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Abstract

Generating codeswitched text is a problem
of growing interest, especially given the
scarcity of corpora containing large volumes
of real codeswitched text. In this work, we
adapt a stateoftheart neural machine trans
lation model to generate HindiEnglish code
switched sentences starting from monolingual
Hindi sentences. We outline a carefully de
signed curriculum of pretraining steps, includ
ing the use of synthetic codeswitched text, that
enable themodel to generate highquality code
switched text. Using text generated from our
model as data augmentation, we show signif
icant reductions in perplexity on a language
modeling task, compared to using text from
other generative models of CS text. We also
show improvements using our text for a down
stream codeswitched natural language infer
ence task. Our generated text is further sub
jected to a rigorous evaluation using a human
evaluation study and a range of objective met
rics, where we show performance compara
ble (and sometimes even superior) to code
switched text obtained via crowd workers who
are native Hindi speakers.

1 Introduction

Codeswitching (CS) refers to the linguistic phe
nomenon of using more than one language within
a single sentence or conversation. CS appears natu
rally in conversational speech among multilingual
speakers. The main challenge with building mod
els for conversational CS text is that we do not
have access to large amounts of CS text that is con
versational in style. One might consider using so
cial media text that contains CS and is more read
ily available. However, the latter is quite different
from conversational CS text in its vocabulary (e.g.,
due to the frequent use of abbreviated slang terms,
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hashtags and mentions), in its sentence structure
(e.g., due to character limits in tweets) and in its
word forms (e.g., due to transliteration being com
monly employed in social media posts). This mo
tivates the need for a generative model of realistic
CS text that can be sampled to subsequently train
models for CS text.
In this work, we tackle the problem of gen

erating highquality CS text using only limited
amounts of real CS text during training. We also
assume access to large amounts of monolingual
text in the component languages and parallel text
in both languages, which is a reasonable assump
tion to make for many of the world’s languages.
We focus on HindiEnglish CS text where the ma
trix (dominant) language is Hindi and the embed
ded language is English.1 Rather than train a gen
erative model, we treat this problem as a transla
tion task where the source and target languages are
monolingual Hindi text and HindiEnglish CS text,
respectively. We also use the monolingual Hindi
text to construct synthetic CS sentences using sim
ple techniques. We show that synthetic CS text, al
beit being naive in its construction, plays an impor
tant role in improving our model’s ability to cap
ture CS patterns.
We draw inspiration from the large body of

recent work on unsupervised machine transla
tion (Lample et al., 2018a,b) to design our model,
which will henceforth be referred to as Translation
for CodeSwitching, or TCS. TCS, once trained,
will convert a monolingual Hindi sentence into
a HindiEnglish CS sentence. TCS makes ef
fective use of parallel text when it’s available
and uses backtranslationbased objective functions
with monolingual text.

1Given the nontrivial effort involved in collecting anno
tations from professional annotators and crowd workers, we
focused on a single language pair (HindiEnglish) and leave
explorations on more language pairs for future work.



Our main contributions are:
• We propose a stateoftheart translation

model that generates HindiEnglish CS text start
ing from monolingual Hindi text. This model re
quires very small amounts of real CS text, uses
both supervised and unsupervised training objec
tives and considerably benefits from a carefully de
signed training curriculum, that includes pretrain
ing with synthetically constructed CS sentences.
• We introduce a new HindiEnglish CS text

corpus in this work.2 Each CS sentence is ac
companied by its monolingual Hindi translation.
We also designed a crowdsourcing task to collect
CS variants of monolingual Hindi sentences. The
crowdsourced CS sentences were manually veri
fied and form a part of our new dataset.
• We use sentences generated from ourmodel to

train language models for HindiEnglish CS text
and show significant improvements in perplexity
compared to other approaches.
• We present a rigorous evaluation of the qual

ity of our generated text using multiple objective
metrics and a human evaluation study, and they
clearly show that the sentences generated by our
model are superior in quality and successfully cap
ture naturally occurring CS patterns.

2 Related Work

Prior work on language models for CS text (Li
and Fung, 2014b,a; Pratapa et al., 2018; Taneja
et al., 2019) has drawn on insights from linguistic
theories of code switching such as the embedded
matrix theory (Joshi, 1982; MyersScotton, 1995),
the equivalence constraint (EC) theory (Poplack,
1979; Sankoff, 1998) and the functional head con
straint (Di Sciullo et al., 1986; Belazi et al., 2008).
Early approaches investigated classbased ngram
models (Yeh et al.), factored language models that
exploited a large number of syntactic and seman
tic features (Adel et al., 2015) and recurrent neural
language models (Adel et al., 2013) for CS text.
Lee and Li (2020) proposed a bilingual attention
language model for CS text trained solely using a
parallel corpus.
Another recent line of work has explored neu

ral generative models for CS text. Garg et al.
(2018) use a sequence generative adversarial net
work (SeqGAN (Yu et al., 2017)) trained on real
CS text to generate sentences that are used to aid

2The new dataset and relevant code is available at:
https://www.cse.iitb.ac.in/~pjyothi/csalt/TCS.

language model training. Another GANbased
method proposed by Chang et al. (2019) aims to
predict the probability of switching at each to
ken. Winata et al. (2018) and Winata et al. (2019)
use a sequencetosequence model enabled with a
copy mechanism (Pointer Network (Vinyals et al.,
2015)) to generate CS data by leveraging parallel
monolingual translations from a limited source of
CS data. Samanta et al. (2019) proposed a hier
archical variational autoencoderbased model tai
lored for codeswitching that takes into account
both syntactic information and language switching
signals via the use of language tags. (We present
a comparison of TCS with both Samanta et al.
(2019) and Garg et al. (2018) in Section 5.1.)
In a departure from using generative models for

CS text, we view this problem as one of sequence
transduction where we train a model to convert
a monolingual sentence into its CS counterpart.
Chang et al. (2019) use a GANbased model to
modify monolingual sentences into CS sentences,
while we treat this as a translation task and draw
inspiration from the growing body of recent work
on neural unsupervised machine translation mod
els (Lample et al., 2018a,b) to build an effective
model of CS text. Chang et al. (2019) required
large amounts of CS text to train their GANbased
model. With limited amounts of CS text as in our
setup, the outputs would be very poor; hence, we
did not compare against it. While the idea of using
translation models for codeswitching has been ex
plored in early work (Vu et al., 2012; Li and Fung,
2013; Dhar et al., 2018), ours is the first work, to
our knowledge, to adapt stateoftheart neural ma
chine translation models to synthesize CS text.

