
INV ITED
P A P E R

Conditional Random Fields
in Speech, Audio, and
Language Processing
In this paper, we provide a tutorial overview of conditional random

fieldsVa discriminative sequence modelVand their applications

in audio, speech, and language processing.

By Eric Fosler-Lussier, Senior Member IEEE, Yanzhang He, Preethi Jyothi, and

Rohit Prabhavalkar, Graduate Student Member IEEE

ABSTRACT | Conditional random fields (CRFs) are probabilistic

sequence models that have been applied in the last decade to a

number of applications in audio, speech, and language pro-

cessing. In this paper, we provide a tutorial overview of CRF

technologies, pointing to other resources for more in-depth

discussion; in particular, we describe the common linear-chain

model as well as a number of common extensions within the

CRF family of models. An overview of the mathematical tech-

niques used in training and evaluating these models is also

provided, as well as a discussion of the relationships with other

probabilistic models. Finally, we survey recent work in speech,

audio, and language processing to show how the same CRF

technology can be deployed in different scenarios.

KEYWORDS | Automatic speech recognition (ASR); natural

language processing (NLP); random fields; statistical learning

I . INTRODUCTION

In many speech, audio, and language processing problems,

a system must extract a higher level description of a se-

quential input signal; the exact type of input and extracted

information depends on the problem definition. As one

example, consider determining whether word sequences

in running text correspond to a person or a place (or

neither): in isolation, we can identify that Johnston, by

virtue of its capitalization in English, is likely a proper

noun, but it could be a person, a city, or a street. Similarly,

the abbreviation Dr. is ambiguous between Doctor and

Drive. In sequence, however, we can combine this evi-

dence and predict that Dr. Johnston is likely a person, while
Johnston Dr. is likely a street name.

Probabilistic sequence modeling has long been used to

tackle a variety of these speech, audio, and language tasks:

for example, the well-known hidden Markov model

(HMM) has been the backbone of automatic speech recog-

nition (ASR) research for decades. In this tutorial, we ex-

plore conditional random fields (CRFs)Va model that

allows for combination of local information to predict a
global probability model over sequences. Originally pro-

posed in 2001 [1], this model has been applied to a signi-

ficant number of tasks across these domains.

CRFs are really a class of models: one purpose of this

paper is to document the specific properties of CRFs across

different implementations. In the original Lafferty et al.
paper [1], a CRF is defined as a discriminative model that

predicts the global probability of a sequence of random
variables, assuming a first-order Markov dependency be-

tween the variables (also known as a linear-chain model);

the probability structure depends on a log-linear combi-

nation of evidence ‘‘features’’ derived from the input. This

is typically the first style of model that comes to mind

when CRFs are mentioned. However, there are many

modeling choices that are encapsulated in the dense de-

scription above. Several researchers have sought to extend
CRFs in one or more directions because of the particular

problem they are working with: examples include devel-

oping richer graph structures that model collections of
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variables, introducing hidden structure into the model,
changing the optimization criteria, or adjusting the proba-

bility structure to include binary switching variables rather

than pure log-linear probabilities. In this paper, we take

the view that all of these variants fall under the general

class of CRFs, and we provide a roadmap that can help

readers understand the properties of CRFs, both in the

canonical linear-chain case, as well as some of the exten-

sions that have been studied in the literature.
CRFs were originally developed in the machine learn-

ing community and evaluated using natural language pro-

cessing (NLP) tasks; as we discuss in Section VI, the model

has since found utility in the speech and audio processing

areas. This paper also explores the relationships of CRFs to

other types of models utilized in these other fields [parti-

cularly HMMs and multilayer perceptrons (MLPs)]:

knowing these relationships can allow researchers to
cross-fertilize techniques, such as deep-learning CRFs [2],

which hybridize deep learning techniques for MLPs with

the sequence modeling of CRFs. We also point to various

resources for further reading, including additional tutorial

material [3] and work describing the relationships between

HMMs and CRFs [4], [5].

In the next section, we describe the historical develop-

ment of CRFs; we also discuss the particular properties
that are attributed to linear-chain CRFs and how those

properties have been extended in subsequent research.

Section III gives a more in-depth view of the mathematics

behind linear-chain CRFs, including training and decoding

algorithms, defining feature functions for describing

observations, and methods of avoiding overfitting. We

then extend the discussion to graphical structures that are

not linear chain in Section IV, and examine the relation-
ships to other classifier technologies in Section V. With

this background in mind, we then turn to specific appli-

cations in audio, speech, and language processing in

Section VI, followed by concluding remarks.

II . HISTORICAL PERSPECTIVE
AND ANALYSIS

The initial impetus for the development of CRFs was the

desire to construct direct, discriminative models of hidden

sequences that depend on the observations. In this section,

we first describe the progression from HMMs to maximum

entropy Markov models (MEMMs) and then to CRFs, as

laid out by Lafferty et al. [1]. In order to illustrate the

model, we draw on an example from the classic HMM

paper of Rabiner [6], and show how the parameterizations
of the three models differ.

After providing the historical overview of CRF develop-

ment, we break down the model and describe its compo-

nent properties, which allows us to understand more fully

the assumptions in the model described in [1], as well as

see how variants of the model might fit into the CRF

family.

A. Why Were CRFs Developed?
We begin our discussion of CRF development by re-

calling Rabiner’s tutorial on HMMs [6]. Rabiner motivates

the power of the HMM statistical model using a ball-and-

urn analogy: consider a set of n urns that holds balls of

several colors; the distributional mix of ball colors differs

from urn to urn. At every time step, a ball is selected from

an urn and its color announced (and then replaced), and

then with some probability the selector moves to a differ-
ent urn; this process continues to generate a sequence of

observations (Fig. 1). Crucially, which urn the ball is se-

lected from is hidden from the observer; only the sequence

of ball colors is reported to the observer.

Throughout this paper, we will be using a sequence

S ¼ fs1; s2; . . . ; sTg to represent hidden states of various

problems (usually the quantity that one would like to pre-

dict) and O ¼ fo1; o2; . . . ; oTg to represent a sequence of
observation variables. In Section VI, we introduce each

problem by defining the values that S and O can take on. For

example, Rabiner’s ball-and-urn problem can be specified as:

Ball-and-Urn Problem

S: Sequence of urns
O: Color of balls

In order to understand the assumptions in the ball-and-

urn problem better, let us lay out the statistical assump-

tions made in the HMM. Briefly stated, HMMs compute a

joint probability between a set of hidden labels ðSÞ and

observations ðOÞ

PðS;OÞ ¼
YT

t¼1

Pðstjst�1ÞPðotjstÞ (1)

Fig. 1. The ball-and-urn problem: three urns with associated transition

probabilities and observation distributions over yellow (speckled),

red (solid), or blue (striped) balls. A ball is drawn from an urn and the

selector transitions probabilistically to a successor urn. Each urn is

equally likely to be selected as the first urn to draw from.
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where the joint probability is composed of local probabili-

ties over the state sequence transitions ðPðstjst�1ÞÞ and

observation probabilities ðPðotjstÞÞ.1 The corresponding

graphical model for this factorization can be seen in

Fig. 2(a).

The HMM can be considered a generative model in that

the distributions for observations are determined by the
states; the states are seen as generating the observations.2

We assume that the distributions remain stationary

over time (which is true for the ball-and-urn problem,

since we replace the ball after selecting it). To make this

more concrete, let us pick some distributions over yellow,

blue, and red balls for n ¼ three urns, as depicted in Fig. 1.

Equation (1) can be used to compute the probability

distribution over joint ðS;OÞ sequences; for example,

Pð111222333; YYRBBRBYRÞ ¼ 2:7e�7. For recognition

tasks where we want to find a sequence S given a fixed

O, finding the S that maximizes PðS;OÞ also maximizes the

conditional probability PðSjOÞ ¼ PðS;OÞ=PðOÞ.
The HMM decomposition of the joint probability

requires finding a good generation model of the likelihood

of observations given each individual label PðotjstÞ.
McCallum et al. observed that this seems antithetical to

the idea of predicting a label sequence; in essence, we

want to directly compute the conditional label posterior

PðSjOÞ by predicting the current label given the previous

label and the current observation [7]:

PðSjOÞ ¼
YT

t¼1

Pðstjst�1; otÞ: (2)

The corresponding graphical model, referred to as an

MEMM, can be seen in Fig. 2(b); note the inversion of the

arrow directions, which indicate that the hidden state dis-

tributions now are conditioned on the observations.

Observations are now taken as fixed (and, hence, are

shaded in the figure). Table 1 demonstrates some interesting

properties of the observation-dependent transition proba-
bility distribution corresponding to the ball-and-urn prob-

lem. Observing yellow when the previous selection came

from urn 1 is a good indicator that the current selection also

comes from urn 1 (and similarly for blue and urn 2). Red is a

poor discriminator of which urn a ball came from; when red

is observed the distribution reverts to the prior Pðstjst�1Þ.
Why might it be advantageous to model transitions

dependent on observations? The HMM model assumes
that observations are drawn from a state independently

and identically distributed (IID), which might not hold for

all situations.3 Consider a modification to the ball-and-urn

1For time t ¼ 1, we assume an unconditional prior distribution over
the starting state Pðs1js0Þ ¼ Pðs1Þ; equivalently, we can add a start symbol
and assume Pðs0 ¼ startÞ ¼ 1. We carry this notational convenience
throughout the rest of the paper.

2It is important to draw the distinction here between models and
training criteria: generative models can be trained using discriminative
criteria that improve end task performance.

Fig. 2. Graphical models for three formalisms describing

factorizations of relationships between S and O. HMMs treat

observations as random variables with associated probability

distributions, and thus are unshaded. MEMMs and CRFs treat

observations (shaded) as fixed and thus do not model the distribution.

The CRF factorization given here mimics the MEMM factorization

in that there is an observational dependence on the transitions.

(a) HMM graphical model describing PðS;OÞ. (b) MEMM graphical

model describing PðSjOÞ. (c) Linear-chain CRF graphical model

describing PðSjOÞ.

Table 1 MEMM Ball-and-Urn Probability Distributions for Noninitial States

Assuming IID Distribution of Observations

3Speech observations are not IID, for example: two adjacent frames in
a steady-state vowel will be relatively close in observation space.

