches, starting from . Denote the DBN

.
9) Estimate the prior probability , where

is the number of frames associated with senone
in and is the total number of frames.

10) Re-estimate the transition probabilities using and
– to maximize the likelihood of observing

the features. Denote the new CD-DNN-HMM
– .

11) Exit if no recognition accuracy improvement is
observed in the development set; Otherwise use

• Input layer takes a window of acoustic feature vectors
• Hybrid NN/HMM systems: replace GMMs with outputs of NNs

Image from: Dahl et al., "Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition”, TASL’12

