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Abstract
Disfluencies commonly occur in conversational
speech. Speech with disfluencies can result in
noisy Automatic Speech Recognition (ASR)
transcripts, which affects downstream tasks
like machine translation. In this paper, we pro-
pose an adversarially-trained sequence-tagging
model for Disfluency Correction (DC) that uti-
lizes a small amount of labeled real disfluent
data in conjunction with a large amount of un-
labeled data. We show the benefit of our pro-
posed technique, which crucially depends on
synthetically generated disfluent data, by evalu-
ating it for DC in three Indian languages- Ben-
gali, Hindi, and Marathi (all from the Indo-
Aryan family). Our technique also performs
well in removing stuttering disfluencies in ASR
transcripts introduced by speech impairments.
We achieve an average 6.15 points improve-
ment in F1-score over competitive baselines
across all three languages mentioned. To the
best of our knowledge, we are the first to utilize
adversarial training for DC and use it to correct
stuttering disfluencies in English, establishing
a new benchmark for this task.

1 Introduction

Disfluencies are words that are part of spoken ut-
terances but do not add meaning to the sentence.
Disfluency Correction (DC) is an essential pre-
processing step to clean disfluent sentences before
passing the text through downstream tasks like ma-
chine translation (Rao et al., 2007; Wang et al.,
2010). Disfluencies can be introduced in utterances
due to two main reasons: the conversational na-
ture of speech and/or speech impairments such as
stuttering. In real-life conversations, humans fre-
quently deviate from their speech plan, which can
introduce disfluencies in a sentence (Dell et al.,
1997). Stuttering speech consists of involuntary
repetitions or prolongations of syllables which dis-
turbs the fluency of speech.

Conversational disfluencies occur once every 17
words (Bortfeld et al., 2001) whereas a 2017 US

study1 shows that roughly 1% of the population
stutters and predominantly consists of children.
One out of every four children continues to suf-
fer from this disorder lifelong. When such speech
passes through an ASR system, readability of the
generated transcript deteriorates due to the pres-
ence of disfluencies in speech (Jones et al., 2003).

Shriberg (1994) defines the surface structure of
disfluent utterances as a combination of reparan-
dum, interregnum and repair. The reparandum con-
sists of the words incorrectly uttered by the speaker
that needs correction or complete removal. The
interregnum acknowledges that the previous utter-
ance may not be correct, while repair contains the
words spoken to correct earlier errors.

Type Example
Conversational Well, you know, this is a

good plan.
Stuttering Um it was quite fu funny

Table 1: Examples and surface structure of disfluent
utterances in conversational speech and stuttering. Red
- Reparandum, Blue - Interregnum, Orange - Repair

Data in DC is limited because of the time and
resources needed to annotate data for training
(Appendix ??). Through this work2, we provide a
method to create high-quality DC systems in low
resource settings. Our main contributions are:

1. Improving the state-of-the-art in DC in Indian
languages like Bengali, Hindi and Marathi
by 9.19, 5.85 and 3.40 points in F1 scores,
respectively, using a deep learning framework
with adversarial training on real, synthetic and
unlabeled data.

2. Creating an open-source stuttering English
DC corpus comprising 250 parallel sentences

3. Demonstrating that our adversarial DC model
can be used for textual stuttering correction

1https://www.nidcd.nih.gov/health/stuttering
2https://github.com/vineet2104/

AdversarialTrainingForDisfluencyCorrection
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with high accuracy (87.68 F1 score)

2 Related work

Approaches in DC can be categorized into
noisy channel-based, parsing-based, and sequence
tagging-based approaches. Noisy channel-based
approaches rely on the following principle: a dis-
fluent sentence Y can be obtained from a fluent sen-
tence X by adding some noise. These models try
to predict the fluent sentence X given the disfluent
sentence Y (Honal and Schultz, 2004; Jamshid Lou
and Johnson, 2017; Johnson and Charniak, 2004).
Parsing-based approaches jointly predict the syn-
tactic structure of the disfluent sentence along
with its disfluent elements (Honnibal and Johnson,
2014; Jamshid Lou and Johnson, 2020; Rasooli
and Tetreault, 2013; Wu et al., 2015; Yoshikawa
et al., 2016). Sequence tagging-based approaches
work on the following hypothesis: every word in a
disfluent sentence can be marked as fluent/disfluent.
These methods work best for shorter utterances and
perform optimally for real-life conversational DC
(Hough and Schlangen, 2015; Ostendorf and Hahn,
2013; Zayats et al., 2016). Moreover, sequence-
tagging based methods require far less labeled data
to perform well, compared to the other two meth-
ods. Our approach to DC focuses on treating it as
a sequence tagging problem rather than a machine
translation task. The objective is to accurately clas-
sify each word as either disfluent or fluent, and
create fluent sentences by retaining only the flu-
ent words. The lack of labeled data for DC in
low-resource languages has prompted the use of
semi-supervised methods and self-supervised tech-
niques (Wang et al., 2018; Wang et al., 2021). DC
has also been studied as a component in speech
translation systems, and thus its effect has been
analyzed in improving the accuracies of machine
translation models (Rao et al., 2007; Wang et al.,
2010). Synthetic data generation for DC has also
received attention recently. These methods infuse
disfluent elements in fluent sentences to create par-
allel data for training (Passali et al., 2022; Saini
et al., 2020). Our work is an extension of Kundu
et al. (2022), which creates the first dataset for DC
in Bengali, Hindi and Marathi. We use this dataset
to train our adversarial model to improve over the
state-of-the-art in these languages. To the best of
our knowledge, we are the first to model DC to
correct stuttering ASR transcripts.