Fosler-Lussier et al. : Conditional Random Fields in Speech, Audio, and Language Processing

1056 Proceedings of the IEEE | Vol. 101, No. 5, May 2013



rule: the selector continues to draw from the same urn
until she draws a red ball, at which point one of the other

two urns is selected at the next turn (with equal probabi-

lity). Under these rules, Pð11; RYÞ ¼ 0, but the HMM will

give a nonzero probability.4

Since it can be difficult to predict a current label

conditioned on both the previous label and the current

observation, McCallum et al. use a maximum entropy dis-

tribution to model the component probabilities, in which
an exponential model is used to relate the observations and

previous label to the current label via a set of weighted

descriptive feature functions [7]5:

Pðstjst�1; otÞ ¼
exp

P#func
i �ifiðot; st�1; stÞ

� �
Zðot; st�1Þ

(3)

where #func is the number of feature functions in the

model, and Zðot; st�1Þ ¼
P

s0t
expð

P#func
i �ifiðot; st�1; s0tÞÞ

is the partition function, or normalization constant, that

ensures that the probability distribution sums to one. The

feature functions of the MEMM can be as simple as binary

indicators of particular transitions between labels (ignor-
ing the observations), or complicated functions of the ob-

servation; the feature functions must be defined by the

system designer and should reflect knowledge of the prob-

lem at hand. The learned weights �i indicate the impor-

tance of each function in relating a label to the previous

label and current observation.6

For the ball-and-urn problem, a single set of binary

indicator feature functions can be used to relate (3) to the
probabilities in Table 1. For example, to model Pðst ¼
1jst�1 ¼ 1; ot ¼ YÞ, we can define a feature function

f1ðot; st; st�1Þ ¼
1; if ot ¼ Y; st ¼ 1; st�1 ¼ 1

0; otherwise.

�
(4)

Similarly, we can have indicator functions f2 select for

ðot ¼ Y; st ¼ 2; st�1 ¼ 1Þ, f3 select for ðot ¼ Y; st ¼ 3;
st�1 ¼ 1Þ, etc. By setting �1 ¼ logð0:92Þ; �2 ¼ logð0:02Þ;
�3 ¼ logð0:07Þ, and so forth, we can encode the probabili-

ties in Table 1 using this weighted feature representation.7

However, one potential downfall of MEMMs is what is
known as the label bias problem [9]. Factoring PðSjOÞ into

terms of Pðstjst�1; otÞmeans that if there are very few states

st that can follow st�1, then the role of ot in distinguishing

them is very diminished. In the extreme case when only

one value of st (say a) can follow st�1 ¼ b, then Pðst ¼
ajst�1 ¼ b; otÞ ¼ 1 8ot, and thus Pðst 6¼ ajst�1 ¼ b; otÞ ¼ 0;

the impact of ot is completely ignored by the model.8 In

essence, the problem arises because every state is required
to be locally normalized to sum to a probability distribu-

tion [cf., the denominator in (3)].

CRFs were first introduced by Lafferty et al. [1] to

address the label-bias problem found in MEMMs. CRFs are

still conditional models [i.e., they directly compute

PðSjOÞ], but handle the label bias problem by jointly mod-

eling the S sequence and globally normalizing over the

entire sequence structure. The CRF factorization for an
HMM-like structure (often termed a linear-chain CRF)9

can be given by

PðSjOÞ ¼ 1

ZðOÞ
YT

t¼1

�stateðst; otÞ�transðst; st�1; otÞ (5)

where ZðOÞ is a normalization term which ensures that (5)

forms a valid probability distribution, and �ð�Þ are nonne-

gative potential functions over state/observation config-

urations. State potentials associate observations with a

particular state; transition potentials associate pairs of
states with observations. Similar to MEMMs, one can

model these as an exponential family function, thus ensur-

ing that each potential is positive

�stateðst; otÞ ¼ exp
X#func

i

�ifiðst; otÞ
 !

(6)

�transðst; st�1; otÞ ¼ exp
X#func

i

�ifiðst; st�1; otÞ
 !

: (7)

Fig. 2(c) describes the graphical model corresponding to
this linear-chain CRF. Note that the model is undirected

(indicating relationships between nodes defined by poten-

tial functions rather than conditional probability distribu-

tions); the cliques in the graph structure define the domain

of the potential functions associated with the global

4The HMM can model this situation by subdividing the state space
into two states for each urnVthe ‘‘stay with this urn’’ state and the ‘‘leave
this urn’’ stateVand keeping separate distributions for each.

5The notation in this equation differs somewhat from that in [7] in
that the previous state is explicitly represented, following notation in
subsequent work [1].

6It should be noted that multinomial logistic regression has exactly
the same mathematical form as maximum entropy classification; in both
systems weights have exactly the same role and are estimated similarly [8].

7Note the Z-term will always sum to one in this case, since we already
have a normalized probability distribution.

8Whether this is a problem in any particular domain is really an
empirical question.

9Nonlinear-chain CRFs are discussed in Section IV; we also restrict
observations here to a single frame ot for convenience of comparison to
HMMs, but, in general, potential functions can be defined over arbitrary
input O; see (5).
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probability distribution.10 As a generalization, one can just
define all functions over the maximal clique �ðst; st�1; otÞ,
merging (6) into (7), and allow the associated functions to

ignore any subset of the variables, providing for definitions

of state or transition bias functions that ignore the

observations.

The conditional probabilities for the MEMM can be

used to define one parameter setting for the ball-and-urn

problem: for any pair of states and observation found in
Table 1, we can define a potential function �ðst; st�1; otÞ ¼
�ifiðst; st�1; otÞ where �i ¼ log Pðstjst�1; otÞ and fiðst; st�1;
otÞ ¼ 1 iff ot is observed and we are hypothesizing a tran-

sition from st�1 to st.
11 This represents only one possible

parameter setting corresponding to the same probability

distribution; because potential functions in CRFs are only

constrained to be nonnegative (unlike MEMMs, which

have a requirement for all transitions from a state to sum to
1 as a probability distribution), there are multiple potential

function values that can lead to the same global probability

distribution [5].12

In short, there are two basic changes going from

MEMMs to CRFs. First, the observations O have an impact

both on the hidden states individually [see (6)] and on the

transitions between the states [see (7)]. Second, note the

change in the normalization constant ZðOÞ: instead of local
normalization for each state (as in the MEMM), we com-

pute the accumulated potentials over all possible S
sequences. For linear-chain CRFs, there is an efficient

forward–backward computation to compute ZðOÞ outlined

by Lafferty et al. They also demonstrate improvement over

MEMMs using a part of speech tagging task [1].

B. What Are the Properties of CRFs?
We presented above the historical progression that in-

troduced CRFs into the NLP community, and described

various concepts that were an integral part of the develop-

ment of that line of research. We can tease apart four

interrelated parts within a CRF system; different users of

CRFs often stress one part or another as a desirable pro-
perty over some baseline model (e.g., HMMs), and in fact

some claims are really combinations of multiple proper-

ties. Take the claim that Lafferty et al. make about condi-

tional models such as CRFs [1]:

‘‘A conditional model specifies the probabilities of

possible label sequences given an observation se-

quence. Therefore, it does not expend modeling ef-
fort on the observations, which at test time are fixed

anyway.’’

In the above quote, there is a conflation between two
different (but interrelated) aspects of the statistical sys-

tem: model structure and training criteria (which we de-

fine below); Lafferty suggests that the generative model

structure of HMMs (where observations are considered

to be ‘‘generated’’ by hidden states) requires them to

expend ‘‘modeling effort’’ on capturing all of the observed

data. However, this is only true when HMMs are trained

with a generative criterion (e.g., maximum likelihood),
which maximizes the likelihood of the observations given

the states. Discriminative training criteria allow the

association between observations and hidden states to be

focused on separating hidden states, rather than on mod-

eling the data [10]. Heigold et al. argue quite elegantly

that HMMs and CRFs with the same model structure

will give the same theoretical results given equivalent

training criteria [5]. This is elaborated on further in
Section V.

We can decompose a CRF into four components: model

structure, parameterization, inference methods, and pa-

rameter estimation.

Model structure: The structure of a model is given by the

random variables in the system and the connections (fac-

tors) that the modeler wants to draw between the variables.

For an HMM, there is one factor for the relationships be-
tween observations O and hidden states Sðfðot; stÞ ¼
PðotjstÞÞ, and another factor for the relationships between

hidden states ðfðst; st�1Þ ¼ Pðstjst�1ÞÞ. Heigold et al. point

out that when the CRF does not have observational

dependence on transitions, the factorization of a linear-

chain CRF, and an HMM is identical (state observations

are factors fðot; stÞ, and transition functions are factors of

the form fðst�1; stÞ), and they provide proofs that HMMs
and CRFs of this form can be transformed into one

another [5].

In Rabiner’s ball-and-urn example, the discrete HMM

probability distribution can be represented in a log-linear

CRF by having a set of observation functions fðst ¼ n; ot ¼
cÞ ¼ 1 iff the state value is n and the observation is c at

time t (and 0 otherwise), with the weight �s¼n;o¼c ¼
log Pðo ¼ cjs ¼ nÞ. A similar weighted bias feature can be
set up for the transition probabilities as well.

However, for linear-chain CRFs that have transition

dependence on observations (similar to MEMMs), factori-

zation equivalence with HMMs no longer holds. As

pointed out above, such CRFs have feature functions that

relate states to observations ðfðst; otÞÞ, as well as separate

functions that relate transitions to observations (e.g.,

fðst; st�1; otÞ); this factorization allows for a different de-
composition of the joint probability of the hidden varia-

bles. In short, the HMM assumes that st�1 is independent

of ot given st: there is no way for the standard HMM to

represent a covariance of the three variables.13

10A clique is a set of nodes forming a fully connected subgraph in a
graph; in Fig. 2(c), S1 and O1 form one clique, while S1, S2, and O2 form
another clique.

11For example, the weight corresponding to �ð1; 2; YÞ would be
�i ¼ logð0:37Þ.

12Consider the case where all potential functions � are multiplied by a
constant c; this just scales the unnormalized potential score of any
sequence of length T by cT , thus leaving the posterior PðSjOÞ unchanged.

13Again, the state space of the HMM can be augmented to incorporate
this dependence.
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In general, whether using directed graphical models
[e.g., HMMs and other dynamic Bayesian networks

(DBNs)] or undirected graphical models (CRFs), the key

elements of the model structure are the factorizations re-

presented by the graph. For undirected models, factoriza-

tion is given in terms of the cliques of the graph. For

directed models, the factorization is given by the

dependence between a particular variable and its parents.

