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Abstract
Predicting possible speech recognition errors can be invalu-

able for a number of Automatic Speech Recognition (ASR) ap-
plications. In this study, we extend a Weighted Finite State
Transducer (WFST) framework for error prediction to facilitate
a comparison between two approaches of predicting confusable
words: examining recognition errors on the training set to learn
phone confusions and utilizing distances between the phonetic
acoustic models for the prediction task. We also expand the
framework to deal with continuous word recognition and we can
accurately predict 60% of the misrecognized sentences (with an
average words-per-sentence count of 15) and a little over 70%
of the total number of errors from the unseen test data where no
acoustic information related to the test data is utilized.
Index Terms: Finite State Transducer, Automatic Speech
Recognition, Error prediction

1. Introduction
Speech recognition systems often have the problem of being
unable to discern the difference between acoustically similar
words. In the literature, we find several proposals of distances
between words to detect confusable words and hence restrict
them from appearing in the lexicon of an Automatic Speech
Recognition system [1][2]. Moving one step ahead from con-
fusion detection, predicting confusable words allows the gen-
eration of large corpora of simulated speech recognition errors.
These corpora can be invaluable in developing discriminative
language models and building lexicons with minimal sets of
confusable words. They could also potentially be used as a
source of information for the evaluation and optimization of
spoken language systems.

Fosler-Lussier et al. [3] detail a weighted finite state trans-
ducer (WFST) framework that makes use of a confusion ma-
trix between phones to model acoustic errors made by the rec-
ognizer. Information regarding acoustic confusability between
words such as proposed in [4] was not incorporated within this
system. Furthermore, experiments with the framework were
conducted on an isolated word task and did not deal with con-
tinuous word recognition. This paper seeks to address both of
these concerns.

The paper is organized as follows: the basis of our frame-
work is discussed in the next section. Section 3 describes the
details of our experimental setup including specifics regarding
the training/test data split and the computation of the acoustic
confusability scores between phones. Section 4 presents our de-
sign and analysis of two sets of experiments. The first set of ex-
periments examined various confusion matrix FSTs on an iso-
lated word task to study more about the influence of the acoustic
model and the pronunciation model on the prediction task. For
the second set of experiments, we applied the framework to con-
tinuous speech and also studied the influence of acoustic model

information on the predictive capabilities of our experimental
setup. Finally, Section 5 draws the conclusions and suggestions
for future work.

2. Prediction Framework
We use the framework outlined in [3] which integrates possi-
ble acoustic confusions, pronunciation modeling and language
model information into a single framework to determine con-
fusable words for the given vocabulary. The speech recognition
process can be viewed as a composition of WFSTs [5] given by
the following equation:

Wrecog = bestpath(F o Ac o P o Lm) (1)

where F is a finite state automaton (FSA) representing the
acoustic features computed from the input utterance, Ac is an
FST that maps acoustic features to phones using the acous-
tic model scores, P is the pronunciation model FST mapping
phones to words and Lm is the language model FSA (with n-
gram scores). On account of the invertible nature of transduc-
ers, given a word sequence W, we can generate a lattice of all
possible confusable word sequences using:

Wconf = (W o Lm−1 o P−1 o Ac−1 o Ac o P o Lm) (2)

Lm is a finite state automaton, and thus Lm−1 = Lm. The
initial composition of W with Lm can be omitted without any
trade-offs in accuracy if Lm is an n-gram grammar (as it is in
our task) since it only serves to scale scores of W deterministi-
cally. Taking into consideration the infeasibility of the task of
modeling the continuous space of acoustic features as an FST,
[3] introduces a confusion matrix C to replace Ac−1 o Ac that
essentially captures the acoustic errors made by the recognizer.
Equation (2) now reduces to

Wconf = W o P−1 o C o P o Lm (3)

Fosler-Lussier et al. [3] use counts of phonetic confusions
obtained from inspecting the recognition errors to determine the
confusion matrix C. The weighted lattice Wconf can be de-
coded to generate likely confusable words/sentences ordered by
rank that is determined by sorting them according to the sum
of the weights along a path in the phone lattice. We experiment
with different methods to arrive at an appropriate representation
for C that attempts at closely modeling the phonetic confusions
prevalent in the recognizer and apply continuous speech to this
WFST framework to further test its predictive abilities.

