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Abstract
One of the main challenges in building code-mixed ASR sys-
tems is the lack of annotated speech data. Often, however,
monolingual speech corpora are available in abundance for the
languages in the code-mixed speech. In this paper, we ex-
plore different techniques that use monolingual speech to create
synthetic code-mixed speech and examine their effect on train-
ing models for code-mixed ASR. We assume access to a small
amount of real code-mixed text, from which we extract prob-
ability distributions that govern the transition of phones across
languages at code-switch boundaries and the span lengths cor-
responding to a particular language. We extract segments from
monolingual data and concatenate them to form code-mixed ut-
terances such that these probability distributions are preserved.
Using this synthetic speech, we show significant improvements
in Hindi-English code-mixed ASR performance compared to
using synthetic speech naively constructed from complete ut-
terances in different languages. We also present language
modelling experiments that use synthetically constructed code-
mixed text and discuss their benefits.
Index Terms: code-mixed speech recognition, synthetic code-
mixed speech from monolingual data

1. Introduction
Code-mixing (CM) is a linguistic phenomena that is preva-
lent in multilingual communities where speakers alternate be-
tween languages within a sentence or a discourse. Given the
widespread use of CM among multilingual speakers, automatic
speech recognition (ASR) for CM speech is of great interest.
However, labeled CM speech is a scarce resource, thus making
ASR for CM very challenging.

Although labeled CM speech is not easily available, mono-
lingual labeled corpora are typically available in large quantities
for the individual languages in CM speech. Assuming access to
a small amount of CM text and no CM speech, can we lever-
age the monolingual speech data to improve recognition on CM
speech? This is the main problem we tackle in this work. Us-
ing a small amount of real CM text as our reference, we com-
pute probability distributions corresponding to a) phone pairs
that appear at switch points when we transition from one lan-
guage to another and b) span lengths corresponding to each lan-
guage. We then construct synthetic CM speech (out of monolin-
gual speech fragments) such that these probability distributions
are mostly preserved. With such constraints in place, we aim
at creating synthetic CM speech that mimics important charac-
teristics of real CM speech and captures acoustic properties at
switch points across languages which are non-existent in mono-
lingual speech.

Specifically, our contributions are summarized as follows:

• We propose two algorithms to create synthetic CM
speech that preserves span length distributions and

phone transition probability distributions at switch
points.

• Using real CM Hindi-English speech for evaluation, we
empirically investigate the effect of using synthetic CM
speech to train acoustic models.

• We use transcripts from the synthetic CM speech to train
language models (LMs) and examine their effect on ASR
performance.

Related Work: There is a large body of prior work on ASR
for CM speech [1, 2, 3]. This includes techniques specif-
ically targeting the acoustic model [1, 2] and the language
model [4, 5, 6] to handle code-mixing in speech. Apart from
these cascaded ASR systems, there is also recent work on using
end-to-end systems trained on multilingual data to recognize
CM speech [7, 8, 9, 10, 11, 12].

Leveraging monolingual sentences for code-mixed lan-
guage models has been extensively studied in prior work [13,
14, 15, 16, 17]. However, creating synthetic CM speech to im-
prove ASR for CM data is relatively less explored. In [18], com-
plete utterances for each language in the CM speech are con-
catenated together to create synthetic code-switched utterances
that are subsequently used to train an end-to-end ASR system.
Recent work has also explored the use of a semi-supervised ap-
proach where non-parallel CM speech and text are used by an
ASR and TTS system within an autoencoder [19].

2. Our approach
We generate synthetic CM data in two stages. We first frag-
ment monolingual utterances into smaller speech segments and
subsequently concatenate these segments using different tech-
niques in order to construct synthetic CM speech.
Segmenting monolingual utterances: From monolingual ut-
terances in Hindi and English, we extract smaller segments with
the help of a simple amplitude-based silence detector; these seg-
ments mostly end at word boundaries. The transcriptions cor-
responding to these segments are obtained using forced align-
ments that are derived from monolingual ASR systems trained
for Hindi and English.