It is possible to use richer graph structures beyond those
seen in Fig. 2(c); for example, hidden conditional random

fields (HCRFs) introduce intermediate hidden variables

into the graph that marginalize over different substate

configurations. These richer models are explored further

in Section IV.

Another point of departure for CRFs is that

Lafferty et al.’s definition generally allows for any depen-

dence on the observations ðfðst;OÞ; fðst�1; st;OÞÞ, which
would require explicit dependencies and generative proba-

bility distributions in an HMM-like DBN representation.

What makes this feasible is that the O are generally fixed

observations, rather than treated as random variables; this

distinction has implications for the probability distribu-

tions that are modeled.

Parameterization: While the factorizations of the

probability distributions of the HMM and simple CRFs
can be equivalent, the parametric forms of the models

typically are not the same. In an HMM, the state

transition factor Pðstjst�1Þ is typically represented by a

stochastic transition matrix, and the observation factor

PðotjstÞ is often modeled with a conditional probability

table for discrete observations, or a distribution such as a

mixture of Gaussians for continuous observations. For a

CRF, factors are typically combined using a log-linear
model [cf., (5)–(7)]. In general, the joint probability of

hidden variables in any Markov random field is given by

defining positive potential functions over the configura-

tion cliques in the graph. By defining the potential

function as the exponential of a sum of weighted features

(log-linear model), we can ensure that every potential is

positive.

It is important to note that we are indicating the typical
forms of probability distributions for HMMs and CRFs.

One could specify a different form for PðotjstÞ in an HMM,

for example, using discrete vector quantization proba-

bilities. Similarly, one could use models outside the ex-

ponential family to derive clique potentials in a CRF. Yet

most CRF implementations take the form of the log-

linear model because it is relatively easy to estimate param-

eters according to the conditional maximum-likelihood
criterion.

Parameter estimation: The typical method for estimat-

ing parameters is to iteratively update parameters with one

of a number of methods (e.g., iterative scaling or gradient

ascent) to optimize the conditional maximum likelihood

(CML) of the correct S sequence conditioned on O, directly

optimizing PðSjOÞ. Again, the Lafferty et al. criticisms of

HMMs are based on the traditional method of maximum-
likelihood training, which optimizes PðS;OÞ via the

expectation–maximization (EM) algorithm [63]. However,

other discriminative techniques for training HMMs have

become popular in fields such as ASR; as we discuss later,

the CML criterion for CRF training is equivalent to the

maximum mutual information estimation (MMIE) crite-

rion for training discriminative HMMs.14

As a practical matter, CML training of linear-chain
CRFs, which utilize a forward–backward recursion similar

to that of ML training for HMMs, can train discriminative

models relatively efficiently in terms of space; many

implementations of MMIE (and other criteria) for HMMs

require the generation of competitor lattices, which can be

cumbersome to store. We discuss the CML training

criterion further in Section III.

Inference mechanism: The forward–backward recur-
rence mentioned above is a nice property of linear-chain

CRFs: like an HMM, linear-chain CRFs have exact infer-

ence mechanisms, both in terms of the alpha–beta recur-

rences for parameter updating as well as a Viterbi

algorithm for determining best paths (also discussed in

Section III). However, like nonpolytree DBNs, CRFs

with richer structures may require inference that is ex-

ponential in the number of hidden variables. Fortunately,
approximate inference mechanisms, such as Monte Carlo

sampling or beamwidth pruning techniques, can be suc-

cessfully applied to richer CRF structures, such as factorial

CRFs [11]. Such algorithms are described further in

Section IV.

By considering these four components as separate, but

interrelated, contributions to CRF technology, one can

consider how variants of the original linear-chain CRF
model may fit into the CRF family. In Section III, we take a

closer look at probability distributions, parameter estima-

tion, and inference in linear-chain CRFs, followed by a

discussion of models that move beyond simple linear-chain

structures.

III . THE MATHEMATICS BEHIND
LINEAR-CHAIN CRFs

The mathematical formalism for training and decoding

CRFs has been extensively discussed elsewhere [1], [4],
[11]–[13]; in this section, we provide a summary of the

mathematics for parameter estimation and inference for

linear-chain CRFs for those who are familiar with tra-

ditional HMM techniques. We begin by describing the

process for estimating the parameters of a linear-chain

CRF in Section III-A1. We then describe the process for

decoding the most likely state assignment given a trained

14Different fields will use the terms CML or MMIE training; for
consistency with previous CRF papers, we will refer to this criterion as
CML in this paper.
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CRF in Section III-A2. We defer a discussion of inference
in nonlinear-chain structured CRFs until Section IV. In

Section III-B, we describe some of the issues involved in

defining feature functions for CRF systems. We end this

section with a discussion of various techniques that have

been employed in order to avoid overfitting to training

data in Section III-C.

A. Training and Decoding
In Section II-A, we noted that the probability distribu-

tion of PðSjOÞ (over an entire sequence) is defined over the

cliques in the undirected graph representing the CRF [14].
For a linear-chain CRF, (5)–(7) show that the factors of the

probability distribution are defined over single states and

pairs of states. More generally, we can rewrite (5)–(7) as

follows:

PðSjOÞ ¼
QT

t¼1 �ðst; st�1;O; tÞ
ZðOÞ

¼
QT

t¼1 exp
P

i �ifiðst; st�1;O; tÞ
� �

ZðOÞ

¼
exp

PT
t¼1

P
i �ifiðst; st�1;O; tÞ

� �
ZðOÞ (8)

where i ranges over the set of possible descriptions of the

input O, and S corresponds to the unknown state se-

quence. Some functions fi can be degenerate functions
that ignore some of their inputs: this enables CRFs to have

bias terms for states and transitions (ignoring the input O),

or be state-only functions (ignoring st�1); generally func-

tions that are conditioned on input O will only utilize a

window of O around the current frame t (and sometimes

only ot).

1) Estimating Parameters of Linear-Chain CRFs: The ob-
jective of the linear-chain CRF is, given a set of obser-

vations O and the corresponding states S, to maximize the

conditional likelihood of the labels given the observations

PðSjOÞ.15 Given (8), the question is how to estimate the

�i parameters, which weight the contributions of each

function to the probability of the sequence S. To estimate

the parameters, we try to find the parameters that max-

imize PðSjOÞ, where S is the correct label sequence; in-
creasing PðSjOÞ will inherently decrease the probability

PðS0jOÞ of any incorrect sequence S0.16 To do this,

optimizing the CML criterion takes partial derivatives of

the log probability L ¼ log PðSjOÞ with respect to the

parameters ð@ log PðSjOÞ= @�iÞ in forming the likelihood
gradient rL17

rL ¼ r� log PðSjOÞ ¼

..

.

@
@�i

log PðSjOÞ
..
.

2
6664

3
7775 (9)

and then find the zero of the gradient, which maximizes

PðSjOÞ, since it is concave [11].
Computing the gradient: Let the vector of functions

fiðst; st�1;O; tÞ at a particular time t be denoted fðS;O; tÞ
and the vector of weights L ¼ ½�i�. Since L does not de-

pend on t, following the conventions of [13], we can use

FðS;OÞ ¼
PT

t¼1 fðS;O; tÞ to rewrite PðSjOÞ [see (8)] and L

PðSjOÞ ¼ exp L � FðS;OÞð Þ
ZðOÞ

L ¼L � FðS;OÞ � log ZðOÞ: (10)

For any one particular �i, the partial derivative of the log

likelihood is

@L
@�i
¼ FiðS;OÞ � @

@�i
log ZðOÞ

¼ FiðS;OÞ �
X

S0

exp L � FðS0;OÞð Þ
ZðOÞ FiðS0;OÞ

¼ FiðS;OÞ �
X

S0
PðS0jOÞFiðS0;OÞ (11)

and, thus, the gradient is

rLL ¼ FðS;OÞ �
X

S0
PðS0jOÞFðS0;OÞ: (12)

What this equation says is that when the difference be-

tween the observed functions and the expected value of the

functions according to the probability distribution is zero,

we have reached CML. The gradient over an entire train-

ing corpus can be computed by summing the gradients for

each utterance. For those used to more traditional ASR
terminology, Hifny and Renals [15] cast the log-likelihood

15One should take care not to confuse CML [maximizing PðSjOÞ] with
the more traditional maximum likelihood, which is often cast in terms of
maximizing the joint probability PðS;OÞ or the data likelihood PðOjSÞ.

16See the relationship to MMI estimation in Section V-A.

17Given a training set of N IID examples, T ¼ fðS1;O1Þ; � � � ; ðSN ;
ONÞg, the conditional log likelihood of the entire training set can be written
as L ¼

P
i log PðSijOiÞ, and thus rL ¼

P
ir� log PðSijOiÞ. Since the

gradient of the log-likelihood for the entire training set can be obtained by
summing together the gradients for all training examples, the derivations in
this section only describe the gradient computation for a single training
example.
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derivative as being a difference between stochastic counts
of observations of the correct hypothesis and of all in-

correct hypotheses: for state-level features, the state

occupancy probabilities (typically known as gamma proba-

bilities in HMM parlance [6]) determine the weighting of

each observation; summing these weighted observations

for the correct path and all paths gives the two types of

counts.

The remaining question is how to efficiently compute
the expected value of the features, that is, the second term

in (12). For those acquainted with computing parameters

of Gaussian acoustic models in HMM systems, the answer

is exactly analogous: compute the local probability of being

in a state st at a particular time t (for state-only features) or

the local probability of a transition between st�1 and st (for

transition features), and multiply in the value of the

observation feature to get the expected value. Sha and
Pereira have a particularly nice formulation that sums the

potentials for partial sequences in matrices via alpha–beta

recurrences [13]: build a transition matrix Mt such that

Mt½st�1; st� ¼ exp L � fðst; st�1;O; tÞð Þ: (13)

The value of each element Mt½st�1; st� of the transition

matrix is the weighted contribution of all functions related

to that transition.18 We can compute an alpha–beta recur-

rence, where the row vector alpha represents the accumu-

lated potentials (not probabilities) from the beginning of

the sequence, and the row vector beta represents the

backward-accumulated potentials from the end of the
sentence (again using notation from [13])

At ¼
At�1Mt; 0 G t � T

1; t ¼ 0

�

B>t ¼
Mtþ1B

>
tþ1; 1 � t G T

1; t ¼ T:

�
(14)

Given the alphas and betas we can now efficiently compute

both the expectation of the features and the normalization

term ZðOÞ

X
S0

PðS0jOÞFðS0;OÞ ¼
X

t

At�1ðft �MtÞB>t
ZðOÞ ;

where ZðOÞ ¼ 1>AT (15)

where the � operator is component-wise multiplication.