3 Our Approach

Figure 1 shows the overall architecture of our
model. This is largely motivated by prior work on
unsupervised neural machine translation (Lample
et al., 2018a,b). The model comprises of three lay
ers of stacked Transformer (Vaswani et al., 2017)
encoder and decoder layers, two of which are
shared and the remaining layer is private to each
language. Monolingual Hindi (i.e. the source lan
guage) has its own private encoder and decoder
layers (denoted by Encp0 and Decp0 , respectively)
while English and HindiEnglish CS text jointly
make use of the remaining private encoder and de
coder layers (denoted by Encp1 and Decp1 , respec
tively). In our model, the target language is either

https://www.cse.iitb.ac.in/~pjyothi/csalt/TCS


English or CS text. Ideally, we would like Encp1
and Decp1 to be trained only using CS text. How
ever, due to the paucity of CS text, we also use text
in the embedded language (i.e. English) to train
these layers. Next, we outline the three main train
ing steps of TCS.

(I) Denoising autoencoding (DAE). We use
monolingual text in each language to estimate lan
guage models. In Lample et al. (2018b), this is
achieved via denoising autoencoding where an au
toencoder is used to reconstruct a sentence given a
noisy version as its input whose structure is altered
by dropping and swapping words arbitrarily (Lam
ple et al., 2018a). The loss incurred in this step is
denoted by LDAE and is composed of two terms
based on the reconstruction of the source and tar
get language sentences, respectively.

(II) Backtranslation (BT): Once the layers are
initialized, one can use nonparallel text in both
languages to generate a pseudoparallel corpus of
backtranslated pairs (Sennrich et al., 2015). That
is, a corpus of parallel text is constructed by trans
lating sentences in the source language via the
pipeline, Encp0 , Encsh, Decsh and Decp1 , and
translating target sentences back to the source lan
guage via Encp1 , Encsh, Decsh and Decp0 . The
backtranslation loss LBT is composed of cross
entropy losses from using these pseudoparallel
sentences in both directions.

(III) Crossentropy loss (CE): Both the previ
ous steps used unsupervised training objectives
and make use of nonparallel text. With access to
parallel text, one can use the standard supervised
crossentropy loss (denoted by LCE) to train the
translation models (i.e. going from Encp0 to Decp1
and Encp1 to Decp0 via the common shared layers).

3.1 Synthetic CS text
Apart from the use of parallel text and monolin
gual text employed in training TCS, we also con
struct large volumes of synthetic CS text using two
simple techniques. This synthetic CS text is non
parallel and is used to optimize both LDAE and
LBT . The role of the synthetic CS text is to expose
TCS to various CS patterns (even if noisy), thereby
encouraging the model to codeswitch. The final
step of finetuning using AllCS enables model to
mimic switching patterns of real CS texts
The first technique (named LEX) is a simple

heuristicbased technique that constructs a CS sen
tence by traversing a Hindi sentence and randomly
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Figure 1: Model architecture. Each loss term along with
all the network components it modifies are shown. During
unsupervised training with nonparallel text,LDAE andLBT

are optimized while for supervised training with parallel text,
LDAE and LCE are optimized.

replacing a word by its English translation using
a bilingual lexicon (Conneau et al., 2017). The
probability of replacing a word is chosen to match
the switching distribution in real CS text. The
second technique (named EMT) is more linguisti
cally aware. Following the methodology proposed
by Bhat et al. (2016) that is based on the embedded
matrix theory (EMT) for codeswitching, we apply
clause substitution methods to monolingual text to
construct synthetic CS text. From inspecting En
glish parse trees, we found that replacing embed
ded sentence clauses or subordinate clauses with
their Hindi translations would likely produce CS
text that appears somewhat natural.

4 Description of Datasets

4.1 A New HindiEnglish CS Dataset
We introduce a new HindiEnglish CS dataset,
that we will refer to as AllCS. It is partitioned
into two subsets, MovieCS and TreebankCS,
based on their respective sources. MovieCS con
sists of conversational HindiEnglish CS text ex
tracted from 30 contemporary Bollywood scripts
that were publicly available.3 The Hindi words
in these sentences were all Romanized with po
tentially multiple noncanonical forms existing
for the same Hindi token. We employed a pro
fessional annotation company to convert the Ro
manized Hindi words into their respective back

3https://www.filmcompanion.in/category/fcpro/scripts/
https://moifightclub.com/category/scripts/
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MovieCS पर हँसी िच कत्सा ने मेरा जीवन बदल दया वास्तव में
(Eng) (But laughter medicine really changed my life)
(Gold) but laughter therapy ने मेर life बदल द actually
MTurk पर laughter therapy ने मेरा जीवन बदल दया वास्तव में
MTurk but laughter therapy ने really में मेर life change कर द
MTurk पर हँसीtherapy ने मेराlife बदल दया वास्तव में

TreebankCS मेले से आमदनी 7.20 करोड़ रुपये आंक गई
(Eng) (Income from the fair was estimated at Rs 7.20 crore)
MTurk fair सेincome 7.20 करोड़ रुपयेevaluate क गई
MTurk मेले सेincome 7.20 करोड़ रुपये आंक गई

Table 1: Two AllCS examples. English translations in blue.