2.1. Characterizing CM speech

We first discuss some definitions that will be used subsequently.
In a CM sentence, switch point is a word boundary where the
following word is from a different language than the preceding
word. A series of monolingual tokens between two consecutive
switch points is called a language span. The number of tokens
in a language span is called its span length. The span length
distribution is a discrete probability distribution of span lengths
in a CM corpus. We additionally define language span length
distribution as the probability distribution of span lengths cor-
responding to a particular language in a CM corpus.



Algorithm 1: Algorithm to create a synthetic CM cor-
pus according to given span length and sentence length
distributions.

Input: sentence length distribution Dsent, span length
distributions of two languages D0

span and D1
span,

monolingual fragment corpora F0
` and F1

` for the two
languages, consisting of (speech, transcript) pairs of
length ` fragments (for each ` in the support of D0

span

and D1
span, respectively); a desired corpus size, n; a

bound on number of times a fragment can be used, d.
Output: A corpus of n synthetic CM (speech,

transcript) pairs
corpus← empty;
while size of corpus < n do

trans, speech← empty;
sent length← sample(Dsent) ;
current lang← sample(Bernoulli(0.5));
while length of trans < sent length do

span length← sample(Dcurrent lang
span );

(speech frag, trans frag)← uniformly
from Fcurrent lang

span length . (If there are such fragments
selected less than d times, restrict to them);

append speech frag to speech;
append trans frag to trans;
current lang← 1 − current lang;

end
add (speech, trans) to corpus

end
return corpus

From the perspective of definitions given in [20], we can
show that preserving the ratio of number of tokens of each lan-
guage preserves M-Index and language entropy. Further, pre-
serving the language span length distribution of all languages
additionally preserves I-index, burstiness and span entropy. Our
first CM corpus, called SynSL, is generated to preserve language
span length distributions which implicitly preserves the five
metrics mentioned above. We note that preserving span length
distributions gives appropriate weightage to triphones from the
individual languages in CM speech.

A switch point phone transition (SPT) is an ordered pair of
phones, made up of the last phone of the last word in a span
and the first phone of the first word in the following span. Let
〈s〉 and 〈/s〉 denote the start- and end-of-sentence tags which
are treated as single-phone words, occurring as single-word
spans. We shall construct CM sentences involving two lan-
guages L0 and L1, with phone-sets Π0 and Π1 respectively.
We shall consider Π0 and Π1 to be disjoint (by annotating
the phones with the language identifier), except for 〈s〉 and
〈/s〉 which are included in both. Then, the set of all possible
SPTs is a subset of (Π0 × Π1) ∪ (Π1 × Π0). The empiri-
cal SPT distribution over a corpus, denoted by P (x, y) where
(x, y) ∈ (Π0 ×Π1)∪ (Π1 ×Π0), is calculated by aggregating
all the SPTs in the corpus, to form a discrete probability dis-
tribution. We shall only use the conditional probabilities of the
form P (y|x) = P (x, y)/

∑
y′ P (x, y′) (for x with a positive

denominator).
We also define fragment phone transition (FPT) as an or-

dered pair of phones made up of first phone of the first word
and last phone of the last word of a language span. The set
of all possible FPTs is a subset of (Π0 × Π0) ∪ (Π1 × Π1).

Algorithm 2: Algorithm to create a synthetic CM cor-
pus according to given switch point phone transition and
fragment phone transition distributions.

Input: SPT distributions P (y|x) and FPT distributions
Q(y|x), for all x, y ∈ Π0 ∪Π1; monolingual
fragments; parameters n (required corpus size) and d (a
bound on number of times a fragment is used).

Output: A corpus of n synthetic CM (speech,
transcript) pairs
corpus← empty;
while size of corpus < n do

trans, speech← empty;
ps ← sample(P (ps|〈s〉));
while pf 6= 〈/s〉 do

pe ← sample(Q(pe|ps));
(speech frag, trans frag)← a random

fragment starting with phone ps and ending in
pe. (If there are such fragments selected less
than d times, restrict to them);

append speech frag to speech;
append trans frag to trans;
ps ← sample(P (ps|pe));

end
add (speech,trans) to corpus

end
return corpus

We can also define a corresponding empirical FPT distribu-
tion, Q(x, y) and conditional probabilities Q(y|x), for FPTs
(x, y) ∈ (Π0 × Π0) ∪ (Π1 × Π1). Our second CM corpus,
called SynPT, is generated to preserve the two PT distributions
(i.e., SPT and FPT) of a given corpus. Though the transition
probabilities at switch points are characterized by SPT distri-
bution only, FPT distribution is important for the algorithm to
generate the desired SPT distribution as described next.