3. Experimental Setup
3.1. Corpus Information

Following [3], our first set of experiments were designed with a
focus on developing a fitting model for the phonetic confusion
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Set Num. of Utterances Num. of Words
Training 60349 6400
Test 13889 1205

Table 1: Training/Test sets for the Phonebook corpus.

matrix and thus we chose to use the NYNEX Phonebook iso-
lated word recognition task [6] that eliminates the influence of
the language model in the speech recognition pipeline. Acoustic
models were developed on one portion of the corpus and testing
was done on another part of the corpus with a completely dis-
joint vocabulary. We have used a similar partition as in [7]: we
used their “small” training set for training our acoustic mod-
els and performed ASR transcription of the rest of the corpus
using the Hidden Markov Model Toolkit [8] that gave a 15%
word error rate (WER). This relatively high WER was a result
of using the entire Phonebook vocabulary of 8000 words in the
final decoding step and a uniform language model. The recog-
nized corpus was further split into a training set and a test set of
completely disjoint words that were used to build the confusion
matrix and test its performance, respectively (Table 1). We per-
formed both word recognition (using the CMU dictionary) and
phone recognition (with 39 phoneme outputs) to better under-
stand the influence of a lexicon restriction on the prediction task
at hand. Section 3 talks more about the motivation behind gen-
erating recognized outputs on the word level and the phone level
and how we make use of both these outputs in our experiments.

We designed a second set of experiments to evaluate the
performance of the prediction framework as described in [3]
when applied to a corpus of continuous speech (Wall Street
Journal (WSJ0) corpus [9]). We used the WSJ0 training set con-
taining 7236 speaker independent utterances to train our acous-
tic models and the WSJ0 standard 5K non-verbalized closed
bigram language model to run the recognizer. To further ex-
plore the functionality of our prediction framework when used
with recognizers of varying word error rates, we developed two
acoustic models with the state output distributions from each
of the phonetic Hidden Markov Models (HMMs) modeled as
single Gaussians and 16-component Gaussian mixtures. Using
each acoustic model, we then performed ASR transcription of
a subset of the training set (1155 sentences with no out of vo-
cabulary words) which was in turn used to build the confusion
matrix. We tested its performance using the standard 5K non-
verbalized test set (330 sentences) and obtained WERs of 15.0%
and 7.1% for the recognizers with the single-Gaussian and 16-
Gaussian acoustic models, respectively. The number of word
errors per sentence is larger for the single-Gaussian recognizer
thus making the prediction task more difficult as compared to
the 16-Gaussian mixture model system. Section 4 further elab-
orates on the rationale for using these two recognizers.

3.2. Confusion Matrix Construction

We compute an alignment between the phonetic transcriptions
of the actual word in the training set and the recognized word
or phones. The dynamic programming alignment approach that
we implemented used substitution costs based on a phonetic dis-
tance metric determined by counting the different articulatory
features between two phones. As an example alignment, the
word “airspeed” recognized as “emptied”’ would produce the
alignment “ey:eh r:m s:p p:t iy:iy d:d.” The cost of each phone-
to-phone mapping in the WFST confusion matrix C was set to
the negative log-likelihood of observing the confusable phone
given the correct phone. Once the confusion matrix has been
computed, using equation (3), one can calculate a confusable

word lattice for each word/sentence in the test set.

This method of constructing the confusion matrix mainly
utilizes information from the pronunciation model and not the
underlying HMM topology of the word. A dissimilarity mea-
sure between phones can also be computed by calculating the
distance between their HMMs [4]. The distance between two
HMMs is considered to be a weighted sum of the average dis-
tance between the Gaussian Mixture Models (GMMs) of the
aligned states for each alignment Q, normalized by the sum of
all weights.

dHMM (p1, p2)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
Q

P (Q)
1

L

L∑
i=1

dGMM (Mq1i, Mq2i)

∑
Q

P (Q)
if p1 �= p2

0 if p1 = p2
(4)

where Q is an alignment between the states of the HMMs
of the phones p1 and p2, P (Q) is the probability of the align-
ment Q, L is the length of the alignment, q1i and q2i are
states of HMMs p1 and p2 that are aligned according to Q and
Mq1i,Mq2i are the corresponding GMMs. Specifics regarding
which alignments are taken into consideration and the computa-
tion of P (Q) is detailed in [4]. dGMM (.) is a distance measure
between two GMMs that is computed using a 0.5-weighted sum
of inter-dispersions (dispersion between two different GMMs A
and B is a weighted double sum over all the distances between
the monomodal Gaussian distributions in both the GMMs) nor-
malized by self-dispersions (dispersion of a GMM with itself)
[10]. The distance between the monomodal Gaussian distribu-
tions could be computed using Mahalanobis, Kullback-Leibler
or Bhattacharya distance measures: we found that Bhattacharya
distances worked best in our experiments.