transliterated forms rendered in Devanagari script.
We also asked the annotators to provide mono
lingual Hindi translations for all these sentences.
Using these monolingual Hindi sentences as a
starting point, we additionally crowdsourced for
CS sentences via Amazon’s Mechanical Turk
(MTurk) (Amazon, 2005). Table 1 shows two
Hindi sentences fromMovieCS and TreebankCS,
along with the different variants of CS sentences.
Turkers were asked to convert a monolingual

Hindi sentence into a naturalsounding CS variant
that was semantically identical. Each Turker had
to work on five Hindi sentences. We developed
a web interface using which Turkers could easily
copy parts of the Hindi sentence they wanted to
retain and splice in English segments. More de
tails about this interface, the crowdsourcing task
and worker statistics are available in Appendix A.
AllCS comprises a second subset of CS sen

tences, TreebankCS, that was crowdsourcing us
ing MTurk. We extracted 5292monolingual Hindi
sentences (with sentence lengths less than or equal
to 15 words) from the publicly available Hindi
Dependency Treebank that contains dependency
parses.4 These annotations parse each Hindi sen
tence into chunks, where a chunk is defined as
a minimal, non recursive phrase. Turkers were
asked to convert at least one Hindi chunk into
English. This was done in an attempt to elicit

4http://ltrc.iiit.ac.in/treebank_H2014/

Quantity/Metric MovieCS TreebankCS AllCS

|Train| 15509 5914 21423
|Test| 1500 1000 2500
|Valid| 500 500 1000
# Tokens 196300 87979 284279

# Hindi Sentences 9290 5292 14582
# NEs 4342 4810 9152

Fraction of NEs 0.0221 0.0547 0.0322
MIndex 0.5542 0.6311 0.5774
IIndex 0.2852 0.3434 0.3023

Table 2: Key statistics of CS datasets.

Figure 2: Distribution across overall sentence lengths and
distribution across lengths of continuous English spans in
MovieCS and TreebankCS.

longer spans of English segments within each sen
tence. Figure 2 shows the sentence length distribu
tions for MovieCS and TreebankCS, along with
histograms accumulating English segments of dif
ferent lengths in both subsets. We clearly see a
larger fraction of English segments with lengths
within the range [26] in TreebankCS compared
to MovieCS.
Table 2 provides detailed statistics of the new

CS dataset. We also report two metrics proposed
by Guzmán et al. (2017) to measure the amount of
codeswitching present in this new corpus. Mono
lingual Index (MIndex) is a value between 0 and 1
that quantifies the amount of mixing between lan
guages (0 denotes a purelymonolingual corpus and
1 denotes equal mixing from both languages) and
IIndex measures the fraction of switching points
in the corpus. We observe TreebankCS exhibits
higher Mindex and Iindex values compared to
MovieCS indicating more codeswitching over
all. AllCS also contains a nontrivial number of
named entities (NEs) which are replaced by an NE
tag in all our language modeling experiments.

4.2 Other Datasets
Parallel HindiEnglish Text. We use the IIT
Bombay EnglishHindi Corpus (Kunchukuttan
et al., 2017) that contains parallel HindiEnglish
text. We also construct a larger parallel corpus
using text from the OpenSubtitles (OpSub) cor
pus (Lison and Tiedemann, 2016) that is more
conversational in style. We chose ~1 million En
glish sentences (OpSubEN), where each sentence
contained an embedded clause or a subordinate
clause to support the construction of EMT lines.
We used the Google Translate API to obtain Hindi
translations for all these sentences (OpSubHI).
Henceforth, OpSub refers to this parallel corpus of
OpSubEN paired with OpSubHI. We extracted
318K sentences from the IITB corpus after thresh

http://ltrc.iiit.ac.in/treebank_H2014/


olding on length (515) and considering overlap
in vocabulary with OpSub. (One could avoid the
use of an external service like Google Translate
and use existing parallel text (Zhang et al., 2020))
in conjunction with a word aligner to construct
EMT lines. OpSub being more conversational in
style turns out to be a better pretraining corpus;
a detailed comparison is described inAppendixH.)

Synthetic CS Datasets. For each Hindi monolin
gual sentence in OpSub, we generate two LEX
and two EMT synthetic CS sentences giving us
OpSubLEX and OpSubEMT, respectively. We
also generate five LEX and five EMT lines for
each monolingual sentence in AllCS. In order
to generate EMT lines, we first translate the
monolingual Hindi sentences in AllCS to English
using Google Translate and then follow the EMT
generation scheme. This results in two datasets,
AllCSLEX and AllCSEMT, which appear in
later evaluations. (Appendix B contains more
details about EMT applied to OPUS and AllCS.)

Datasets from existing approaches. (I)
VACS (Samanta et al., 2019) is a hierarchi
cal variational autoencoderbased model designed
to generate CS text. We train two VACS mod
els, one on AllCS (VACSv1) and the other on
OpSubEMT followed by AllCS (VACSv2). (II)
Garg et al. (2018) use SeqGAN (Yu et al., 2017)
– a GANbased sequence generation model – to
generate CS sentences by providing an RNNLM
as the generator. As with VACS, we train two
SeqGAN5 models, one on AllCS (SeqGANv1)
and one on OpSubEMT followed by AllCS
(SeqGANv2). Samples are drawn from both
SeqGAN and VACS by first drawing a random
sample from the standard normal distribution
in the learned latent space and then decoding
via an RNNbased generator for SeqGAN and a
VAEbased decoder for VACS. We sample ~2M
lines for each dataset to match the size of the other
synthetic datasets.

5 Experiments and Results

Table 3 shows the importance of various training
curricula in training TCS; these models are eval
uated using BLEU (Papineni et al., 2002) scores
computed with the groundtruth CS sentences for
the test set of AllCS. We start with supervised pre

5We use code from:https://github.com/suragnair/
seqGAN

training of TCS using the two parallel datasets we
have in hand – IITB and OpSub (System A). A
is then further finetuned with real CS text in All
CS. The improvements in BLEU scores moving
from SystemO (trained only on AllCS) to System
B illustrate the benefits of pretraining TCS using
HindiEnglish parallel text.