2.2. Algorithms for generating CM corpora

The algorithm to generate a corpus that preserves SL distribu-
tion is given in Algorithm 1. It simply samples span lengths
alternately for the two languages, and randomly samples frag-
ments of matching lengths from a given corpus. The minimum
length of each sentence is also sampled from a given distribu-
tion obtained from real CM text.

Algorithm 2 is used to create a synthetic corpus that
matches specified phone transition distributions SPT and FPT.
This algorithm models the sampling of fragments as a Markov
chain Monte Carlo sampling. Its input is P (y|x) and Q(y|x),
the SPT and FPT (conditional) distributions. The sampling pro-
cedure consists of alternately sampling the second phone con-
ditioned on the first phone from the SPT and the FPT distribu-
tions. This process can be modeled as a single Markov chain,
with each state being a phone, annotated with whether it is at the
beginning or the end of a span (except for 〈s〉 and 〈/s〉 which
occur only once each). We add an edge from the state 〈/s〉 to
the state 〈s〉 with probability 1 (corresponding to starting a new
sentence after one ends) so that the entire sampling algorithm
can be considered a single random walk, starting from the state
〈s〉. The Markov chain formed here is ergodic and its station-
ary distribution will match the PT distributions of the original
corpus. Figure 1 shows 30 phone-pairs with the most frequent
SPTs in real CM text and in synthetic CM text; we see that the



Figure 1: Probabilities of 30 most frequent SPTs in CMtext
(line) and their probabilities is SynPT (dots).

probabilities are fairly well-matched.
In implementing both the algorithms, we impose a restric-

tion that a fragment can be sampled at most 3 times unless there
is no fragment satisfying the given constraint(s) among avail-
able fragments. In case of the latter, in Algorithm 1, a span
length closest to the desired span length was chosen and in Al-
gorithm 2, a fragment corresponding to a random phone pair
was chosen; this exception was invoked rarely for the corpus
sizes used. We also require that P (〈/s〉|〈s〉) = 0 (i.e. no empty
sentences are allowed).

3. Experimental setup
Data description: Table 1 provides details of the datasets em-
ployed in this work. We make use of monolingual Hindi (HI)
and Indian English (EN) speech corpora. (An additional 220
hours of English data was used to train the forced alignment
model used in creating synthetic speech.) For the purpose of
evaluation, we use real CM speech to create a development set
(Dev) and a test set (Test), each amounting to more than 2 hours
of speech. We also assume access to 12,600 sentences of real
CM text (CMtext), containing 183, 000 tokens, that is used to
train LMs and guide the creation of our synthetic CM speech.
All the data sources are proprietary to Microsoft. We note that
all the speech data used in our experiments are conversational
in nature, with noisy transcriptions consisting of misspellings,
many named entities and English words inconsistently rendered
in either Roman or Devanagari scripts.

Implementation details: All our ASR systems were built using
the Kaldi toolkit [21]. We used the wsj/s5 scripts to train tied-
state triphone models using MFCC features. The alignments
from these models were subsequently used to train time-delay
neural network (TDNN) [22] models, using nnet3 scripts in
Kaldi. We used a common phone set of 55 phones and pro-
prietary lexicons. The LMs in all subsequent experiments (un-
less specified otherwise) are trigram models with Kneser-Ney
smoothing, trained using SRILM toolkit [23].