Using the gradient for parameter estimation: Finding
the zero of the gradient function directly is intractable, so

many optimization techniques have been used for param-

eter estimation. Various papers have made comparisons of

the different types of techniques in the NLP domain [3],

[13], and the reader is referred to those works for a longer

discussion.

The original approach used by Lafferty et al. [1] is an

iterative scaling technique [in particular, the improved
iterative scaling (IIS) algorithm] and is reminiscent of

maximum entropy classifier training techniques [16]. This

approach makes weight updates at every pass through the

training data that are guaranteed to increase the posterior

PðSjOÞ; the size of the update is related to the ratio of the

empirical feature count to the expected count under the

current model. Statistics can be collected in parallel across

the corpus (much like standard HMM techniques), allow-
ing for parallelized training.

However, iterative scaling techniques are generally

slow. Hifny and Renals [15] propose a variant of the IIS

algorithm called the approximate iterative scaling (AIS)

algorithm, in which each parameter � is only allowed to

join the model (i.e., deviate from zero) when the absolute

value of the partial derivative for that � is greater than

some threshold �. When a sparse feature representation is
used (Section III-B), this can lead to a significant accele-

ration in training.

Several authors have pointed out that iterative scaling

techniques are generally very slow to converge because

they do not pay attention to additional information, such as

the second derivative of the likelihood [3], [12], [13], [17].

The Limited-memory Broyden–Fletcher–Goldfarb–Shanno

(LBFGS) algorithm [18] estimates the second derivative of
the likelihood (i.e., what will increase the likelihood the

fastest) by keeping track of previous gradients. Conjugate

gradient methods have also been used to modify the update

equation so that the update direction is a linear combination

of the gradient and the previous search direction [13].

In contrast to the second-order techniques described

above, other techniques used to speed convergence include

stochastic gradient [4] techniques and Rprop [19]. In sto-
chastic gradient-based techniques, the trainer randomly

samples the corpus and updates the weights after collect-

ing the gradient for some small n number of utterances

(often n ¼ 1). The net effect of having more frequent

weight updates is that the weights converge much faster

(on some tasks, more than an order of magnitude faster).

The disadvantage to this technique is that for small n, one

cannot effectively parallelize over training utterances; it
may be more efficient to collect gradients from a training

set using a large compute cluster and then use the batch

update techniques listed above. A different strategy for

fast-convergence batch training is embodied in the Rprop

algorithm [19]: rather than directly using the gradient,

Rprop uses the sign of each component of the gradient to

determine the direction of weight adjustment. The amount

18Here we assume that state functions are folded into this matrix by
adding in a state vector to each column of the matrix, although it is more
efficient to factorize the state functions separately in the subsequent
alpha–beta computations.
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of adjustment does not depend on the gradient itself,
rather on a step size that increases as long as the sign of the

partial derivative does not change; the magnitude of the

weight update decreases (and sign changes) with a change

in gradient so that the system will come increasingly close

to the zero gradient. Rprop is designed to be robust against

large changes in the gradient (which can be caused by

feature scaling issues; see Section III-B. While this algo-

rithm was developed for training MLPs, it has been found
to be effective in training CRFs as well [20].

While this paper has focused mostly on training with

the CML criterion, it is possible to train CRFs with other

optimization criteria.19 As an example, we have the per-

ceptron update [23], which replaces the expected feature

count in (11) with the features corresponding to the current

best hypothesis, effectively requiring a Viterbi decoding

rather than the full forward decoding described above. This
has the effect of minimizing prediction error on the train-

ing set: once the best hypothesis is the same as the refer-

ence hypothesis, the system no longer updates the weights.

Other optimization criteria such as the minimum classifi-

cation error (MCE) criterion [24] or a minimum tag error

criterion (approximating the sentence labeling error and

inspired by the popular minimum phone error (MPE) cri-

terion [25] in speech recognition) [26] can also be used to
train the model. An alternative approach to training CRFs is

based on maximizing the margin between the reference

labeling and all competing labelings [27]. We elaborate

further on these large-margin techniques in Section III-C.

2) Decoding Linear-Chain CRFs: In decoding, we are

interested in computing the most likely assignment to the

variables S given O

S�¼ arg max
S

PðSjOÞ

¼ arg max
S

exp
PT

t¼1

P
i �ifiðst; st�1;O; tÞ

� �
ZðOÞ : (16)

S i n c e t h e n o r m a l i z a t i o n c o n s t a n t ZðOÞ ¼P
S0 expð

PT
t¼1

P
i �ifiðs0t; s0t�1;O; tÞÞ remains constant re-

lative to an input O for any hypothesis S, computing the

most likely assignment S� does not require the computa-
tion of ZðOÞ

S� ¼ arg max
S

exp
XT

t¼1

X
i

�ifiðst; st�1;O; tÞ
 !

: (17)

Although the maximization in (17) involves an exponential

number of state sequences S, the problem can be effi-

ciently decomposed over the edges of the linear-chain
CRF, thus allowing S� to be computed efficiently with dy-

namic programming using the Viterbi algorithm. In parti-

cular, computing S� can be accomplished by a recursion

similar to the alpha–beta recurrence in (14)

�t½s� ¼
maxs0 Mt½s0; s��t�1½s0�; 0 G t � T
1; t ¼ 0.

�
(18)

Notice that the recursions presented above are identical to

the alpha recursion presented in (14) with summation

being replaced by maximization. Once the �t½s� have been

computed for all t; s, the most likely assignment of state

labels S� can be computed starting from time T

s�t ¼
arg maxs �T½s�; t ¼ T
arg maxs Mtþ1 s; s�tþ1

� �
�t½s�; 1 � t G T.

�
(19)

B. Defining Feature Functions for
Log-Linear Representations

As noted above, log-linear models are a popular way to
realize potential functions in CRFs; we make heavy refer-

ence to the functions fiðS;O; tÞ that relate the observations

with states at various time steps t. The definition of func-

tions varies from problem to problem (we describe how

feature functions are defined for different problems in

Section VI), but some general observations can be made

about differing classes of features.

The features described in the ball-and-urn problem in
Section II-A were based on discrete observations; direct

models of observations are represented via binary func-

tions representing the presence ðf ¼ 1Þ or absence ðf ¼ 0Þ
of the observation, such as ‘‘is the previous word X?’’ [28],

[29]. More general binary functions can be developed

based on the domain: for example, in developing a part of

speech tagger for German, observing that a word is capi-

talized and not sentence initial may be a strong indicator
that the word has a nominal form; words in English ending

in -ing are more likely to be participles.

Binary functions also play a role when observations are

not involved: binary functions that are defined on the

state–space variables are known as bias terms, and can be

thought of playing an equivalent role to the Markovian

prior in an HMM.

When the observations are continuous (for example, in
speech recognition applications where the observations

may be a multidimensional representation of the spectrum

such as MFCCs), the modeler needs to take into consid-

eration how to represent these in the log-linear model.

One approach is to use the features directly: for example,

when the original input and their squares are used, the

feature representation provides the sufficient statistics for

19Discriminative training techniques for HMMs also have a close
connection to CRF training; see [21] and [22] for a review.
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a Gaussian model [4], [5]. An example for this conversion
is discussed in Section V. The quadratic transformation of

MFCC features in this system can be thought of as an

expansion of the original MFCC features to a higher di-

mensional space: this is necessary because the phonetic

classes are not log-linearly separable.

It is possible to combine discrete and continuous ob-

servations in one system (e.g., Chien and Chueh [30] aug-

mented the observation statistics above with n-gram
statistics over the state symbols). It is also possible to

use external classifiers to convert the original features into

a feature representation that may be more amenable to

log-linear classification. One approach is to use the log

likelihoods and their partial derivatives from maximum-

likelihood trained Gaussians to provide a scoring space

relating continuous observations to the underlying states

[31], [32]. Posterior classifiers have also been used to
assign the probability of putatively important events

describing the input, giving a softer version of the binary

indicator function [33]. Log likelihoods of sequence

models are usually represented in weighted finite state

transducers (WFSTs) for efficient decoding. Learning of

WFSTs could be achieved by encoding the arc weights as

the features in a CRF, which is trained with the CML

criterion or the perceptron update. Such a discriminative
learning method effectively allows for joint training of

different models composed with WFSTs, e.g., acoustic

models, pronunciation models, and language models for

speech recognition [34]–[36].

Binary indicator functions on discrete inputs, espe-

cially when the observation space is large, lead to a

relatively sparse representation (many feature functions

are zero for a particular input). The continuous functions
described above, however, tend to be lower dimensional,

but dense; most features are nonzero. While theoretically

this has no impact on the algorithm, from an engineering

perspective it is important: using sparse features, it is more

efficient to use sparse matrix multiplication in computing

the recurrences in (14), whereas dense matrix multiplica-

tion packages can speed computation on a multicore

machine for dense features.20 However, continuous obser-
vations can also have sparse representations: for example,

finding the k highest scoring Gaussians [15], [37] or vector

quantizing the observation space [38] can lead to sparse

spaces, which can motivate particular learning algorithms

such as the AIS algorithm described above [15].

An interesting thread running through this line of re-

search is that features can be derived from a first-pass

statistical model, which in effect forms a set of basis func-
tions for a higher dimensional space to facilitate classifi-

cation: divisions between phonetic classes that are not

linearly separable in a low-dimensional space may be se-
parable in the higher dimensional space. In that way, it is

reminiscent of kernel-based techniques for dimensionality

expansion, such as that used in support vector machine

classification [39]. In fact, Lafferty et al. [40] explicitly use

feature functions that are generated via kernel methods: a

kernel CRF (KCRF). In a KCRF, a basis function is used to

construct feature functions from the training data. Since

this can result in a large number of feature functions, a
greedy selection algorithm selects a representative sample

from the possible feature functions that fit the training set.

This technique showed improvements over kernel-based

logistic regression models for protein sequencing [40].

Feature functions in CRFs need not be defined a priori,
but may be learned automatically in a process that is

analogous to feature induction in the hidden layer of an

MLP; features at the input layer are projected nonlinearly
into a higher dimensional space [41]–[43]. These

approaches are closely related to work by Kingsbury

[44], which discusses training MLPs with sequential

classification criteria such as MMI or MPE for neural

network acoustic modeling. Peng et al. [41] observe large

gains over standard CRFs on a protein structure prediction

task using this approach.