Systems C and D in Table 3 use our synthetic
CS datasets OpSubLEX and OpSubEMT, respec
tively. These systems are further finetuned on All
CS using both unsupervised and supervised train
ing objectives to give C1, C2, D1 and D2, respec
tively. Comparing these four systems with System
B shows the importance of using synthetic CS for
pretraining. Further, comparingC1 againstD1 and
C2 against D2, we observe that OpSubEMT is in
deed a better choice for pretraining compared to
OpSubLEX. Also, supervised finetuning with All
CS is clearly superior to unsupervised finetuning.
Henceforth, SystemsD1 andD2 will be referred to
as TCS (U) and TCS (S), respectively.

While having access to parallel CS data is an ad
vantage, we argue that the benefits of having par
allel data only marginally increase after a thresh
old. Figure 3 shows how BLEU scores vary when
changing the amount of parallel CS text used to
trainD2. We observe that BLEU increases substan
tially when we increase CS data from 1000 lines
to 5000 lines, after which there is a trend of dimin
ishing returns. We also find that D1 (that uses the
data in AllCS as nonparallel text) is as good as
the model trained using 4000 lines of parallel text.

Curriculum Training BLEU
(HI → CS)

O AllCS S 19.18

A IITB + OpSub S 1.51
B A | AllCS S 27.84

C A | OpSubHI + OpSubLEX U 15.23
D A | OpSubHI + OpSubEMT U 17.73

C1 C | AllCS U 32.71
C2 C | AllCS S 39.53

D1 D | AllCS U 35.52
D2 D | AllCS S 43.15

Table 3: BLEU score on (HI → CS) for different curricula
measured on AllCS (test). A | X represents starting with
model denoted by A and further training using dataset(s) X.
“S” and “U” refer to supervised and unsupervised training
phases, respectively.

https://github.com/suragnair/seqGAN
https://github.com/suragnair/seqGAN


Figure 3: Variation of BLEU score with amount of AllCS
parallel training data.

5.1 Language Modeling
We use text generated by our model to train a
language model (LM) and evaluate perplexities
on the test set of AllCS to show how closely
sentences from TCS mimic real CS text. We use
a stateoftheart RNNLM model AWDLSTM
LM Merity et al. (2018) as a blackbox LM and
only experiment with different training datasets.
The model uses three LSTM layers of 1200 hid
den units with weight tying and 300dimensional
word embeddings. In initial runs, we trained our
language model on the large parallel/synthetic
CS datasets and finetuned on the AllCS data.
However, this training strategy was prone to over
fitting on AllCS data. To counter this problem
of forgetting during the pretrainfinetuning steps,
we adopted the Mixreview strategy proposed
by He et al. (2021). The training sentences from
AllCS remain constant through the epochs and
the amount of pretraining data is exponentially
decayed with each epoch. This greatly alleviates
the forgetting problem in our model, and leads
to better overall perplexities. Additional details
about these LMs are provided in Appendix E.

Pretraining Corpus | Train | Test PPL Test PPL
OpSub AllCS

OpSub + OpSubLEX 4.00M 56.83 332.66
OpSub + OpSubEMT 4.03M 55.56 276.56

OpSub + VACSv1 4.05M 64.77 335.79
OpSub + VACSv2 4.05M 62.41 321.12

OpSub + SeqGANv1 4.03M 57.32 336.62
OpSub + SeqGANv2 4.03M 56.50 317.81

OpSub + TCS (U) 3.99M 57.45 271.19
OpSub + TCS (S) 3.96M 56.28 254.37

Table 4: Test perplexities on AllCS using different pretrain
ing datasets.

Table 4 shows test perplexities using different

Method Syntactic Semantic Naturalness

Real 4.47±0.73 4.47±0.76 4.27±1.06
TCS (S) 4.21±0.92 4.14±0.99 3.77±1.33
TCS (U) 4.06±1.06 4.01±1.12 3.58±1.46
EMT 3.57±1.09 3.48±1.14 2.80±1.44
LEX 2.91±1.11 2.87±1.19 1.89±1.14

Table 5: Mean and standard deviation of scores (between 1
and 5) from 3 annotators for 150 samples from 5 datasets.

training curricula and data generated using two
prior approaches, VACS and SeqGAN. Sentences
generated using TCS yield the largest reductions in
test perplexities, compared to all other approaches.

5.2 Human Evaluation

We evaluated the quality of sentences generated by
TCS using a human evaluation study. We sampled
150 sentences each, using both TCS (U) and TCS
(S), starting from monolingual Hindi sentences in
the evaluation sets of AllCS. The sentences were
chosen such that they were consistent with the
length distribution of AllCS. For the sake of com
parison, corresponding to the abovementioned
150 monolingual Hindi samples, we also chose
150 CS sentences each from AllCSLEX and All
CSEMT. Along with the groundtruth CS sen
tences from AllCS, this resulted in a total of 750
sentences.6 These sentences were given to three
linguistic experts in Hindi and they were asked
to provide scores ranging between 1 and 5 (1 for
worst, 5 for best) under three heads: “Syntactic
correctness”, “Semantic correctness” and “Natu
ralness”. Table 5 shows that the sentences gener
ated using TCS (S) and TCS (U) are far superior
to the EMT and LEX sentences on all three crite
ria. TCS (S) is quite close in overall quality to the
real sentences and TCS (U) fares worse, but only
by a small margin.
Table 6 shows some illustrative examples of

codeswitching using TCS (U) on test samples.
We also show some examples of codeswitching
withinmonolingual sentences fromOpSub. We ob
serve that the model is able to introduce long con
tiguous spans of English words (e.g. “meeting next
week”, “but it is clear”, etc.). The model also dis
plays the ability to meaningfully switch multiple
times within the same sentence (e.g., “i love you
very much”, “but”, “friend”). There are also inter
esting cases of English segments that appear to be
ungrammatical but make sense in the CS context

6We only chose CS sentences from TCS that did not ex
actly match the groundtruth CS text.



