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Abstract

In this study, we develop automatic speech recognition sys-
tems for three sub-Saharan African languages using probabilis-
tic transcriptions collected from crowd workers who neither
speak nor have any familiarity with the African languages. The
three African languages in consideration are Swahili, Amharic,
and Dinka. There is a language mismatch in this scenario. More
specifically, utterances spoken in African languages were tran-
scribed by crowd workers who were mostly native speakers of
English. Due to this, such transcriptions are highly prone to
label inaccuracies. First, we use a recently introduced tech-
nique called mismatched crowdsourcing which processes the
raw crowd transcriptions to confusion networks. Next, we
adapt both multilingual hidden Markov models (HMM) and
deep neural network (DNN) models using the probabilistic tran-
scriptions of the African languages. Finally, we report there-
sults using both deterministic and probabilistic phone error rates
(PER). Automatic speech recognition systems developed using
this recipe are particularly useful for low resource languages
where there is limited access to linguistic resources and/or tran-
scribers in the native language.
Index Terms: mismatched crowdsourcing, cross-lingual
speech recognition, deep neural networks, African languages

1. Introduction
This work is focussed on knowledge transfer from multilingual
data collected from a set of source (train) languages to a tar-
get (test) language that is mutually exclusive to the sourceset.
More specifically, we assume that we have easy access to na-
tive transcripts in the source languages but that we do not have
native transcripts in the target language. However, mismatched
transcripts for the target language (i.e. transcriptions from non-
native speakers) can be easily obtained from crowd workers on
platforms such as Amazon’s Mechanical Turk1 and Upwork.2

An automatic speech recognition (ASR) system trained using
transcripts collected from non-native speakers can be particu-
larly useful for low-resource African languages as it circum-
vents the difficult task of finding native speakers.

We explain some terminology used in this paper. Deter-
ministic transcripts (DT) refer to transcripts collected from na-
tive speakers of a language. We assume no ambiguity in these
ground truth labels, and hence they are deterministic in nature.
As an example, the DT for the word “cat”, after converting the
labels to IPA phone symbols, can be represented as shown in
Fig. 1 with each arc representing a symbol and a probability

⋆first authors
1http://www.mturk.com
2http://www.upwork.com

value. Here, each symbol occurs with probability 1.0. On the
other hand, the term probabilistic transcripts (PT) mean that
the transcripts are probabilistic or ambiguous in nature. Such
transcripts frequently occur, for example, when collectedfrom
crowd workers who do not speak the language they are tran-
scribing [1]. Usually a training audio clip (in some target lan-
guageL) is presented to a set of crowd workers who neither
speakL nor have any familiarity with it. Due to their lack of
knowledge aboutL, the labels provided by such workers are
inconsistent, i.e., a given segment of speech can be transcribed
using a variety of labels. This inconsistency can be modeledas
a probability mass function (PMF) over the set of labels tran-
scribed by crowd workers. Such a PMF can be graphically rep-
resented by a confusion network as shown in Fig. 2. Unlike the
DT in Fig. 1 which has a single sequence of symbols, the PT
has 3×4×3×4 = 144 possible sequences, one of which could
be the right sequence. In this case, it is “k æ ∅ t”.

Collecting and processing PTs for audio data in the target
languageL from crowd workers who do not understandL is
called mismatched crowdsourcing[1]. The objective of this
study is to present a complete ASR training procedure to rec-
ognize African languages for which we have PTs but no DTs.3

The following low resource conditions outline the nature ofthe
data used in this study:
• PTs in Target Language: PTs in the target languageL are

collected from crowd workers who do not speakL.
• PTs are limited: The amount of PTs available from the crowd

workers is limited to only 40 minutes of audio.
• Zero DT in Target Language: There are no DTs inL.
• DTs only in Source Languages: There are DTs from other

source languages ( 6= L).
• DTs are limited: The are about 40 minutes of audio per lan-

guage accompanied by their DTs. Hence, the total amount of
multilingual DTs available for training is≈ 3.3 hours. (40
minutes/language× # languages)

2. Sub-Saharan African Languages
2.1. Swahili
Swahili is a widely spoken language in Southeast Africa with
over 15 million speakers. Swahili’s written system uses a vari-
ant of the Latin alphabet; it consists of digraphs (other than the
standard ones like ch, sh, etc.) corresponding to prenasalized
consonants that appear in many African languages. Swahili has
only five vowel sounds with no diphthongs. More details about
Swahili is in [2].