Extensions of the linear-chain CRF model based on
recent work on deep architectures in machine learning

have also been explored in the literature. Deep belief

networks [45] incorporate multiple hidden layers, each of

which successively transforms the input representation

into an intermediate hidden layer representation used as

the input to the next layer. A powerful feature of these

models is their ability to learn these hidden representa-

tions in a completely unsupervised fashion; once the hid-
den layer weights have been learned, the entire network

can be trained discriminatively in a supervised manner. In

the deep-structured CRF [46], first- or zeroth-order linear-

chain CRFs are stacked together so that the marginal

probabilities obtained from the outputs of a lower layer

serve as the inputs to the higher layer. The model can be

further extended where label sequences are known but the

corresponding segmentations are unknown [2].
In concluding the discussion on features, it is helpful to

consider some practical aspects of feature design in these

systems. It is clear from the discussion above that CRFs can

utilize a wide range of feature function definitions. How-

ever, the interaction between features and learning rates is

crucial. One important consideration is feature scaling: it

is often beneficial to have most feature activations lie

within a limited range (say, ½0; 1� as in posteriors, or
½�k;þk� for small k, for mean and variance normalized

MFCCs), as bias terms for states and transitions are

typically set to 1; having features in the same range enables

the system designer to use the same learning rate for all

weight updates. The relationship between learning rates

and feature scale is approximately inverse: consider a

single feature system with posterior expð�fÞ=ZðOÞ and a

20For those using off-the-shelf toolkits, it may be important to pay
attention to the internal algorithm to ensure that it matches the desired
feature space.
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scaled version expð�2fÞ=ZðOÞ. To express the same distri-
bution, the 2f system will require � to be half the size;

smaller steps in changing � (i.e., the learning rate) are

required. Wiesler and Ney have shown, with theoretical

analysis and empirical justification, that mean and

variance normalization and decorrelation for features

are important for the good convergence behavior of

gradient-based optimization algorithms for log-linear

models [47].
The weighted sum of the features across a sequence

also becomes an important consideration. If the weighted

sum exceeds 700 or so within a sequence, computing the

forward–backward probabilities will overflow the size of

double-precision floating point using the straightforward

implementation described in Section III-A1.21 This is

typically not an issue for the natural language community,

where sequences are short, but for the ASR community
utterances can easily exceed thousands of frames. Con-

verting all of the operations to log space has the advantage

of allowing many more features, at the cost of training

speed: the matrix-multiply operations in (14) become

much more cumbersome.

C. Avoiding Overfitting
As is noted throughout the machine learning literature,

one of the potential hazards of learning parameters from a

particular training set is overfitting: the parameters will

match the particular training set well but not generalize to
a separate test set. There are four basic techniques that

have been used (alone or in combination) in CRF training

to minimize the effects of overfitting.

The most common approach is regularization: a penalty

term is added to the log likelihood in order to ensure that

the weights of the CRF remain small. A common penalty is

the ‘2-norm, which changes the log likelihood of the sys-

tem [from (10)] to

L‘2-penalized ¼ L � FðS;OÞ � log ZðOÞ �
Xn

i¼1

�2
i

2�2
(20)

where �2 indicates a free parameter that determines the

width of a spherical prior over the weights [1], [3]. When
the partial derivative of the penalized likelihood is taken

with respect to a particular �i (which determines the scale

of the update), the derivative is decreased by �i=�
2. Thus,

for a fixed �2, larger values of �i will receive proportion-

ately smaller increases in the gradient ascent. When �2 is

large, this term becomes increasingly vanishing; for NLP
tasks, a value between 10 and 100 works relatively well

[12], although the sensitivity of the answer to this param-

eter seems to be quite low [3].

Hifny and Renals [15] find, for their sparse augmented

representation, that the ‘1-norm is more appropriate; their

penalized log-likelihood equation takes the form

L‘1-penalized ¼ L � FðS;OÞ � log ZðOÞ � �
Xn

i¼1

j�ij (21)

where � is a parameter used to control the influence of the

‘1 regularizer. This regularizer is called the Lasso penalty,

and they claim that this penalty will often drive many of

the � weights to zero [48]Va very desirable property with
high-dimensional sparse representations.

Another approach to avoiding overfitting is one

proposed for perceptron learning, most recently by Collins

[23], which has been adapted for use in CRFs [4]. The

voted perceptron works by continually maintaining two

sets of weights: the current set of unnormalized weights,

and a running average of all weights maintained by the

systemVin essence, the average of all updates made to the
system during training. In our experience, this technique is

very effective when using stochastic gradient training of

CRFs, because it mitigates the effects of any one individual

example’s updates to the weights; in the iterative scaling

variants of training, updates are withheld until the end of

the training epoch and, thus, all examples have an effect on

the weight update contemporaneously.

Cross-validation techniques on held-out data can also
be used to judge the progress of the training; these tech-

niques have long been used for training, e.g., neural

networks [49]. The held-out set is decoded at set intervals

(often an epoch of the training data). While the log pos-

terior of the labels continues to increase with further

iterations of training, the prediction accuracy on a devel-

opment test set often levels off, and suggests that any

further training will overfit the data. One can combine
these techniques as well (e.g., using weight averaging with

cross validation).

In the context of structured prediction and avoiding

overfitting, it would be amiss not to mention large-margin

approaches: changing the training criterion so that the

margin between the correct label sequence and competing

sequences is maximized, rather than maximizing the

likelihood [27]. Related to this approach are structured
support vector machines (structured SVMs) [50], [51]:

these are similar to CRFs in that both approaches mini-

mize a convex regularized loss function (the negative

regularized conditional log likelihood in (20) is the loss

function for CRFs). The optimization problem in struc-

tured SVMs introduces a max-margin regularization

term and slack variables to prevent overfitting. We refer

21In our experience, standard bookkeeping techniques that renorma-
lize the alpha–beta computation help, but only up to a certain point. The
main issue becomes the computation of ZðOÞ, where the renormalizations
must be taken into account. This issue is discussed in the HMM context
in [6].
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the reader to [52] for a detailed comparison of various
structured discriminative models, particularly in speech

recognition.

IV. GOING BEYOND
LINEAR-CHAIN CRFs

The discussion of CRFs has so far been restricted to linear

chains, so named because they correspond to the graphical

model structure in Fig. 2(c). Before discussing possible

generalizations of the linear-chain CRFs, we first explore

the connection between graphical model structure and the
corresponding probability distributions in greater detail.

The discussion in the following section must necessarily be

brief; for a more detailed description we refer the inter-

ested reader to [53].

A. Undirected Graphical Models and CRFs
An undirected graphical model such as the one in Fig. 3

is intended to represent the conditional independence as-

sumptions inherent in the probability distribution defined

on a set of random variables. The vertices of the graph

represent particular random variables, and there is no loss

of generality in assuming that the vertices are labeled by

the corresponding random variable, as we have done in

Fig. 2(c). We may thus refer to the neighbors of a parti-
cular random variable s in the graph, by a set of vertices

(denoted by NðsÞ) that are adjacent to it in the graph. The

edges in the undirected graphical model encode the condi-

tional independence assumptions among the variables, in

terms of the Markov property: a random variable s is in-

dependent of any other random variable in the graph given

the values of its neighbors. A graph defined on the set of

variables ðS;OÞ is a CRF if the variables in S obey the

Markov property with respect to the graph when condi-
tioned on the observations O [1]

P sjs0;NðsÞ;Oð Þ ¼ P sjN ðsÞ;Oð Þ: (22)

Now, the structure of a graph is completely specified by

stating the set of cliques, C in the graph, where a clique

c 2 C is a set of vertices that are mutually connected by an
edge. A surprising fact about CRFs (and random fields in

general) is that the set of all cliques in the graph also

completely characterizes the set of probability distribu-

tions on the graph variables that satisfy the Markov pro-

perty with respect to the graph. If we denote by sc the set

of random variables in S that correspond to a particular

clique c 2 C, the Hammersley–Clifford theorem [14]

states that a positive probability distribution PðS;OÞ satis-
fies the Markov property in (22) if and only if it can be

written in the form

PðSjOÞ ¼ 1

ZðOÞ
Y
c2C

�ðsc;OÞ (23)

where �ðsc;OÞ are a set of positive functions defined on

the random variables and ZðOÞ is a normalization term that

ensures that (23) forms a valid probability distribution

ZðOÞ ¼
X

S0

Y
c2C

�ðs0c;OÞ: (24)

In the particular case where the graphical structure corre-

sponding to the CRF is a linear chain, the cliques in the

graph correspond to edges st�1, st, and individual nodes st.
Consequently, the corresponding functions are represented

as �ðst�1; st;OÞ and �ðst;OÞ, as defined in (6) and (7).

B. General CRFs
The discussion in the previous section, and (23) in

particular, provides a clear roadmap for the extension of

CRFs beyond a linear-chain structure. All that is required

is that a suitable graphical structure be defined that cap-

tures the conditional independence assumptions that one

would want to hold for the set of random variables S given

the observations O and to choose an appropriate form for

the feature functions �ðsc;OÞ.
In many applications suitably modeled by a general

CRF, it is useful to think of the complete graphical struc-

ture as corresponding to a set of clique templates that are

repeated over time to obtain a dynamic conditional ran-

dom field (DCRF) [3], [11]. This is similar to the process by

which a Bayesian network is unrolled over time to obtain a

dynamic Bayesian network [54]. We use the notion of

Fig. 3. An example of a more general (nonlinear-chain) CRF, with

an interlinked chain of two state variables depending on a sequence of

observations. As we discuss in Section VI-A, such a graphical model

structure has been used to jointly model noun phrase segmentation

(the upper chain of variables si;1) and part of speech tags (as part of the

lower chain of variables si;2) in [11].
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‘‘repeating over time’’ loosely here, since there are alterna-

tive graphical structures such as 2-D grids (Fig. 4) that are

suitable for image processing applications; the essential

feature that we wish to stress is that it is useful to think of

the overall structure as being decomposable into a number

of templates that may be repeated to obtain the overall

structure. With this understanding, let us denote the set of

variables associated with a clique template c 2 C, at a
particular ‘‘time’’ t, as st;c. If we choose to represent the set

of functions �ð�Þ of (23) to be in the exponential family, we

may write

PðSjOÞ ¼ 1

ZðOÞ
Y
c2C

YT

t¼1

exp LT
c � fðst;c;OÞ

� �
(25)

where Lc is the set of parameters associated with the

clique template c. In the case of a linear-chain CRF, clique

templates could be defined corresponding to individual

edges c1 and nodes c2, thus st;c1
¼ fst�1; stg and st;c2

¼
fstg. Note that the characterization of the general

graphical structure in terms of templates makes explicit

an additional feature of general graphical models that

must be exploited in practical systems: the weights Lc

associated with clique templates are explicitly tied across

repetitions.