Generated using MovieCS

मैं खुश हँू तुमने नो टस कया
(I am glad you noticed)
i am happy तुमने notice कया
नह ं मैं तुमसे बहुत प्यार करता हँू सच में ले कन िसफर् एक दोस्त क तरह
(No i really love you but just like a friend)
नह ंi love you very much सच मेंbut िसफर् एकfriend क तरह

Generated using TreebankCS

बैठक अगले हफ़्ते होने क संभावना है
(Meeting will likely be next week)
meeting next weekहोने क possibility है
उन्होंने कहा क इनका नाम लेना उिचत नह ं होगा ले कन यह स्प है
(He said that it would not be appropriate to name them
but it is clear)
उन्होंने कहा क इनका नाम लेनाfair नह ं होगाbut it is clear

Generated using OpSub

आपको अपने भीतर उन भावनाओं को संसािधत करने के िलए खुद को
समय देना होगा
(You have to give yourself time to process those feelings
within you)
आपको अपने भीतर उनemotions कोprocess करने के िलए खुद को
time देना होगा
क्यों क मुझे पता है क मुख्य पकवान क्या होगा
(Because i know what the main dish will be)
because i know main dish क्या होगा

Table 6: Examples generated by TCS (U) on validation and
test data. For each example the first line is the monolingual
sentence, followed by its English translation and finally the
translation from TCS (U). More examples are in Appendix F.

(e.g., “because i know main dish”, etc.).

5.3 GLUECoS Benchmark

GLUECoS (Khanuja et al., 2020) is an evaluation
benchmark spanning six natural language tasks for
codeswitched EnglishHindi and EnglishSpanish
data. The authors observe that MBERT (Pires
et al., 2019) consistently outperforms crosslingual
embedding techniques. Furthermore, pretraining
MBERT on small amounts of codeswitched text
improves its performance in most cases. For our
evaluation, we select two tasks that require seman
tic understanding: Natural Language Inference
(NLI) and Sentiment Analysis (SA).
We sample 100K monolingual sentences from

Pretraining Data NLI (Accuracy) Sentiment
Analysis (F1)

Baseline 57.88±1.22 57.97±0.06
OpSubHI 58.47±0.36 58.13±0.25
OpSubLEX 58.67±0.94 58.40±0.33
OpSubEMT 58.96±0.70 58.79±0.37
TCS (S) 59.57±0.57 59.39±0.81
AllCS 59.74±0.96 58.77±0.44

Table 7: GLUECoS Evaluation: Mean and standard devia
tion of scores after evaluating on 5 seeds. Baseline denotes
the MBERT model without any MLM pretraining.

OpSubHI and select corresponding LEX, EMT
and TCS (S) sentences. MBERT is then trained us
ing the masked language modelling (MLM) objec
tive on text from all 4 systems (including OpSub
HI) for 2 epochs. We also train MBERT on
21K sentences from AllCS (real CS). Finally,
these pretrained models are finetuned on the se
lected GLUECoS tasks. (More details are in Ap
pendix G.)
Monolingual pretraining itself shows improve

ment due to domain similarity between GLUECoS
(movie scripts, social media etc) and OpSub. As
in Khanuja et al. (2020), pretraining on CS text im
proves performance for both NLI and SA. Among
the synthetic methods, TCS (S) has consistently
better scores than LEX and EMT. For SA, TCS (S)
even outperforms pretraining on AllCS.

5.4 Other Objective Evaluation Metrics
BERTScore. BERTScore (Zhang* et al., 2020)
is a recentlyproposed evaluation metric for text
generation. Similarity scores are computed be
tween each token in the candidate sentence and
each token in the reference sentence, using con
textual BERT embeddings (Devlin et al., 2018) of
the tokens. We use this as an additional objec
tive metric to evaluate the quality of the sentences
generated using TCS. We use the real monolin
gual sentence as the reference and the generated
CS sentence as the candidate, excluding sentences
from TCS (S) and TCS (U) that exactly match the
real sentence. Since our data is HindiEnglish CS
text, we use Multilingual BERT (MBERT) (Pires
et al., 2019) for highquality multilingual represen
tations.
Table 8 outlines our main results on the test

set of AllCS. TCS sometimes generates purely
monolingual sentences. This might unfairly tilt
the scores in favour of TCS since the reference
sentences are also monolingual. To discount for
such biases, we remove sentences generated by
TCS (U) and TCS (S) that are purely monolingual
(Row label “Mono” in BERTScore). Sentences
having <UNK> tokens (labeled “UNK”) are also
filtered out since these tokens are only generated
by TCS for outofvocabulary words. “UNK &
Mono” refers to applying both these filters.
EMT lines consistently show the worst perfor

mance, which is primarily due to the somewhat
poor quality of translations involved in generat
ing these lines (refer to Appendix B). With remov
ing both monolingual and <UNK> tokens, we ob



Evaluation Metric Real LEX EMT TCS (S) TCS (U)

BERTScore

All (3500) 0.812 0.796 0.627 0.764 0.788
Mono (3434) 0.812 0.782 0.623 0.755 0.772
UNK (1983) 0.809 0.804 0.636 0.827 0.846

UNK & Mono (1857) 0.808 0.785 0.633 0.813 0.821

BERTbased Classifier |Sentences| 4767 12393 12484 12475 12475
Accuracy(fake) 42.76 96.52 97.83 80.31 88.62

Diversity Gzip (D) 22.13 24.12 33.17 21.37 17.59
SelfBLEU 61.3 29.7 24.6 63.6 64.2

Table 8: (a) BERTScores on test split of AllCS. Each row corresponds to a different data filter. The numbers in parenthesis
denote the number of sentences in the data after filtering. (b) Accuracies from the classifier for samples generated by various
methods as being fake. The |Sentences| refer to size of dataset for each system. TCS models have the lowest accuracy among
synthetic methods. (c) Diversity Scores for different techniques using Gzip and SelfBLEU based diversity measures.

serve that TCS (U) and TCS (S) yield the highest
BERTScores, even outperforming the BERTScore
on real data obtained from the Turkers.