3 Types of Disfluencies

There are six broad types of disfluencies encoun-
tered in real life - Filled Pause, Interjection, Dis-
course Marker, Repetition or Correction, False
Start and Edit. Although these are common in
conversational speech, stuttering speech consists
mainly of Filled Pauses and Repetitions. This sec-
tion describes each type of disfluency and gives
some examples in English.

1. Filled Pauses consist of utterances that have
no semantic meaning.
Example - What about the uh event?

2. Interjections are similar to filled pauses, but
their inclusion in sentences indicates affirma-
tion or negation.
Example - Ugh, what a day it has been!

3. Discourse Markers help the speaker begin
a conversation or keep turn while speaking.
These words do not add semantic meaning to
the sentence.
Example - Well, we are going to the event.

4. Repetition or Correction covers the repeti-
tion of certain words in the sentence and cor-
recting words that were incorrectly uttered.
Example - If I can’t don’t go to the event
today, it is not going to look good.

5. False Start occurs when previous chain of
thought is abandoned, and new idea is begun.
Example - Mondays dont work for me, how
about Tuesday?

6. Edit refers to the set of words that are uttered
to correct previous statements.
Example - We need three tickets, I’m sorry,
four tickets for the flight to California.

4 Architecture

The lack of labeled data for DC is a significant hur-
dle to developing state-of-the-art DC systems for
low-resource languages. Passali et al. (2022), Saini
et al. (2020) and Kundu et al. (2022) introduced
data augmentation by synthesizing disfluencies in
fluent sentences to generate parallel data. In this
work, we propose a deep learning architecture that
uses adversarial training to improve a BERT-based
model’s token classification accuracy of whether a
token is disfluent or not. Our proposed architecture
uses real, synthetic and unlabeled data to improve
classification performance.

Our model, Seq-GAN-BERT, is inspired by
Croce et al. (2020), who first used a similar model



for sentence classification. It consists of three mod-
ules: a BERT-based encoder (Devlin et al., 2019),
discriminator and generator. The encoder converts
the input sequence X = (X1, X2, ...Xn) into en-
coded vector representations (Hreal). Simultane-
ously, the generator creates fake representations
(Hfake) from Gaussian random noise (Z), mimick-
ing the real data that passes through the encoder.
The discriminator aims to solve a two-pronged ob-
jective: i) predicting every word in the sentence to
be disfluent or fluent and ii) determining whether
the input from the generator comes from real or
fake data.

Figure 1: Architecture of the Seq-GAN-BERT model.
Green nodes denote fluent class probabilities, red nodes
denote disfluent class probabilities and the orange node
shows the probability of classifying a sample as real (1)
or fake (0).

4.1 Adversarial Training
The discriminator loss comprises two loss terms.
The first loss is supervised by the token classifica-
tion task, while the second loss is defined by the
real/fake data identification task. Such adversarial
training also allows the model to use unlabeled data
during training. For unlabeled samples, only the
real/fake data identification task is executed. The
generator continuously improves during training
and produces fake representations that resemble
actual data. The competing tasks of the genera-
tor (to create better representations to fool the dis-
criminator) and the discriminator (to perform token

classification for labeled sentences and real/fake
identification) compels the MuRIL encoder to gen-
erate better representations of input sentences. The
resulting high-quality representations allow the dis-
criminator to identify disfluent words with a high
accuracy.