C. Inference in General CRFs
The parameters fLcg in (25) can be learned analo-

gously to a linear-chain CRF, as described in Section III-A1,

which involves the computation of the marginal probabil-

ities Pðst;cjOÞ for variables in the graph. In the case where

the underlying CRF graph structure corresponds to a tree,22

these marginal probabilities can be computed exactly by a
generalization of the forward–backward algorithm for lin-

ear chains, which is known as the sum–product algorithm

or belief propagation [56], [57].

For non-tree-structured CRFs, the marginal distribu-

tions can be computed exactly using the junction tree

algorithm [53]. The basic idea behind this algorithm is to

successively cluster the variables in the graph to obtain a

new tree-structured graph, called the junction tree, whose
vertices are subsets of the original graph nodes and then

to run inference algorithms on the junction tree. Unfor-

tunately, the junction algorithm is exponential in the tree

width of the graph (one less than the size of the largest

clique in the junction tree), and, thus, the cost is prohi-

bitive for graphs of large tree-width (2-D grids, for

example).

In cases where exact inference is intractable, it is pos-
sible to utilize a number of approximate inference tech-

niques. Conceptually, one of the simplest approaches is

loopy belief propagation, which is an application of the

basic belief propagation algorithm to graphs with cycles.

Although the algorithm is not provably correct for such

graphs, applying the algorithm in these conditions has

been found to be empirically successful for some applica-

tions [58]. It should be noted, however, that in general
graphs, the algorithm may not converge, or if it does con-

verge, it may not converge to the correct marginals for

graphs with cycles. An alternative approach is to use

Markov chain Monte Carlo (MCMC) techniques such as

Gibbs sampling to obtain samples from the distribution

that can then be used to approximate the marginals of

interest. Since Gibbs sampling requires one to sample from

the distribution of a particular random variable condi-
tioned on all other variables in the network, the Markov

properties of the graph [see (22)] can be readily exploited

to simplify the sampling process. MCMC techniques can,

however, be very slow in practice, which is an issue if the

marginal distributions in the graph need to be computed

repeatedly during training for each input example. Varia-

tional techniques [59] can also be used for approximate

inference. A full discussion of variational methods is out-
side the scope of this paper; we refer the interested reader

to [60].

Although exact inference using the junction tree algo-

rithm is intractable for a number of graphical structures,

knowledge of deterministic task-dependent constraints

can greatly simplify the inference problem. For example,

we have considered the use of CRFs to model the various

streams of articulators (lips, tongue, glottis, velum, etc.)
while explicitly accounting for the fact that the articulators

can desynchronize from each other in conversational

speech [61]. Although the factor graph for this model ap-

pears fairly complicated, the deterministic constraints that

we impose on the problem allow inference to be carried

out in an equivalent linear-chain graphical model, with a

manageable state space.

Fig. 4. Two-dimensional (grid structured) CRF. For clarity, links to

observations have been omitted. We have previously applied such a

graphical model structure for speech segregation [55], where each

node si;j represents a time-frequency unit. We describe this approach

in greater detail in Section VI-C.

22More technically, the sum–product algorithm can be used for
computing marginals in the case when the corresponding factor graph
[56] is a tree.
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D. Introducing Hidden Variables in Training: HCRFs
For many problems of interest, there is unknown

substructure that links the state space with observations:

for example, in speech recognition, one often uses a

subphonetic state representation to statistically describe

the beginning, middle, and end of a subword unit (phone);

in many continuous domains, a mixture of Gaussians is

used for observation probabilities, where the mixture class

is unknown. During training, the system will often have
access to some labels of interest, but will not have a

labeling available for substructures. Moreover, the sub-

structure is often not desired at decode time, so it can be

marginalized out of the probability estimation.

Hidden CRFs [4], [62] take the approach that an

observed state is paired with one that is hidden during

training; the CML training algorithm can be adapted to

estimate hidden state values using the expectation–
maximization algorithm [63] or to compute the (n-best)

most likely hidden sequences during training. These

approaches have the advantage of being able to represent

a more complex state space than the log-linear probability

model in a standard CRF; however, the optimization

problem is no longer convex, so a global optimum on the

training set is not guaranteed.

E. Segmental CRFs
Semi-Markov CRFs [64] or segmental conditional

random fields (SCRFs) [20] (Fig. 5) are extensions of

linear-chain CRFs that allow each of the label states to

span a segment of consecutive observed units, each of
which is in turn assigned the same label. These models

relax the Markov assumption from the frame level to

the segment level, while the transitions within seg-

ments can be non-Markovian, which enables long-span

dependencies.

A segmental CRF models a segment-level label se-

quence S ¼ fs1; s2; . . . ; sKg along with the corresponding

segment boundaries (encoded in terms of end times E). Let
E ¼ fe1; e2; . . . ; eKg denote the end times of the sequence

of observation segments corresponding to S, and o
ej
ej�1 de-

note the observation segment from oej�1
(exclusive) to oej

(inclusive). The clique template c at a particular segment

index j could be defined on sj�1, sj, ej�1, and ej, and the

features fi could be defined on a pair of consecutive

segment labels and the corresponding observed segment.

According to (25), we can model the joint probability

distribution of S and E conditioned on O as

PðS; EjOÞ ¼
exp

PjEj
j¼1

P
i
�ifi sj�1; sj; o

ej
ej�1

� � !

ZðOÞ (26)

where

ZðOÞ ¼
X
S;E s:t:
jEj¼jSj

exp
XjEj
j¼1

X
i

�ifi sj�1; sj; oej
ej�1

� � !
: (27)

One has a choice whether to optimize the joint label

and segmentation space PðS; EjOÞ (as in [64] and [65]), or

only the label sequence PðSjOÞ (as in [20]). In the former

case, both correct label sequences S and associated correct

segmentations E are known during training, thus making it

a convex optimization problem. In the latter case, only

label sequences are required for training but the correct
segmentations are treated as hidden structure, and one

needs to sum over all possible segmentations E0 for S [as

shown in (28)] leading to a nonconvex optimization prob-

lem, similar to HCRFs; it is an open question whether

the marginalization over segmentations is necessary for

most tasks

PðSjOÞ¼

P
E s:t:
jEj¼jSj

exp
PjEj
j¼1

P
i
�ifi sj�1; sj; o

ej

ej�1þ1

� � !

ZðOÞ : (28)

The standard forward–backward algorithm for linear-

chain CRFs can be extended in either case for efficient

parameter estimation and inference, with an increase in

complexity by a factor of the maximum duration of

segments. Furthermore, we have shown that if each

observation-dependent transition feature is defined on a

fixed number of observation units instead of a variable-
length observation segment, the time complexity of the

forward–backward algorithm for SCRFs can be reduced to

that of standard linear-chain CRFs [65] under mild

assumptions. We refer interested readers to [20], [64],

and [65] for details of these algorithms.

The SCRF is a desirable framework for tasks where the

labels of interest are inherently segmental in nature, for

Fig. 5. Example semi-Markov CRF or SCRF graphical model. Unlike a

regular CRF, each SCRF state can refer to a variable-length sequence

of observations, also known as a segment. For example, in speech

recognition, each of the states could represent a word along with the

corresponding segment of acoustic observations [20].
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example, named entity recognition [64], [66], Chinese
word segmentation [66], [67], word recognition [20], [68],

and phone classification and phone recognition [38], [65].

F. Conditional Augmented Models
Conditional augmented (C-Aug) models [31] are discri-

minative segment-based models that incorporate the

sufficient statistics of observation log likelihoods from a

base generative model. The models predict a single multi-
class label for a sequence of observations that are assumed

to share the same label. The posterior probability of the

single label s for the entire sequence O is given by

PðsjOÞ ¼ exp A>Tðs;O;LÞð Þ
ZðO;L;AÞ (29)

where L refer to the parameters of the base model, and
Tðs;O;LÞ are the sufficient statistics of the observation log

likelihoods from a base generative model. C-Aug models

have the ability to represent a wide range of temporal and

spatial dependencies since the feature functions can be

dependent on the entire observation sequence.

C-Aug models can be extended to sentence models for

recognition, with a sequence of segmental labels. These

models are then similar to SCRFs except that the features
are observation log likelihoods and their derivatives, which

are obtained from a base generative model, when L are

fixed or pretrained. A first-pass lattice from a base model

(e.g., HMMs) is used to significantly constrain the possible

segmentations and label sequences for C-Aug models.

Additional details about this can be found in [69].

V. RELATIONSHIPS OF CRFs TO OTHER
CLASSIFIER TECHNOLOGIES

In the previous sections, we detailed the particular

mathematical techniques that allow for CML training of

CRFs over a range of feature definitions. In this section, we

relate in particular the structure and learning methods for
CRFs to several current classifier technologies used in

speech and language technologies.

A. Relationship to HMMs
Many comparisons have been made between CRFs and

HMMs [3], [4], but it is instructive to show the relation-

ship between these models in a slightly more explicit

manner. We highlight here work that is explained more
fully in Heigold et al.’s paper [5] comparing Gaussian-

based HMMs for continuous observations and log-linear

models, but we walk through the explicit steps in under-

standing the relationships between Gaussian and log-linear

models, using ASR as a domain example.