3In this work, we report phone error rates. Our methodology could
be extended to the word level by using our proposed G2P mappings to
build a lexicon, in conjunction with word-based language models.
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Figure 1: A deterministic transcription (DT) for the wordcat.
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Figure 2: A probabilistic transcription (PT) for the wordcat.

2.2. Amharic

Amharic is the primary language spoken in Ethiopia with
over 22 million speakers. The Amharic script has more than
280 distinct characters (orfidels) representing various conso-
nant+vowel sounds. Ejective consonants and labialized sounds
are special characteristics of Amharic’s phonology. Thereare
seven vowels, thirty one consonant sounds in Amharic and no
diphthongs. More details of Amharic phonology are in [3].

2.3. Dinka

We elaborate more about Dinka since it has been rarely cov-
ered in the ASR literature. Dinka is a Western Nilotic language
which is a member of the family of Nilo-Saharan languages. It
is spoken by over 2 million people living in South Sudan. The
four major dialects are Padang, Rek, Agar, and Bor of which the
Rek dialect is considered the standard dialect of Dinka. This
study is based on the Rek dialect. The orthography of Dinka
closely follows its pronunciation. There are 33 alphabet sym-
bols in the Dinka orthography which are borrowed from a mix-
ture of Latin and IPA alphabets [4]. Furthermore, 4 out of the
33 symbols are digraphs. The Dinka phonology [5] consists of
7 vowels and 20 consonants, described in more detail below.

The set of vowels comprises{/a/, /e/, /E/, /i/, /o/, /O/, /u/}.
The vowels often have a creaky quality. With the exception
of /u/, these vowels could also have a breathy quality. For ex-
ample, the breathy version of /a/ is /a

¨
/, orthographically repre-

sented as̈a. The breathy vowels are characterized by lower F1
values. Compared to breathy vowels, creaky vowels have rela-
tively more energy at higher frequencies. Vowel lengths canbe
short or long. Orthographically, long vowels are usually indi-
cated by repeating the letter twice. For example, the wordnëë

is pronounced as/n/ /e
¨

: /.
The 20 Dinka consonants are given in [6]. Voiced and

voiceless plosives occur at five places of articulation gradually
moving from external to internal portions of the mouth - labial,
dental, alvelolar, palatal, and velar. Nasals follow a similar pat-
tern. Interestingly, there is only one fricative. The 4 digraphs
dh, nh, th, ny translate to /d”/, /n”/, /t”/, /ñ/ phonemes, respectively.

3. Training an ASR system using
Probabilistic Transcripts

3.1. Data

Multilingual audio files were obtained from the Special Broad-
casting Service (SBS) network [7] which publishes multilin-
gual radio podcasts in Australia. These data include over 1000
hours of speech in 68 languages. However, we could collect
DTs for a subset of the languages and restrict our experiments
to those languages - i.e., Swahili, Amharic, Dinka, Hungarian,

Cantonese, Mandarin, Arabic, Urdu . Out of these, the sub-
Saharan languages - Swahili, Amharic, Dinka - were considered
as the target languages as the focus of this study is on African
languages. The remaining languages represent the set of source
languages. DTs for the target languages were used only during
the evaluation stage. They were never used in the training stage.

The SBS podcasts were not entirely homogeneous in the
target language and contained utterances interspersed with seg-
ments of music and English. An HMM-based language iden-
tification system was used to isolate regions that correspond
mostly to the target language. These long segments were then
split into smaller 5-second chunks. The short segments make
it easier for crowd workers to annotate since they are unfa-
miliar with the utterance language. More than 2500 Turkers
participated in these tasks, with roughly 30% of them claim-
ing to know only English. The remaining Turkers claimed
to know other languages such as Spanish, French, German,
Japanese, and Chinese. Since English was the most common
language among crowd workers, they were asked to annotate
the sounds in the 5-second utterances using English lettersthat
most closely matched the audio. The sequence of letters were
not meant to correspond to meaningful English words or sen-
tences as this was found to be detrimental to the final perfor-
mance [8]. PTs and DTs, worth about 1 hour of audio, were
collected from crowd workers and native transcribers respec-
tively. Thus, the training set consists of a) about 40 minutes
of PTs in the target language and, b) about 40 minutes of DTs
in other source languages excluding the target language. The
development and test sets were worth roughly 10 minutes each.