BERTbased Classifier. In this evaluation, we
use MBERT (Pires et al., 2019) to build a classi
fier that distinguishes real CS sentences from syn
thetically generated ones (fake). When subject to
examples from highquality generators, the classi
fier should find it hard to tell apart real from fake
samples. We add a fully connected layer over the
MBERT base architecture that takes the [CLS] to
ken as its input to predict the probability of the sen
tence being real or fake. Fake sentences are drawn
from the union of TCS (U), TCS (S), AllCSLEX
and AllCSEMT. In order to alleviate the class im
balance problem, we oversample the real sentences
by a factor of 5 and shuffle the data. The model
converges after training for 5 epochs. We see in Ta
ble 8 that the classification accuracy of whether a
sample is fake or not is lowest for the outputs from
TCS among the different generation techniques.

Measuring Diversity. We are interested in find
ing out how diverse the predictions from TCS are.
We propose a simplemeasure of diversity in the CS
variants that is based on how effectively sentences
can be compressed using the gzip utility.7 We con
sidered using Byte Pair Encoding (BPE) (Gage,
1994) as a measure of data compression. How
ever, BPE operates at the level of individual words.
Two word sequences ‘w1 w2 w3‘ and ‘w3 w2 w1‘
would be identically compressed by a BPE tok
enizer. We would ideally like to account for such
diversity and not discard this information. gzip
uses LempelZiv coding (Ziv and Lempel, 1977)
that considers substrings of characters during com
pression, thus allowing for diversity in word order

7http://www.gzip.org/

ing to be captured.
Our diversity measure D is simply the follow

ing: For a given set of CS sentences, run gzip on
each sentence individually and sum the resulting
file sizes (S1). Next, paste all the CS sentences into
a single file and run gzip on it to get a file of size
S2. Then, D = S1−S2. SmallerD scores indicate
larger diversity. If the variants of a sentence are
dissimilar to one another and hence very diverse,
then S2 would be large thus leading to smaller val
ues of D. Table 8 shows the diversity scores for
different techniques. Both TCS (S) and TCS (U)
have a higher diversity score compared to LEX
and EMT. TCS (U) exceeds even the responses re
ceived viaMTurk (Real) in diversity. We note here
that diversity, by itself, is not necessarily a desir
able trait. Our goal is to generate sentences that are
diverse while being natural and semantically mean
ingful. The latter properties for text from TCS (S)
and TCS (U) have already been verified in our hu
man evaluation study.
Zhu et al. (2018) propose selfBLEU score as a

metric to evaluate the diversity of generated data.
However, using selfBLEU is slightly problematic
in our setting as systems like LEX that switch
words at random positions would result in low
selfBLEU (indicating high diversity). This is in
deed the case, as shown in Table 8  LEX, EMT
give lower selfBLEU scores as compared to TCS.
However, note that the scores of the TCS models
are comparable to that of real CS data.

6 Conclusions

In this work, we present a neural translation model
for CS text that transduces monolingual Hindi sen
tences into realistic HindiEnglish CS text. Text
generated by our model is evaluated using a num
ber of different objective metrics, along with LM

http://www.gzip.org/


and NLI tasks, and a detailed human evaluation
study. The role of synthetic data in such mod
els merits a more detailed investigation which we
leave for future work.
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A MTurk Task Details

Figure 4: A snapshot of the web interface used to collect
MovieCS and TreebankCS data via Amazon Mechanical
Turk.

Figure 4 depicts the portal used to collect data us
ing Amazon’s Mechanical Turk platform. The col
lection was done in two rounds, first for Movie
CS and then for TreebankCS. With TreebankCS,
the sentences were first divided into chunks and
the Turkers were provided with a sentence grouped
into chunks as shown in Figure 4. They were re
quired to switch at least one chunk in the sentence
entirely to English so as to ensure a longer span of
English words in the resulting CS sentence. A sug
gestion box converted transliterated Hindi words
into Devanagari and also provided English sugges
tions to aid the workers in completing their task.
With MovieCS, since there were no chunk labels
associated with the sentences, they were tokenized
into words.
On MTurk, we selected workers with HIT ap

proval rate of 90% and location restricted to coun
tries with significant Hindi speakers  Australia,
Bahrain, Canada, India, Kuwait, Malaysia, Mauri
tius, Myanmar, Nepal, Netherlands, New Zealand,
Oman, Pakistan, Qatar, Saudi Arabia, Singapore,
South Africa, Sri Lanka, Thailand, United Arab
Emirates, United Kingdom, United States of Amer
ica. It was clearly specified in the guidelines that
the task must be attempted by native Hindi speak
ers. Each response was manually checked before
approving. Turkers were paid $0.15 for working
on 5 sentences (roughly takes 34 minutes). This
amounts to $2.25$3/hr which is in the ballpark of

a median hourly wage on MTurk of ~$2/hr (Hara
et al., 2018).