In speech recognition, HMMs typically model the pro-

bability of a word sequence W given an observed acoustics

sequence O via a state sequence S over time t ¼ 1 . . . T

arg max
W

PðWjOÞ

¼ arg max
W

PðOjWÞPðWÞ

� arg max
W

max
S

PðOjSÞPðSjWÞPðWÞ

� arg max
W

max
S

YT

t¼1

PðotjstÞPðstjst�1Þ
" #

PðWÞ: (30)

Let us focus on the acoustic computation in the inner

brackets, and first consider the case where PðotjstÞ, the

acoustic likelihood for a particular state, is represented by

a single Gaussian with a diagonal covariance matrix. In this
case, the likelihood for data ot (with dimensionality n) at

state st ¼ s with multivariate mean M and standard de-

viation vector S (where i ¼ 1 . . . n ranges over the compo-

nents of these vectors and both are implicitly indexed by s)
is given by

PðotjstÞ ¼
1

ð2�Þ
n
2
Qn

i �i

exp � 1

2

X
i

ðot;i � �iÞ2

�2
i

 !
: (31)

We can rewrite this equation so that it is an exponential

function of a sum over the dimensions i of terms of oi and

o2
i . Notice that

1

ð2�Þ
n
2
Qn

i �i

¼ exp � log
Y

i

ð2�Þ
1
2�i

 ! !
(32)

¼ exp
X

i

� 1

2
log 2��2

i

� � !
: (33)

Since

� 1

2

X
i

ðot;i � �iÞ2

�2
i

¼
X

i

�o2
t;i

2�2
i

þot;i�i

�2
i

þ��
2

2�2
i

	 

(34)

we can rewrite (31) by gathering terms in ot;i

PðotjstÞ ¼ exp
X

i

cþ ot;i�i

�2
i

þ
�o2

t;i

2�2
i

	 
" #
;

where c ¼ � 1

2
log 2��2

i þ
�2

i

�2
i

	 

: (35)
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We can see that this Gaussian model can be expressed as a
sum of weighted feature functions f and weights L. Let

f 0
i;st
¼ �ðst ¼ sÞ8i

f 1
i;st
¼ �ðst ¼ sÞot;i

f 2
i;st
¼ �ðst ¼ sÞo2

t;i

�0
i;s ¼ �

1

2
log 2��2

i þ
�2

i

�2
i

	 

�1

i;s ¼
�i

�2
i

�2
i;s ¼

1

2�2
i

where the delta function selects for a particular state s, that
is, when a postulated HMM state st ¼ s the delta function

takes on a nonzero value, and is zero for st 6¼ s.23 Replacing

terms in (35) with the above terms, we obtain the follow-

ing expression (for a particular time t):

PðotjstÞ ¼ exp
Xn

i¼1

X2

j¼0

�
j
i;sf

j
i;st

 !
: (36)

In an HMM, however, it is not only important to model the

acoustic probabilities at each state, but also the transitions

between states. We can easily incorporate state-to-state

transition probabilities by having transition functions

between pairs of state values ðs; s0Þ

f trans
s;s0 ¼ �ðst ¼ s; stþ1 ¼ s0Þ
�trans

s;s0 ¼ log Pðstþ1 ¼ s0jst ¼ sÞ

and, thus, when considering a state sequence S ¼ fs0; s1;
. . . ; stg one can compute the likelihood in terms of

weighted functions of the state st and transition ðst; stþ1Þ

PðO; SjWÞ

¼ exp
X

t

X
i

X
j

�
j
i;sf

j
i;st

 !
þ �trans

st;stþ1
f trans
st;stþ1

" # !
: (37)

One can analogously introduce feature functions that in-
corporate the probability of the words PðWÞ. When ex-

pressing a Gaussian HMM as a CRF, (37) is compatible

with the numerator of the CRF equation, that is, a

likelihood-based HMM can be represented as an unnor-

malized CRF. Remember that the partition function
(denominator) of the CRF is the sum of the exponential

functions over all paths

PðWjOÞ � max
S

PðO; SjWÞPðWÞP
S0 PðO; S0jWÞPðWÞ : (38)

This is the same quantity that is maximized during MMIE

training [70].24

Thus, the structure of the equations when sufficient

statistics are used as feature functions within a CRF is the

same as that of MMIE. Both methods also have parameter

updates for the probability distribution that are based on
gradient–ascent methods. In practice, MMIE leads to a

constrained optimization problem, in that the updated

HMM parameters must still form a probability distribution

[70], whereas CML updates for log-linear CRFs lead to an

unconstrained optimization because potentials are globally

normalized.

It should also be pointed out that it is possible to re-

present a subclass of linear-chain CRFs within an HMM,
effectively giving a discriminatively trained HMM.

Heigold et al. show that, for any set of linear-chain CRF

parameters L that have time-aligned state-observation re-

lationships only (i.e., only the observation at time t is

associated with the state at time t and no transition–

observation feature functions), one can derive a set of

HMM parameters Q that can exactly represent the same

probability distributions [72]. They demonstrate this by
showing equivalence of the two models using a semantic

concept tagging task. The equivalence has been shown to

be bidirectional, and has been extended to mappings be-

tween HMMs with a mixture of Gaussian observations and

a mixture of log-linear models [5].25 This equivalence

proof makes use of linear-chain CRFs with subphonetic

HMM state sequences ðSÞ as hidden variables, also known

as HCRFs. We refer the reader to Section IV-D for more
details on HCRFs.26

B. Relationship to Perceptrons and MLPs
The basic equations for CRFs also bear some resem-

blance to MLPs, which have been used for local phone
classification tasks in ASR for many years ([73] inter alia),
and as part of larger hybrid artificial neural network–
hidden Markov model (ANN–HMM) and tandem ANN–
HMM systems [74]. MLPs attempt to discriminate

23Note that while the functions vary as a combination of the input and
postulated state over time, the weights ð�Þ are not dependent on the time
t, in keeping with the stationarity assumption of HMMs.

24A good review reference for MMIE can be found in [71].
25It should be noted that the results here apply to one form of CRF:

linear-chain models that do not have transition functions that depend on
observations.

26We note that this idea of using HMM states as hidden variables was
first introduced by Gunawardana et al.. They also point out that this
approach extends naturally to hidden component weights of mixtures of
Gaussians that are typically used as observation densities in speech
recognition [4].
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between classes by projecting the input to a high-
dimensional space (via one or more hidden layers) and
then combining these inputs to give an estimate of (phone)
class membership. At each layer, a (possibly nonlinear)
function is used to determine the outputs of the layer;
Bridle [75] showed that when the softmax function was
used (and trained appropriately), the outputs could be
interpreted as a posterior probability. In short, if WT

c is a
vector of weights between the hidden nodes and the node
for class c in the output layer, and X is the vector of outputs
from the hidden layer of an MLP (which is in turn a
nonlinear function of the input or a previous hidden layer),
then the probability of class c given the input can be
computed as

PðcjinputÞ ¼
exp WT

c X
� �

P
c0 exp WT

c0X
� � : (39)

The form of this equation is remarkably similar to the CRF
equation where only state feature functions are consid-
ered, that is, the weights WT

c correspond to the CRF
weights � and the X are the individual feature functions.
For single layer perceptrons (SLPs) with a softmax transfer
function, the form of the equation is in fact identical to a
maximum entropy classifier, and, thus, the CRF extends
this idea by allowing statistical dependencies between ad-
jacent states.27 Maximum entropy training is equivalent to
finding the CML of (39) over all the training data; follow-
ing Klein [8] one can write the log likelihood of an
(unregularized) MaxEnt model where the feature func-
tions are based on the data as

LðWÞ ¼ log
Y

i

PðcijXi;WÞ ¼ log
Y

i

exp WT
ci

Xi

� �
P

c0i
exp WT

c0i
Xi

� �

¼
X

i

WT
ci

Xi � log
X

c0i

exp WT
c0Xi

� �0
@

1
A: (40)

As derived earlier, this quantity is maximized through
gradient search over W.

Similarly, with softmax perceptrons, one tries to mini-
mize an error criterionVthe cross entropy of the target
distribution and the probability distribution currently pre-
dicted given the weightsVby searching with the gradient
of the error function. Given a true distribution PT and
predicted distribution PP, the cross entropy HðPT; PPÞ ¼P

i

P
c0i
�PTðc0iÞ log PPðc0iÞ is a measure of distortion be-

tween these distributions. In the specific case where the
‘‘true’’ (target) distribution is a one-hot encoding (the cor-
rect class has probability 1, the incorrect classes 0), this
reduces to the log probability of the correct class

HðPT; PPÞ ¼
X

i

� log PPðciÞ: (41)

Given that the forms of PP are the same for the MaxEnt and
softmax perceptron classifiers, the partial derivatives of
(41) with respect to the weight are identical to those of
MaxEnt classifiers for the case of one-hot targets. In trying
to minimize the cross entropy, therefore, the one-hot
softmax perceptron is identical to the maximum entropy
formulation.

The discussion above relates softmax perceptrons and
MaxEnt classifiers; the additional power of an MLP is in its
hidden layersVthese allow for nonlinear boundaries be-
tween classes to be learned. On the other hand, SLPs,
MaxEnt models, and CRFs (as well as SVMs) are linear
classifiers of their input. CRFs and SVMs can model non-
linear functions by suitably transforming the input into a
nonlinear space (through explicit design of feature func-
tions in CRFs such as second-order statistics, or by kernel
functions in SVMs). However, if one considers the MLP’s
hidden layer (X, often the output of a sigmoid function
applied to weighted linear inputs) as a set of automatically
learned feature functions in an exponential model, we can
utilize these functions with other log-linear classifiers.
Recent approaches based on learning deep architectures
[45] can be thought of as intermediate between these
positions. The hidden layer representations in the deep
belief network are initially learned directly from the data
in an unsupervised fashion as part of the pretraining step;
the weights of the network can then be discriminatively
optimized for classification in a supervised fashion.

The relationships between neural networks and CRFs has
led to a number of exciting hybrid approaches, as discussed
previously in this paper. Using sequence-based optimization
criteria such as CML/MMIE has improved local posterior
estimation in neural networks [44]. Similarly, using MLP or
deep neural network techniques can automatically learn the
feature functions for CRFs [42], [46].

VI. APPLICATIONS IN AUDIO, SPEECH,
AND LANGUAGE PROCESSING

To this point, we have talked about CRF technology from
the perspectives of historical development, uncovering
their mathematical structure, and pointing out their rela-
tionship to other common classifier techniques. In this
section, we explore the involvement of CRFs in natural
language, speech, and audio processing tasks; we give brief
summaries of different applications of CRFs by defining
the problem in terms of the state sequence S that is desired

27One can also formulate MLPs with dependencies between states
(see, for example, the REMAP paradigm [76]), although the training
regimen becomes much more complex and computationally expensive
than the usual MLP training method.
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and the observations O. The aim of this section is not to be
an exhaustive review of all possible applications, but rather
to highlight the diversity of the range of problems that can
be addressed using CRFs.