To accumulate the PTs, each utterance was transcribed by
10 distinct Turkers. First the letters in the transcripts were
mapped to IPA symbols using a misperception G2P model
learned from the source languages. More specifically, the mis-
perceptions of the crowd workers were approximated by letter-
to-phone mappings learned from mismatched transcripts and
their corresponding DTs in thesource languages. No target
language data are used while estimating the misperception G2P
model since we assume there are no DTs in the target language.
Multiple mismatched transcripts, collected for the same utter-
ance, were then merged into a compact structure by aligning
the sequences (after defining equivalence classes corresponding
to similar sounds; e.g. all vowel sounds made up a class). The
process of creating PTs is detailed further in [1].

To accumulate DTs, the same set of utterances were la-
beled by native transcribers in the utterance language. DTswere
mainly accumulated for data in the source languages; these were
used in the estimation of the mismatched G2P model. For ASR
evaluation purposes, DTs were also acquired for a small amount
of development/evaluation data in the target languages. For the
words in the DTs, canonical pronunciations of the words were
derived from a lexicon. If a lexicon was not available, a lan-
guage specific G2P model was used [9]. Next, language depen-
dent phones were merged into a compact multilingual phone
set to enable transfer learning from source to target languages.
Language specific diacritics such as tones and stress markers
unique to a language were removed to enable merging.

There are two distinct features unique to Swahili conso-
nants (among our chosen set of languages): implosive sounds
and prenasalized sounds. In addition, Swahili does not distin-
guish implosive versus explosive stops. To build the multilin-
gual phone set, the implosive sounds were merged with their
corresponding non-implosive counterparts (e.g.á → b, â →
d). The prenasalized consonants were written as phone pairs
combining a nasal sound with the consonant sound (i.e.mb →



Table 1: SBS Multilingual Corpus: Sizes of train and test data
along with phone inventory. Size of dev set same as test set.

Language Utterances Phones
Train Test

Swahili (swh) 463 123 53
Amharic (amh) 516 127 37
Dinka (din) 248 53 27
Hungarian (hun) 459 117 70
Cantonese (yue) 544 148 37
Mandarin (cmn) 467 113 57
Arabic (arb) 468 112 51
Urdu (urd) 385 94 45
All - - 82

Table 2: PERs of monolingual HMM and DNN models. Dev
set in parentheses.

Lang PER (%)
HMM DNN

swh 35.63 (47.00) 34.18 (39.49)
amh 51.90 (48.68) 46.63 (43.92)
din 51.56 (47.03) 48.58 (48.40)

Table 3: PERs of multilingual HMM and DNN models. Dev set
in parentheses.

Lang PER (%)
HMM DNN # Senones

swh 65.73 (67.58) 61.17 (63.12) 1003
amh 68.40 (68.20) 66.53 (65.39) 987
din 66.89 (67.24) 64.78 (65.15) 1002

m b). Amharic’s phonology has a particularly distinct feature:
ejective consonants. Hence, it distinguishes ejective stops from
aspirated stops. Nevertheless, we merge them (e.g.t’ → th, p’
→ ph) to allow for cross-lingual transfer. Labialized sounds
in Amharic were written as the base sound preceded by the
voiced labio-velar approximant sound,w (e.g. aw → w a). As
for Dinka, since breathy vowels are very specific to Dinka, all
breathy vowels were mapped down to the regular vowels. For
example,a

¨
→ a. The long vowelsE: ando: were mapped by

repeating the symbols twice:E: → EE, o: → oo. In addition, the
dental nasal was mapped to the alveolar nasal:n” → n.

Finally, phone based bigram language models (LMs) for
Swahili were built from text available on the web after con-
verting them to phone sequences using a G2P model [9]. For
Amharic and Dinka, phone LMs were built from the DTs al-
though these could also be built using web resources. In all ex-
periments, PERs were evaluated. The full corpus has 82 phones
and is summarized in Table 1 with the language acronyms bor-
rowed from ISO 639-3 codes. The size of the dev set is similar
to the size of the test set. Dinka has fewer utterances since data
collection is still in progress. In all experiments, we refer to
HMM as GMM-HMM and DNN as DNN-HMM models.

3.2. Monolingual HMM and DNN

We first build monolingual HMM and DNN models trained us-
ing DTs in the target language. This is an oracle baseline since
it assumes the ideal scenario where DTs in the target language
were to be available during training time. This baseline is an
estimate of the best possible (lower bound) PER which is what
we would like to achieve by training with PTs.