4. Experimental Design and Analysis
As mentioned in Section 3, we conducted two sets of experi-
ments to compare the performance of different representations
for the confusion matrix and to evaluate the performance of this
prediction framework using continuous speech.

4.1. Experiments Using the Phonebook Corpus

We adopted two evaluation methods for the first set of experi-
ments that measured statistics about the predicted rank of ob-
served ASR errors in the test set. The first metric computes the
fraction of test set errors that are recalled when a threshold of
“top n” predicted errors is applied. Typically, one is interested
only in the top hypotheses from the confusable word lattice and
thus, we plot the trends up to the top 100 hypotheses. This
evaluation method, however, does not take into account the dis-
tribution of the ranks of the words falling below the threshold of
100. The Mean Reciprocal Rank (MRR) metric counters this by
computing the mean of the reciprocal ranks (inverse of the rank
of the highest ranking true positive) over all the words in the
test set. From Figure (1), we observe that all our experiments
perform better than chance where we define random chance as
choosing the top n words from a randomly ordered list of the
test set vocabulary.

First, we build a confusion matrix (Exp 1: FST-PhoneRec)
using training data obtained from the phone recognizer which
outputs phone sequences free from the restrictions of dictionary
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Figure 1: Recall rank of recognized errors in Phonebook corpus

entries. The second experiment uses the isolated word recog-
nizer (described in Section 3) where phone sequences must cor-
respond to one of the unseen words. We then build the confu-
sion matrix based on these realized words from the recognizer
(Exp 2: FST-WordRec). The basic difference between these two
methods is the lexicon restriction.

From Figure 1, we also see that lexical restriction helps the
confusion matrix generalize better by almost 10% at the thresh-
old value of 100; this improvement is statistically significant at
the p<0.0001 level. Thus, we observe that the lexicon intro-
duces restrictions which are beneficial in improving the predic-
tion abilities of the confusion matrix.

To test the utility of building confusion matrices directly
from acoustic models, we build the confusion matrix for the
FST framework by setting the costs between confusable phones
as the distance between the two phone HMMs (from Equa-
tion (4) – Exp 3: FST-HMM). Costs of the insertion and dele-
tion alignments are taken to be the average of the HMM Bhat-
tacharya distances between all the phones. This model is in-
dicative of the information that is obtained from the acoustic
variations in the HMM representations of the phones.

From Figure 1, we observe that “FST-HMM” performs sig-
nificantly better than “FST-PhoneRec” at the p<0.005 level
which further highlights the positive influence of the lexicon
restriction on the quality of prediction. We also see that “FST-
WordRec” performs significantly better than “FST-HMM” at
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Figure 2: Recall rank of recognized sentence errors in test set
(WSJ, single Gaussian system)

Method FST-PhoneRec FST-HMM FST-WordRec FST-Words+HMM
MRR 0.1186 0.1341 0.1542 0.1671

Table 2: Mean Reciprocal Ranks of the Methods

the p<0.0001 level. This suggests that the model which uses
only distance measures between the acoustic models might do
better if augmented with the likelihood of observing a confus-
able phone given the actual phone. We test this hypothesis
by building a confusion matrix with its costs set to HMM dis-
tances weighted by the negative log-likelihood values from the
word-based confusion matrix (Exp 4: FST-Words+HMM). We
observe in Figure 1 that “FST-Words+HMM” does indeed per-
form better than all the other methods. The increase in fraction
of errors predicted over “FST-WordRec” is statistically signif-
icant at the level of p<0.005. From this, we infer that “FST-
Words+HMM” discounts phones that are close together in terms
of HMM distances but not the word-based confusion matrix and
retains phones which are further off in terms of HMM distances
but not the word-based confusion matrix, hence improving the
prediction capability of the confusion matrix.

Table 2 shows the MRRs for the different representations
of the confusion matrix FST where a higher value indicates a
better prediction strategy. We observe that the patterns are sim-
ilar to the threshold metric: “FST-Words+HMM” method has
the highest metric value and “FST-PhoneRec” has the lowest
value. Thus, the MRR values reaffirm the hypotheses that we
derived using the rank evaluation method.

4.2. Experiments using the Wall Street Journal Corpus

The second set of experiments aim at examining the functional-
ity of our error prediction framework in the continuous speech
domain. As described in Section 2, we utilize two ASR systems
of single Gaussian and 16 GMM acoustic models with varying
WERs. Using recognizers with different WERs strengthens the
conclusions we derive regarding the positive influence of using
acoustic model information for our prediction task. Similar to
the recall rank metric in Figure 1, Figures 2 and 3 show mea-
sures of how often a misrecognized sentence has a rank better
than a given threshold (we use a threshold of 500 for these ex-
periments given the longer sentence lengths).