B EMT lines generation

Following the methodology described in (Bhat
et al., 2016), we apply clause substitution method
ology to produce EMT sentences. To create
OpSubEMT, we start with the gold English sen
tence that contains either embedded sentence
clauses (S) or subordinate clauses (SBAR) and
swap one or more of them with their Hindi trans
lations to produce an EMT synthetic CS sentence.
Due to the lack of gold English translations avail
able for AllCS sentences, we used the Google
Translate API to first acquire their English transla
tion. Many of the sentences in AllCS are shorter
in length and do not contain the abovementioned
clauses. So, we also considered inverted declar
ative sentence clauses (SINV), inverted question
clauses (SQ) and direct question clauses (SBARQ)
in addition to S and SBAR. In case none of the
clause level tags were present, we considered the
following phrase level tags as switching candi
dates: Noun Phrase (NP), Verb Phrase (VP), Ad
jective Phrase (ADJP) and Adverb Phase (ADVP).
Owing to the shorter length and lack of clause
level tags, we switch only one tag per sentence for
AllCSEMT. The choice of which clause to switch
was made empirically by observing what switches
caused the resulting sentence to resemble a natu
rally occurring CS sentence. One can also use the
toolkit provided by Rizvi et al. (2021) for generat
ing EMT lines.

C Implementation Details: TCS

As an initialisation step, we learn the token embed
dings (Mikolov et al., 2013) on the same corpus
using skipgram. The embedding dimension was
set to be 256 and the encoderdecoder layers share
these lookup tables. Adam optimiser with a learn
ing rate of 0.0001was used to train the model. Val
idation BLEU scores on (HI → ENG/CS) transla
tions and (EN → HI → EN) reconstructions were
used as metrics to save the best model for TCS (S)
and TCS (U), respectively.

D Human Evaluation

The 150 samples evaluated in Table 5 were taken
entirely from test/validation splits. We undertook
an alternate human evaluation experiment involv
ing 100 real CS sentences and its corresponding



CS sentences using LEX, EMT, TCS (U) and TCS
(S). Out of these 100 sentences, 40 of them came
entirely from the test and validation splits and the
remaining 60 are training sentences which we fil
tered tomake sure that sentences generated by TCS
(S) and TCS (U) never exactly matched the real
CS sentence. The table below (Table 9) reports the
evaluations on the complete set of 100 sentences
from 5 datasets. We observe that the trend remains
exactly the same as in Table 5, with TCS (S) being
very close to real CS sentences in its evaluation and
TCS (U) trailing behind TCS (S).

Method Syntactic Semantic Naturalness

Real 4.36±0.76 4.39±0.80 4.20±1.00
TCS (S) 4.29±0.84 4.30±0.89 4.02±1.16
TCS (U) 3.96±1.06 3.93±1.13 3.52±1.45
EMT 3.47±1.25 3.53±1.23 2.66±1.49
LEX 3.10±2.16 3.05±1.35 2.01±1.32

Table 9: Mean and standard deviation of scores (between 1
and 5) from 3 annotators for 100 samples from 5 datasets.

E Language Model Training

The AWDLSTM language model was trained for
100 epochs with a batch size of 80 and a sequence
length of 70 in each batch. The learning rate was
set at 30. The model uses NTASGD, a variant of
the averaged stochastic gradient method, to update
the weights. The mixreview decay parameter was
set to 0.9. This implies that the fraction of pretrain
ing batches being considered at the end ofn epochs
is 0.9n, starting from all batches initially. Two de
cay coefficients {0.8, 0.9} were tested and 0.9 was
chosen based on validation perplexities.

F Codeswitching examples

The sentences in Table 10 have been generated on
the test and validation splits of AllCS as well as
the OpSub dataset. Overall, they depict how the
model is able to retain context over long sentences
(e.g. “and social sectors”) and performmeaningful
switching over large spans of words (e.g. “old con
versation writer media”, “regularly security prac
tices”). We also note that at times, the model uses
words which are different from the natural English
translations of the sentence, which are appropriate
within the context of a CS sentence (e.g. the use of
“manage” instead of “manageable”).

G Details of GLUECoS Experiments

For masked language modeling (MLM), we select
the default parameters for the learning rate (5e5),

batch masking probability (0.15), sequence length
(512). The models are trained for 2 epochs with a
batch size of 4 and gradient accumulation step of
10. For task specific fine tuning we rely on the offi
cial training scripts provided by GLUECoS repos
itory. 8 We train the models for 5 seed (0,1,2,3
and 4) and report mean and standard deviations of
Accuracy and F1 for NLI and Sentiment Analysis
respectively

H Additional Dataset and Experiments

Dataset The additional corpus on which exper
iments were performed is OPUS100 (Zhang
et al., 2020) which was sampled from the original
OPUS corpus (Tiedemann, 2012). The primary
difference between OpSub and OPUS100 is that
OpSub does not have manual Hindi translations
of its sentences and requires the use of an external

8https://github.com/microsoft/GLUECoS

Generated using MovieCS

सारे पुराने बातचीत लेखक मी डया और राजनीित में जमा हो गए हैं
(All the old conversation writers have gathered in media
and politics)
सारेold conversation writer mediaऔरpoliticsमें जमा हो गए हैं
क्या बात है तुमने आखर बार कब पाट क थी
(What is the last time you had a party)
क्या बात है तुमनेlast time party कब क थी
तू अपने कमरे में जा यार आप दोनों कृपया शांत हो जाओ
(You go to your room man please relax both of you)
तू अपनेroom में जा यार आप दोनोंplease calm down

Generated using TreebankCS

यह पॉिलसी पित प ी के संयु नाम से थी
(This policy was in the joint name of husband and wife)
यहpolicy husband wife केjoint नाम से थी
स्कूलों में तो िनयिमत रूप से सुरक्षा अभ्यास कराए जाने लगे हैं
(Regular safety exercises are being conducted in schools)
schools में तोregularly security practice कये जाने लगे हैं
इसमें बुिनयाद कृ ष और सामा जक के्षऽों में सावर्जिनक िनवेशभी शािमल है
(It also includes public investment in basic agricultural
and social sectors)
इसमें बुिनयाद farming and social areas मेंpublic investment
भी शािमल है

Generated using OpSub

इस सम्मेलन का चौथा वषय मानव पूंजी वकास उपायों पर बल देना है
(The fourth theme of this conference is to emphasize
human capital development measures.)
इस सम्मेलन काfourth subject human पूंजीdevelopment
उपायों पर बल देना है
देश का आंत रक कजर् ूबन्ध कए जाने योग्य सीमा में है
(The country’s internal debt is within manageable limits)
देश काinternal loan manage कए जाने योग्य सीमा में है

Table 10: More examples of codeswitching generated by
TCS (U).