5 Task 1: Few Shot DC in Indian
Languages

To test our proposed architecture, we train the
model on the few-shot DC task for Indian lan-
guages. The current state-of-the-art performance
in Bengali, Hindi and Marathi DC is obtained by
training a large multilingual transformer model us-
ing synthetic data created by injecting disfluencies
in fluent sentences using rules (Kundu et al., 2022).
We train our Seq-GAN-BERT model using the au-
thors’ multilingual real and synthetic data.

5.1 Dataset

Our dataset consists of parallel disfluent-fluent sen-
tences in three Indian languages. We use 300,
150 and 250 real disfluent sentences in Bengali,
Hindi and Marathi, respectively and generate 1000
synthetic disfluent sentences in Bengali and 500
synthetic disfluent sentences each in Hindi and
Marathi each by infusing disfluent elements in
fluent transcriptions using a rule-based approach
(Kundu et al., 2022). The synthetic data was cre-
ated such that the percentage of disfluent words
across 3 languages remains constant.

5.2 Text Processing and Training Details

Text pre-processing is performed by removing
punctuations, lower-casing and creating word-level
tokens for parallel sentences. The Seq-GAN-BERT
model uses a combination of labeled and unlabeled
data comprising real and synthetically generated
disfluent sentences in different languages. We try
different combinations of monolingual and multi-
lingual data. Our experiments show that the best
model for Bengali uses real and synthetic Ben-
gali sentences as labeled data and disfluent Hindi
sentences as unlabeled data. The best model for
Hindi uses real and synthetic Hindi sentences as
labeled data and disfluent Bengali sentences as un-
labeled data. The best model for Marathi uses real
and synthetic Marathi sentences as labeled data
and disfluent Bengali sentences as unlabeled data.
The BERT-based transformer that we use as an en-
coder is the MuRIL model pretrained on English
and many Indian languages (Khanuja et al., 2021).



MuRIL representations for Indian languages are
of superior quality compared to other multilingual
Transformer-based models like mBERT (Devlin
et al., 2019).

5.3 Evaluation
To evaluate our model, we train baselines for DC
in zero-shot and few-shot settings. ZeroShot is
based on Kundu et al. (2022). FewShot is based on
training MuRIL on all real and synthetic data avail-
able in the chosen language, along with labeled
data in a related Indian language (for Bengali, ei-
ther Hindi or Marathi can act as a related Indian
language). FewShotAdv is the Seq-GAN-BERT
model without any unlabeled data. Although mod-
els like BiLSTM-CRF have been as alternatives
to transformers for sequence tagging, direct fine-
tuning often performs better (Ghosh et al., 2022).
Performance of DC systems is usually measured
with F1 scores (Ferguson et al., 2015; Honnibal and
Johnson, 2014; Jamshid Lou and Johnson, 2017).
Table 3 shows the comparison of various baselines
against our model.

Lang Model P R F1
Bn ZeroShot 93.06 62.18 74.55

FewShot 66.37 68.20 67.27
FewShotAdv 84.00 78.93 81.39
Our model 87.57 80.23 83.74

Hi ZeroShot 85.38 79.41 82.29
FewShot 82.99 81.33 82.15

FewShotAdv 88.15 83.14 85.57
Our model 89.83 86.51 88.14

Mr ZeroShot 87.39 61.26 72.03
FewShot 82.00 60.00 69.30

FewShotAdv 84.21 64.21 72.86
Our model 85.34 67.58 75.43

Table 2: Comparing the performance of baselines and
our model on DC across Bengali (Bn), Hindi (Hi) and
Marathi (Mr); ZeroShot - Monolingual supervised train-
ing, FewShot - Multilingual supervised training, Few-
ShotAdv - Adversarial training without unlabeled data,
Our model - Multilingual adversarial training with unla-
beled data; P = Precision, R = Recall

Our model, Seq-GAN-BERT with unlabeled sen-
tences, performs better than the other baselines and
establishes a new state-of-the-art for DC in Ben-
gali, Hindi and Marathi. Our model benefits from
adversarial training using both unlabeled data and
multilingual training. The observed precision and
recall scores of these models during testing show
that without adversarial training, the model per-

forms with high precision but low recall. However,
with adversarial training, the model improves its
recall without compromising much on precision.
The zero-shot model (without adversarial training)
classifies less words as disfluent but at a high accu-
racy, whereas the few-shot model (with adversarial
training) correctly classifies more words as disflu-
ent.

6 Task 2: Stuttering DC in English

We have already shown how our proposed archi-
tecture learns better semantic representations for
DC using small amounts of manually annotated
labeled data. In this section, we present a simi-
lar experiment in Stuttering DC (SDC). We define
SDC as the task of removing disfluent elements
in spoken utterances that are caused by stuttering
speech impairment. Since this is the first attempt to
model stuttering correction as disfluency removal,
we make our version of the existing dataset for stut-
tering publicly available for research purposes and
provide various baseline comparisons. We show
that our model generalizes well for this task and
is able to remove disfluent elements in stuttering
speech.