4. Experiments and results
4.1. Impact of synthetic speech on acoustic models

All the systems shown in Table 2 use a smoothed trigram LM
trained on CMtext. For the acoustic model, we build a baseline
monolingual Hindi TDNN model that is trained on 50 hours of
speech randomly chosen from HI. We refer to this system as

Table 1: Statistics of our data sets

Corpus Type # of hours # of utterances

HI Speech 353 42.4k
EN Speech 133 24.7k

CMtext Text - 12.6k
Dev Speech 2.2 2k
Test Speech 2.3 2k

“HI(50)”, shown in Table 2. We also trained a TDNN model
using 50 hours from HI and 50 hours from EN, which per-
formed worse than HI(50) with WERs of 64.60 and 65.85 on
the dev and test sets, respectively.1 Hence, in all subsequent
experiments in this section, we use monolingual Hindi data as
our base corpus to which synthetic data is added. For syn-
thetic CM speech, in addition to SynSL and SynPT described
in Section 2.2, we also generate “SynConcat” inspired by prior
work [18] where up to three entire utterances in Hindi and En-
glish are concatenated together.

In the first set of numbers in Table 2, with HI(50) as our
starting point, we show the effect of augmenting the train-
ing data with 100 hours of different kinds of synthetic CM
speech. We make the following observations: 1) Adding
100 hours of synthetic data improves WERs when compared
to HI(50), regardless of how the synthetic speech was gen-
erated. These improvements are statistically significant (at
p < 0.001) using the mapswwe test2. 2) Adding 100
hours of SynPT is more beneficial compared to adding 100
hours of SynConcat. The difference in WERs on both dev
and test sets using HI(50)+SynPT(100) when compared with
HI(50)+SynConcat(100) are statistically significant at p <
0.001. Using SynPT also helps improve performance slightly
more than using SynSL. These results show that synthetic
speech that mimics the characteristics of real CM speech is
more useful than naively constructed synthetic speech when
starting with a modest baseline (i.e. a monolingual ASR sys-
tem trained on 50 hours of Hindi speech).

In the second set of numbers in Table 2, we start with a
TDNN acoustic model trained on 350 hours of Hindi speech
(HI(350)). This gives significantly lower WERs on the dev and
test sets compared to HI(50). Next, we examine the effect of
augmenting HI(350) with 100 hours of synthetic data. As with
HI(50), adding synthetic data to HI(350) continues to improve
WERs significantly (at p = 0.02 for dev and p < 0.001 for
test). However, the manner in which synthetic data is gener-
ated is less important when starting with HI(350); SynConcat
continues to be worse than SynPT albeit by a smaller margin.3

The final set of numbers in Table 2 shows how WERs
change as a function of the amount of SynPT data used dur-
ing training. As expected, we see a trend of diminishing returns
with small additional improvements in WER as we increase the
amount of SynPT beyond 100 hours.

1We also trained models with different ratios of combining HI and
EN speech data. However, none of these models outperformed HI(50).

2https://github.com/usnistgov/SCTK
3We also created synthetic speech that preserves both SL and PT

distributions (SynSL+PT). HI(350)+SynSL+PT(100) gives WERs of
57.05% (dev) and 58.69% (test), which is comparable to SynPT.

https://github.com/usnistgov/SCTK


Table 2: WERs using different TDNN-based acoustic models.
(Double-lines demarcate three different sets of experiments.)

Training Dev Test

HI(50) 63.01 65.14
HI(50)+SynConcat(100) 60.89 62.44
HI(50)+SynSL(100) 60.22 62.28
HI(50)+SynPT(100) 59.05 60.81

HI(350) 58.99 60.47
HI(350)+SynConcat(100) 57.91 59.65
HI(350)+SynSL(100) 57.22 58.89
HI(350)+SynPT(100) 57.31 58.73

HI(350) 58.99 60.47
HI(350)+SynPT(100) 57.31 58.73
HI(350)+SynPT(200) 56.62 58.73
HI(350)+SynPT(350) 56.28 58.29

4.2. Impact of synthetic text on language models

All the systems in Table 2 used an LM trained on CMtext. In
this section, we fix the acoustic model to be the best-performing
model from Table 2 i.e. HI(350)+SynPT(350), and investigate
different trigram LMs4 based on (i) monolingual HI and EN
text and (ii) synthetic CM text. For monolingual text, we con-
sider Hindi and English transcripts from the HI and EN speech
corpora, corresponding to 3.2 million Hindi tokens and 1 mil-
lion English tokens, respectively. For synthetic CM text, we ex-
periment with transcripts from SynConcat, SynSL and SynPT.
We also use a linguistically-motivated technique [17] to gener-
ate synthetic CM text starting from monolingual text, which is
grammatically valid and constrained by a theory of code-mixing
called the equivalence constraint theory (ECT). Using this tech-
nique, we generated a total of 24.5k mixed sentences starting
from HI which will henceforth be referred to as ECT.