To test the importance of using a language model in the
composition step (Lm in Equation 3), we generate confusable
sentences from the resulting word lattice (Wconf ) with and

50 100 150 200 250 300 350 400 450 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

N−Best Predicted Sentences

Fr
ac

tio
n 

of
 S

en
te

nc
e 

E
rr

or
s 

P
re

di
ct

ed

Cumulative Distributions for WSJ, 16 GMM system

FST−No LM
FST−With LM
FST−With LM−HMM

Figure 3: Recall rank of recognized sentence errors in test set
(WSJ, 16 GMM system)

1213



50 100 150 200 250 300 350 400 450 500
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

N−Best Predicted Chunks

Fr
ac

tio
n 

of
 E

rr
or

 C
hu

nk
s 

P
re

di
ct

ed

Cumulative Distributions of Error Chunk Predictions for WSJ, 16 GMM system

FST−No LM
FST−With LM
FST−With LM−HMM
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without the influence of the WSJ standard 5K non-verbalized
closed bigram language model encoded as an FST (“FST-With
LM” and “FST-No LM” respectively). Keeping with our intu-
ition, from Figures 2 and 3, it is clear that application of the
language model was crucial to improving the prediction per-
formance. The confusion matrices in “FST-No LM” and “FST-
With LM” are computed using phone confusion counts as the
costs between confusable phones and do not account for any
information from the acoustic model. Experiment “FST-With
LM-HMM” attempts at resolving this by constructing the con-
fusion matrix with the costs between confusable phones set to
the phone HMM distances (Equation 4). From Figures 2 and
3, we observe an increase in the fraction of sentence errors pre-
dicted for “FST-With LM-HMM” that is statistically significant
at the level of p<0.001. This can be explained by the fact that
the phone distance information, that is indicative of the con-
fusability of the phones in the acoustic space, discounts for any
incomplete information from the phone confusion counts which
in turn is completely dependent on the phone distribution of the
training set used to create the confusion matrix.

Predicting the complete misrecognized sentence, composed
of 15 words on an average, might be too hard an evaluation
criterion. We suggest a slightly more tolerant evaluation rule
that calculates the number of “error chunks” that are correctly
predicted by the framework within a given threshold. “Error
chunks” are isolated by removing the longest common subse-
quence of the correct sentence and the recognized sentence from
each of these sentences and grouping together the leftover parts
of the sentence in sequence. For example, the sentence “At N. E.
C. the need for international managers will keep rising” misrec-
ognized as “At any see the need for national managers will keep
rising” has the longest common subsequence “At the need for
managers will keep rising” that is removed and the remaining
words put together in sequence to generate the error chunks -
“N. E. C. : any see”’ and “international : national”. From figure
4, we see that almost 70% of the total number of “error chunks”
are predicted correctly for a threshold of 500 (as opposed to
60% of complete sentences predicted correctly from figure 3).
We also found that a little more than 80% of the sentences have
at least one error chunk predicted correctly. All these results are
very encouraging considering that it is useful in certain ASR
applications (for example, spoken dialogue systems) to be able
to correctly determine parts of misrecognized sentences.

5. Conclusions
Two interesting results fall out from our experiments on an iso-
lated word task. One is that the linguistic restrictions imposed
by the lexicon on the recognizer help model the confusability
between phones better as when compared to using a phone rec-
ognizer with no lexicon. This could be because the lexicon
helps disambiguate the inherent confusability among phones
by providing a more accurate reflection of the decoding pro-
cess and hence providing a more accurate picture of the pos-
sible phone confusions. The second result is that using a con-
fusion matrix FST with costs combining HMM phone distance
information along with word-based phone confusion log like-
lihoods performs better than all the other methods. This cor-
roborates our intuition that imposing lexical restrictions on the
HMM costs is beneficial to the prediction task at hand.

The results from our experiments on a continuous speech
domain look promising. We can accurately predict almost 60%
of the erroneous sentences within a threshold of 500 and more
importantly, we can predict a little more than 50% of the mis-
recognized sentences correctly within a modest threshold of 100
sentences implying that the confusion matrix generalizes rea-
sonably well to the test set. The prediction capabilities of the
confusion matrix improve when HMM distance information is
taken into account thus emphasising the importance of using
information from the acoustic models as was ascertained from
the isolated word task. We also learn that the flexibility of the
WFST framework allows us to integrate language model infor-
mation and information from the acoustic models of the phones
easily. Future work will include extending the continous word
prediction task to incorporate contextual information.
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