API such as Google Translate for translation.
However, OPUS100 has manually annotated
sentences as part of the corpus. The source
of OPUS100 ranges from movie subtitles to
GNOME documentation to the Bible. We extract
340K sentences from OPUS100 corpus after
thresholding on length (515). We offer this
comparison of systems trained on OpSub and
OPUS100 to show how our models fare when
using two datasets that are very different in their
composition.

LEX lines generation. Generation of LEX lines
is straightforward and requires only a bilingual
lexicon. For each monolingual Hindi sentence
we generate ~5 sentences on OPUS100 resulting
in OPUS100LEX (to roughly match the size of
OpSubLEX).

EMT lines generation. For generation of EMT
lines we have two strategies depending on the
availability of tools (parsers, translation service,
aligners, etc). The first strategy requires a
translation service (either inhouse or publicly
available). We substitute the embedded clause
from parse trees of English sentences with their
Hindi translations. This strategy does not require a
parallel Hindi corpus and has been previously used
for generating OpSubEMT and AllCSEMT
(Described in detail in Appendix B).

The second strategy, that is used to generate
OPUS100EMT, requires a parallel corpus, a
constituent parser in English and a word aligner
between parallel sentences. OPUS100 sentences
are aligned using SimAlign (Jalili Sabet et al.,
2020) and embedded clauses from parse trees of
English sentences are replaced by Hindi clauses
using word aligners. Here again, for each mono
lingual Hindi sentenece we generate ~5 EMT
sentences (strategy2) on OPUS100 resulting in
OPUS100EMT.

Curriculum Training Experiments. Table 11
provides a walkthrough of systems using various
training curricula that are evaluated for two differ
ent choices of datasets  OpSub vs OPUS100 dif
fering in the generation of EMT lines. The models
are evaluated using BLEU (Papineni et al., 2002)
scores computed on the test set of AllCS. The vo
cabulary is generated by combining train sets of all

Curriculum X=OpSub X=OPUS100

O AllCS (S) 19.18 19.14

A IITB + X (S) 1.51 0.29
B A | AllCS (S) 27.84 25.63

C A | XHI + XLEX (U) 15.23 14.17
C1 C | AllCS (U) 32.71 31.48
C2 C | AllCS (S) 39.53 37.51

D A | XHI + XEMT (U) 17.73 15.03
D1 D | AllCS (U) 35.52 33.91
D2 D | AllCS (S) 43.15 40.32

Table 11: BLEU score on (HI → CS) for different curricula
measured on AllCS (test). X | Y represents starting with
model X and further training using dataset Y. Values from
Table 3 are replicated here for ease of comparison.

datasets to be used in the curricula. It is 126,576
when X = OpSub and 164,350 when X = OPUS
100 (OpSub shows a higher overlap in vocabu
lary with AllCS compared to OPUS100). The
marginal difference in System O for OpSub and
OPUS100 is attributed to differences in the size
of the vocabulary. OpSub being conversational in
nature, is a better pretraining corpus compared to
OPUS100 as seen from System A, the sources of
the latter being GNOME documentations and The
Bible, apart from movie subtitles.
The results for C1, C2, D1, D2 are consistently

better when X = OpSub versus when X = OPUS
100. We choose to highlight four models from
Table 11 which together demonstrate multiple
usecases of TCS in Table 12. TCS (LEX)
refers to (C2, X=OpSub), TCS (U) refers to (D1,
X=OpSub), TCS (S) refers to (D2, X=OpSub) and
TCS (simalign) refers to (D2, X=OPUS100).

Language Modelling Experiments. Table 13
shows results from LM experiments (using the
same setup as in Section 5.1). The values for TCS
(S) and TCS (U) have been reproduced here for
ease of comparison. (Note that TCS (simalign)
does not perform as well as the other models since

TCS Model UseCase

TCS (LEX) Easy generation of sentences,
only requires a bilingual lexicon

TCS (U) and TCS (S) Requires parser and translation service
Does not require parallel data

TCS (simalign) Requires parser along with parallel data
Alignment can be generated
using SimAlign

Table 12: Use cases for different TCS models.



the sentences for training the language model are
generated on OpSub for all the models here, but
TCS (simalign) has been trained on OPUS100.)

Evaluation Metrics. Table 14 shows the results
of the three objective evaluation metrics on the ad
ditional TCS models. In comparison with the re
sults in Table 8, we observe that TCS (LEX) and
TCS (simalign) perform comparably to TCS (S)
and TCS (U) on all metrics.

Evaluation Metric TCS (LEX)TCS (simalign)

BERTScore

All (3500) 0.773 0.768
Mono (3434) 0.769 0.753
UNK (1983) 0.832 0.829

UNK & Mono (1857) 0.817 0.822

BERTbased Classifier |Sentences| 12475 12475
Accuracy(fake) 84.17 82.98

Diversity Gzip (D) 19.62 19.83
SelfBLEU 56.3 59.8

Table 14: Evaluation metrics for the additional TCS models.
Please see Table 8 for a comparison with other models.

Pretraining Corpus | Train | Test PPL Test PPL
OpSub AllCS

OpSub + TCS (LEX) 4.03M 57.24 268.54
OpSub + TCS (U) 3.99M 57.45 271.19

OpSub + TCS (simalign) 4.03M 60.01 314.28
OpSub + TCS (S) 3.96M 56.28 254.37

Table 13: Test perplexities on OpSub and AllCS using dif
ferent pretraining datasets.