The WERs reported in Table 3 are computed after the ref-
erence and predicted sentences are subject to a transliteration
post-processing step. This is because a significant number of
errors arise from a mismatch in scripts where an English word
in the reference transcript that is correctly predicted in the ASR
hypothesis is marked as an error because it is rendered in De-
vanagari and vice-versa. Such a transliteration-based scoring
mechanism was also explored in recent work [24]. We used the
Bing Transliteration API5 . This step improved our WERs by
2.97% on average.

Along with WERs, Table 3 also lists a second error metric
specific to code-mixing that we call code-mixed WER (CM-
WER). The sentence hypothesized by the ASR system is first
aligned with the reference transcription to derive a sequence of
edits i.e. substitutions, deletions and insertions. If there are M
words on both sides of switch points across all reference tran-
scriptions and N edits in the ASR hypotheses corresponding
to words surrounding the switch points in the references, then
CM-WER = N

M
. This metric provides an estimate of how ac-

curately the system predicts words at switch points.
The first two rows of Table 3 shows WERs obtained using

a trigram LM trained only on Hindi transcripts and a trigram

4Rescoring with recurrent neural network-based LMs did not signif-
icantly improve performance.

5https://azure.microsoft.com/en-in/services/
cognitive-services/translator-text-api/

Table 3: WERs using different LMs. Numbers in brackets denote
CM-WER.

Training Text Dev Test

HI 58.65 (63.81) 60.83 (65.50)
HI+EN 72.36 (77.66) 73.81 (80.62)

HI+ECT 58.39 (62.24) 60.86 (65.41)
HI+EN+ECT 57.72 (60.57) 60.12 (62.92)

HI+EN+SynConcat 57.75 (60.60) 60.15 (63.04)
HI+EN+SynSL 57.51 (60.03) 60.11 (62.75)
HI+EN+SynPT 57.49 (60.00) 60.12 (62.86)

SynSL+SynPT+ECT (S-All) 57.88 (60.05) 60.25 (62.79)

CMtext 55.10 (52.79) 57.38 (55.33)
CMtext+S-All 54.59 (52.92) 56.97 (55.05)

LM trained on both Hindi and English transcripts. We observe
that simply adding English sentences to the LM significantly de-
grades performance. However, English sentences become use-
ful in conjunction with synthetically generated CM text. This is
apparent when we compare HI + ECT to HI + EN + ECT and
obtain a statistically significant reduction in WER at p < 0.001.
Adding ECT sentences improves predictions at switch points
and the monolingual English sentences further improve predic-
tion of the English segments within the CM utterances.

The next three rows of Table 3 show how WERs vary
when we train LMs using transcripts from SynConcat(100),
SynSL(100) and SynPT(100). Interestingly, LMs trained using
this synthetic data (which is agnostic to linguistic constraints)
are comparable in performance to the LMs trained using ECT
(which is linguistically motivated). These numbers are further
comparable to an LM trained exclusively on data from all syn-
thetic sources (except SynConcat) and no monolingual text.

From the last two rows of Table 3, we see that the use of
monolingual data and synthetic data sources brings us close to
the WERs obtained by an LM trained only on CMtext. How-
ever, CM-WER using CMtext is substantially better when com-
pared to any of the other LMs. Linearly interpolating an LM
trained on CMtext (scaled by 0.9) with an LM trained on SynSL
+ SynPT + ECT (scaled by 0.1) provides further improvements
over an LM trained on CMtext.

5. Conclusions and future work
In this work, we generate synthetic Hindi-English CM speech
that obeys constraints of real CM text and significantly helps
improve ASR performance of CM speech. Transcriptions from
the synthetic corpus are also effective in improving the qual-
ity of language models for CM data. In future work, we will
explore how to further improve the quality of synthetically gen-
erated speech with the help of text-to-speech systems.
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