6.1 Dataset

The UCLASS dataset is created by transcribing
audio interviews of 14 anonymous teenagers who
stutter and consists of two released versions (How-
ell et al., 2004). Both versions of this corpus are
available for free download and research. We cre-
ate 250 disfluent-fluent parallel sentences from the
available transcripts of such utterances. The dataset
is released here3.

6.2 Processing & Training

We follow the same steps as before (section 5.2).
Stuttered syllables are represented in the text, sepa-
rated by a space delimiter and treated as a disfluent
term. This gold-standard dataset is split into 150
sentences for training and 100 sentences for testing.
The training sentences are used as labeled data for
the model and unlabeled data from Switchboard
(Godfrey et al., 1992) or Kundu et al. (2022) is used
to facilitate multilingual training. Our model per-
forms best when we use synthetic Bengali disfluent
sentences as unlabeled data.

3https://github.com/vineet2104/
AdversarialTrainingForDisfluencyCorrection
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Model P R F1
SupervisedGold 89.11 78.08 83.23

SupervisedGoldSWBD 87.34 86.50 86.92
SupervisedGoldLARD 74.58 86.33 80.02

AdversarialSWBD 85.76 84.17 84.96
AdversarialLARD 86.21 84.82 85.51

Our model 87.26 88.10 87.68

Table 3: Comparing baselines and our model for En-
glish stuttering DC; SupervisedGold - Supervised train-
ing on gold standard dataset, SupervisedGoldSWBD
and SupervisedGoldLARD - Supervised training on
gold standard dataset and DC data, AdversarialSWBD
and AdversarialLARD - Adversarial training without
unlabeled data, Our model - Multilingual Adversarial
training with unlabeled data; P = Precision, R = Recall

6.3 Evaluation

We use five baselines to evaluate our model’s per-
formance. SupervisedGold uses the gold standard
data and trains the MuRIL model for token clas-
sification. SupervisedGoldSWBD and Supervised-
GoldLARD uses a combination of the gold stan-
dard dataset along with 1000 disfluent sentences
from the Switchboard corpus and LARD dataset
(Passali et al., 2021). AdversarialSWBD and Ad-
versarialLARD uses the Seq-GAN-BERT to train
on a combination of labeled sentences from gold
standard corpus and unlabeled sentences from the
Switchboard corpus and LARD dataset. Table 4
displays our results averaged over multiple seeds.

Our model outperforms all baselines. Improve-
ment over AdversarialLARD shows the benefit of
multilingual training. We also used synthetic Hindi
or Marathi data while training, but achieved lower
scores than the AdversarialLARD baseline.
Summary of results: In this paper, we evaluate
our proposed architecture for low-resource DC us-
ing two tasks: 1) DC in Indian languages and 2)
Stuttering DC in English. Our model outperforms
competitive baselines across both these tasks estab-
lishing a new state-of-the-art for Indian languages
DC. The adversarial training in our model improves
the representations of a BERT-based encoder for
disfluent/fluent classification. We show that multi-
lingual training benefits such tasks as the generator
is trained to create better representations of fake
data to fool the discriminator.

7 Conclusion
Adversarial training using unlabeled data can ben-
efit disfluency correction when we have limited
amounts of labeled data. Our proposed model can

also be used to correct stuttering in ASR transcripts
with high accuracy.

Future work lies in integrating speech recogni-
tion models like Whisper4 or wav2vec 2.0 (Baevski
et al., 2020) to create end-to-end speech-driven DC
models. It will also be insightful to see how this
model transfers to other low-resource languages
with different linguistic properties.
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9 Limitations

There are two main limitations of our work. Firstly,
since there are no known baselines for Indian lan-
guage DC except Kundu et al. (2022), other ar-
chitectures might perform better than our model.
Our claim that Seq-GAN-BERT tries to maximize
the information gained from unlabeled sentences
is supported by superior performance over base-
lines defined in this work and other related models.
Secondly, due to the lack of good quality labeled
datasets, our test sets contained only 100 sentences.
However, we believe that the consistency of our
high-performing models across languages and mul-
tiple seeded experiments presents a positive sign
for DC in low-resource settings.
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The aim of our work was to design an adversarial
training-enabled token classification system that is
able to correctly remove disfluencies in text. The
datasets used in this work are publicly available
and we have cited the sources of all the datasets
that we have used.
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