Context-dependent HMM acoustic models were trained

using 39-dimensional Mel frequency cepstral coefficients
(MFCC) features which include the delta and acceleration co-
efficients. Temporal context was included by splicing 7 suc-
cessive 13-dimensional MFCC vectors (current +/- 3 frames)
into a high dimensional supervector and then projecting the
supervector to 40 dimensions using linear discriminant anal-
ysis (LDA). Using these features, a maximum likelihood lin-
ear transform (MLLT) [10] was computed to transform the
means of the existing model. The forced alignments obtained
from the LDA+MLLT model were further used for speaker
adaptive training (SAT) by computing feature-space maximum
likelihood linear regression (fMLLR) transforms [11]. The
LDA+MLLT+SAT trained HMM model is the final HMM
model. The forced aligned senones obtained from the HMM
were treated as the ground truth labels for DNN training.

For DNN training, we use fMLLR features and start with
greedy layer-wise Restricted Boltzmann Machines (RBMs) un-
supervised pre-training since this leads to better initialization
[12]. Then the DNNs were fine-tuned using supervised cross-
entropy training and monolingual DTs. The DNNs used 6 hid-
den layers with 1024 nodes per layer. We would expect to
achieve better performance by adapting a multilingual DNN
to monolingual (target language) DTs. However, our goal was
to set up a reasonably strong baseline if not the strongest. All
experiments were conducted using the Kaldi toolkit [13]. The
monolingual PERs over a total of about 7K-8K phones are given
in Table 2. Due to insufficient amounts of PTs available for each
target language, we do not report monolingual HMM/DNN sys-
tems trained only on PTs; this is left as future work.

3.3. Multilingual HMM and DNN

DTs from the source languages were used to train multilingual
HMMs and DNNs. Since we assume zero DTs in the target
language during training, the DTs used for training multilingual
HMM and DNN exclude any data in the target language. The
recipe for building HMM and DNN systems is the same as de-
scribed in Section 3.2 except that the training data consists of
multilingual DTs. The PERs are given in Table 3. Unsurpris-
ingly, due to the lack of DTs in the target language, the PERs
are much higher than the oracle monolingual case in Table 2.
Hence, the PERs in Table 3 establish the upper bound of PERs.
In all subsequent experiments, our goal is to start from the up-
per bound of PERs in Table 3 and attempt to approach the lower
bound PERs in Table 2.

3.4. PT Adapted MAP-HMM

In this step, the multilingual systems in Section 3.3 are adapted
using only the PTs in the target language since DTs are not
available for adaptation. The multilingual HMM can be adapted
using maximum aposteriori (MAP) adaptation described in
more detail in [14]. We briefly review the steps here. The
goal is to obtain meaningful adaptation data using the PTs.
For our implementation, we follow the Weighted Finite Trans-
ducer (WFST) [15] framework both during training and testing.
The ASR search graph is represented as a WFST mapping the
acoustic signal to a sentence and is defined by the composition
H ◦ C ◦ L ◦ G whereH maps a sequence of HMM states to a
triphone sequence,C maps triphone to monophone sequences,
L maps monophone sequences to words (pronunciation model)
andG reorders the resulting word sequence (language model).
Since our tasks involve phone recognition,L is an identity map-
ping of phones andG is a phoneN -gram model. In the case of
DTs, the training graph for a transcriptDT is constructed using



Table 4: PERs of multilingual DNN (MULTI-DNN), adapted HMM (MAP-HMM), adapted DNNs (DNN-1, DNN-2). First element in
parentheses is the PER of the dev set. Second element is the absolute improvement in PER of the test set over the MULTI-DNN system.

Lang PER (%)
MULTI-DNN MAP-HMM DNN-1 DNN-2

swh 61.17 (63.12, 0.0) 44.77 (50.97, 16.4) 45.14 (47.83, 16.03)43.03 (45.87, 18.14)
amh 66.53 (65.39, 0.0) 61.95 (62.15, 4.58) 61.64 (61.43, 4.89)59.48 (59.61, 7.05)
din 64.78 (65.15, 0.0) 59.58 (59.71, 5.20) 59.33 (60.97, 5.45)58.22 (60.86, 6.56)

H ◦ C ◦ L ◦ DT whereDT is a linear chain acceptor repre-
senting asingle sequence of phones. In the case of PTs, the
training graph isH ◦ C ◦ L ◦ G ◦ PT wherePT is a confu-
sion networkof phones (similar to Fig. 2) obtained from crowd
workers. Considering the PTs as adaptation transcripts, the suf-
ficient statistics required for MAP adaptation are obtainedfrom
the latticeH ◦C ◦L◦G◦PT . There is no change in the testing
stage, i.e., we look for the 1-best path in the decoding lattice
H ◦ C ◦ L ◦ G. The PER results for the MAP adapted HMM
are under the column heading MAP-HMM in Table 4. The PER
results for the multilingual DNN (MULTI-DNN in Table 4) are
replicated from Table 3 for purposes of comparison.