A. Natural Language Processing
Consider a series of operations that could be applied to

a natural language sentence: one could begin with low-
level tasks such as predicting part-of-speech (POS) tags or
recognizing named entities, followed by operations at a
syntactic level (parsing) and ending with high-level, se-
mantically oriented tasks, such as question answering or
information extraction. CRFs have been empirically suc-
cessful in each of these sequence labeling problems; this
section attempts to briefly review some of the main con-
tributions. In order to maintain consistent notation
throughout the paper, we will introduce each problem by
defining the values that the hidden variables ðSÞ and ob-
servation variables ðOÞ can take.

Part of speech tagging

S: Part of speech tags
O: Words in a sentence

CRFs were first applied to predict POS tags for an input
word sequence [1] (see Fig. 6); in that work, CRFs were
found to outperform both HMMs and MEMMs when
evaluated on the Penn Treebank. The CRF error rate when
compared with the HMM drops considerably when the
model is augmented with a small set of orthographic fea-
tures: the system used linguistically motivated features, for
example, whether the word was capitalized, the presence
of particular suffixes (-ed, -ion, etc.). In subsequent work,
Sutton et al. [11] observe that jointly modeling noun phrase
(NP) segmentation and POS tagging using DCRFs im-
proves POS prediction accuracies. POS tagging using CRFs
has also been applied to languages such as Chinese [77],
Arabic, Czech [78], and Japanese [79], with complex mor-
phological structures, and they have been found to out-
perform their generative counterparts.

Named Entity Recognition

S: Named entities
O: Words in a sentence

For a high level task like question answering or infor-

mation extraction, it would be beneficial to identify all the

people, locations, and organizations in a document (or

sentence) of interest; this is commonly referred to as named

entity recognition (NER). McCallum and Li [80] describe
one of the first attempts at applying a CRF to this problem.

They use feature induction and select only those feature

conjunctions that significantly increase log likelihood; the

atomic features are derived using Web-augmented lexicons.

Finkel et al. [81] report further improvements by modeling

nonlocal structure with Gibbs sampling that allow imposing

various sorts of long range constraints.

Parsing

S: Grammatical productions (NP chunks, grammar rules)
O: Words in a sentence

Shallow parsing is typically used as a precursor to full

parsing or further semantic analysis. NP chunking is an
archetypal shallow parsing problem that finds NPs in a

sentence. This could be modeled as a sequence tagging task

that takes words in a sentence, annotated with POS tags, as

input and generates NP chunks in terms of Begin, Inside,

and Outside as shown in Fig. 7. Sha and Pereira [13] use a

CRF model for this task with the labels being bigrams of

the B, I, and O tags to impose a second-order Markov

dependency between them. Their CRF model delivers
superior F-score performance beating all single-model NP

chunking results on the CoNLL-2000 shared task.

A recent approach by Finkel et al. [82] presents a

general, feature-rich CRF-based parser attaining a state-of-

the-art F score on the Penn Treebank parsing task (on

sentences of length� 15). Their model uses grammar rules

defined by probabilistic context-free grammars, along with

additional information such as the span of words encom-
passed by the rule and its position in the sentence, as labels

for their CRF model. This discriminative parser was

further used to build a model of nested named entities [83]

and a joint model of parsing and NER [84].

Information Extraction

S: Fields to be extracted (e.g., Title, Speaker, etc.)
O: Words in a document

Fig. 6. Part of speech tags for a fragment of a sample sentence.

The tags correspond to the Penn Treebank tag set. For example,

NNP corresponds to singular proper noun, VBZ corresponds to verb

(present tense, third person singular), etc.

Fig. 7.NP chunk tags for a fragment of a sample sentence. Here, the NP

is ‘‘The Washington Post’’ specified in terms of the B, I, and O labels

representing words that begin an entity, are inside an entity, or are

outside the entity.
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We end this section on CRFs in NLP applications with a
reference to the semantically oriented task of information

extraction. Peng and McCallum [85] achieve state-of-the-

art performance in extracting standard header fields such

as title, author, institution, etc., from research papers on a

standard benchmark data set. The authors use a number of

local features (such as ‘‘contains a dot’’), layout features

(such as ‘‘end of a line’’), and external lexicon features

(‘‘match word in author lexicon’’) in their linear-chain CRF
model. Sutton and McCallum [86] approach this extrac-

tion problem differently by using a skip-chain CRF whose

structure is a linear chain with additional edges between

similar words.

B. Speech Processing: Phone Recognition,
Word Recognition, and Other Tasks

As we have discussed throughout the paper, various

ASR tasks lend themselves to be modeled as sequence

labeling problems; it comes as no surprise that CRFs find
wide application across all of these tasks. We discuss some

of these applications in the following sections. The de-

scription in this section is intentionally brief since the

systems described herein have been elaborated upon in

previous sections.

Phone or word recognition

S: Phone or word labels
O: Acoustic features representing spectral properties

CRFs were first applied in ASR to the task of phone

classification [4] by using feature functions explicitly de-
rived from a baseline HMM system; this was extended by

Sung and Jurafsky [62] to phone recognition. Subsequent

work has explored the use of alternative feature functions

such as Gaussian responsibility scores [37] and phone and

phonological feature posteriors [33]. Recently, segmental

CRFs have been employed for phone classification and

recognition, making use of segmental features and com-

plex state space [38], [65]. Phone-based CRF approaches
have shown large improvements over baseline HMM sys-

tems on the standard TIMIT data set, in particular, when

observation-dependent transition factors are employed.

Extending these approaches to word recognition for med-

ium to large vocabulary tasks is complicated by the large

increase in the state space; Zweig and Nguyen [20] address

this challenge via a segmental CRF by restricting the set of

hypotheses to a lattice obtained from a baseline HMM
system. An alternative approach [87], [88] uses CRFs to

produce phone lattices that are used in subsequent pro-

cessing steps for word recognition.

Letter-to-sound conversion

S: Graphemes from orthographic transcription
O: Phonemes corresponding to pronunciation

The letter-to-sound conversion task (also known as

pronunciation prediction or grapheme-to-phoneme con-

version) attempts to predict the pronunciation of a word
(in terms of phones) given the spelling of the word (for

example, ‘‘phoenix’’, /F IY N IH K S/). Since the ortho-

graphic transcription and the phonemic pronunciation are

generally of different lengths, systems for this task need to

derive alignments between these sequences. Wang and

King [89] use a linear-chain CRF with a set of simple

indicator functions by examining pairs of graphemes and

phonemes, finding a large improvement over a generative
baseline system.

Spoken language understanding: concept tagging

S: Semantic concept labels
O: (Possibly errorful) word transcripts of speech

Spoken language understanding attempts to extract the

intended meaning of a speaker from speech recognition

output. One formalization of this idea is the extraction of
task relevant attribute-value pairs (or concept labels) from

text; e.g., ‘‘I want to fly to Austin on Tuesday’’ in a flight

reservation domain should result in concept pairs destina-
tion: Austin and travel.date=Tuesday. Hahn et al. present

several systems for concept extraction in multiple lan-

guages, and find that CRFs perform quite well in terms of

concept error rate across three languages, using a mixture

of features based on word bigrams and features of the words
themselves (such as prefixes and capitalization) [90].

C. Audio Processing
We end this section on CRF applications by drawing

attention to recent work in relatively new areas of audio

processing: speech segregation using binary masks and two

tasks intended to support music information retrieval.

Speech segregation

S: Binary labeling of time-frequency units
O: Mixture of target and interference acoustic signals

An area of speech processing that lends itself well to

the use of CRFs is computational auditory scene analysis

(CASA). Within this paradigm, a body of research has been

directed toward the estimation of the ideal binary mask

(IBM) in order to perform speech segregation. The IBM is

a 0/1 mask defined on the time–frequency (T–F) represen-

tation of a mixture of two signals (target and interference),
which identifies T–F units where the target energy

dominates that of the interference and is computed from

the premixed signals [91]. In previous work, we have

experimented with the use of a 2-D grid structured CRF for

speech segregation [55]. The vertices of the graph repre-

sent T–F units; each T–F unit is connected by an edge to

its neighbor in time and frequency. We observed improved

T–F unit classification performance over previous heuris-
tically guided approaches.

Audio-to-score alignment

S: Concurrency labels describing simultaneous notes
O: Acoustic features
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Audio-to-score alignment involves aligning an audio

recording with its corresponding symbolic score poten-

tially aiding applications in music information retrieval.

Joder et al. [92] propose the use of CRF-based models for

aligning polyphonic music that includes multiple voices or

melodies. This alignment problem is formalized as a se-

quence labeling task; the musical score is represented as a

sequence of concurrenciesVa set of notes that occur sim-

ultaneously. They experiment with increasingly detailed

CRF structures that attempt to model concurrency dura-

tions and tempo. Their model incorporates several acoustic

features characterizing different aspects of musical con-

tent, such as harmony and tempo, extracted from local

neighborhoods. In experimental evaluations, they observe

improved performance in predicting alignments when

evaluated on a large-scale database of polyphonic, classical,

and popular music.

Music transcription

S: Notes
O: Pitch estimates from the audio signal

CRFs have been employed in automatic music trans-

cription [93] in a postprocessing step as a smoothing tech-

nique to reduce single-frame errors. The authors employ a

linear-chain CRF for each pitch value that takes as input

frame-level pitch estimates, labeling these observations

with the notes. The addition of the CRF preprocessing step

results in improved performance over several previously

reported results on a standard database used for the

evaluation of polyphonic music transcription approaches.

VII. CONCLUSION

This paper has explored some of the different properties of
CRFs, particularly in relationship to speech, audio, and
language technologies. CRFs are in some sense a bridge
between HMMs and MLPs, utilizing the Markovian and
observational structure of HMMs, while at the same time
using a training criterion not unlike that of softmax-based
perceptrons. Understanding the relationships of the
different components of a CRF (model structure, param-
eterization, parameter estimation, and inference mecha-
nism) to current technology can not only help bridge the
gap between existing technologies but also facilitate
innovation in combining different components.

A short paper can only scratch the surface of the
topic of CRFs, but the literature cited here provides good
further reading on the topic. In particular, the original
Lafferty et al. paper [1], the review chapter by Sutton and
McCallum [3], and the NAACL tutorial by Klein [8] make a
good trio of papers for understanding general perspectives
on CRFs and their training. More detail on structured
discriminative models such as those described in Section IV
can be found in [52], which has a particular emphasis on
speech recognition. We hope that this paper has provided
connections from that literature to the particular perspec-
tives of researchers interested in this technology. h
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