3.5. PT Adapted DNN

We briefly review different strategies for DNN adaptation us-
ing PTs. These are illustrated in Fig. 3 and described in greater
detail in [16]. In Fig. 3(a), the softmax layer of the multilin-
gual DNN in Section 3.3 is replaced by another randomly ini-
tialized softmax layer while the shared hidden layers (SHLs) of
the multilingual DNN are retained. The resulting DNN is fine
tuned using the PT alignments generated by the MAP adapted
HMM from Section 3.4. This is the conventional way to adapt
a DNN using DTs [17]. However, this approach does not work
very well for PTs largely due to the presence of incorrect labels
in PTs. The results for DNN-1 are under the column heading
DNN-1 in Table 4. The performance of DNN-1 is worse than
MAP-HMM for Swahili and only marginally better for the other
languages. To alleviate the effect of incorrect labels, theDNN-
2 system of Fig. 3(b) is used. In this approach, two separate
softmax layers are used. The first softmax layer is trained with
target language PTs only whereas the second softmax layer is
trained with multilingual DTs. In Fig. 3(c) (DNN-3), there is a
third softmax layer trained using self-training transcripts (ST).
Here, the DNN-2 system decodes some additional unlabeled au-
dio ( ≈ 5 hours) in the target language and then uses a subset
of the decoded labels, with high posterior probabilities (confi-
dences), to retrain itself in the target language. The self-training
algorithm is a semi-supervised algorithm to train DNNs [18].
We report the results only for the DNN-2 system in Table 4. The
absolute decrease in PER compared to DNN-1 is consistent and
is in the range 1.11%-2.16%. Comparing the most adapted sys-
tem (DNN-2) with the unadapted system (MULTI-DNN), the
total absolute decrease in PER is in the range 6.56%-18.14%.

3.6. Probabilistic Error Rate

The aforementioned sections computed the phone error ratesby
measuring the edit distance between the 1-best path in the ASR
decoding lattice and the reference DT. Hence, they may be con-
sidered as deterministic PERs. Our assumption was that there
were no DTs in the target language in the training stage. Thus,
it is fair to assume that there may not be DTs in the target lan-
guage in the testing stage as well. An obvious question is how
do we evaluate ASR systems for the target language in the ab-
sence of DTs? In the absence of DTs, we consider PTs to serve
as a proxy for the reference ground truth labels. We denote the

Figure 3: DNN training using probabilistic transcripts (PT), de-
terministic transcripts (DT), and self training transcripts (ST).

Table 5: Probabilistic Phone Error Rates
Lang PPER (%)

MULTI-DNN - MAP-HMM MULTI-DNN - DNN-2
swh 58.61 - 46.12 = 12.49 58.61 - 51.12 = 7.49
amh 64.46 - 57.16 = 7.30 64.46 - 59.80 = 4.67
din 64.09 - 58.59 = 5.50 64.09 - 60.64 = 3.45

edit distance between the 1-best path in the ASR decoding lat-
tice and the PTs as probabilistic phone error rate (PPER). This
is calculated as follows. First, the PTs are pruned to retainthe
most reliable transcripts. Next, the probabilities on the arcs of
the pruned PTs are stripped making the PTs unweighted. Fi-
nally, the minimum edit distance between the 1-best path in the
ASR decoding lattice and the unweighted pruned PT is com-
puted. The PPERs are reported in Table 5. Comparing the
MAP-HMM and the MULTI-DNN systems, the absolute de-
crease in PPER in Table 5 correlates well with the absolute de-
crease in PER in Table 4 (refer to the second elements in paren-
theses under the column MAP-HMM). In addition, the PPER
of DNN-2 also outperforms the MULTI-DNN system. (How-
ever, as opposed to the behavior in PER, the PPER of DNN-2
is higher than MAP-HMM.) Thus, PPERs can correlate the im-
provements of the adapted systems over the unadapted ones;
these improvements are verified to be accurate by PER compu-
tations in Table 4.

4. Conclusions
In this study, we presented a complete end-to-end ASR training
regime to train HMM and DNN systems using only probabilis-
tic transcripts in Swahili, Amharic, and Dinka but no determin-
istic transcripts. We reported absolute phone error rate improve-
ments of the PT adapted systems in the range 6.56%-18.14%.
In addition, we showed that improvements in deterministic and
probabilistic error rates are correlated.
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