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Abstract
In this paper, we approach the problem of discriminatively train-
ing language models using a weighted finite state transducer
(WFST) framework that does not require acoustic training data.
The phonetic confusions prevalent in the recognizer are mod-
eled using a confusion matrix that takes into account informa-
tion from the pronunciation model (word-based phone confu-
sion log likelihoods) and information from the acoustic model
(distances between the phonetic acoustic models). This con-
fusion matrix, within the WFST framework, is used to gen-
erate confusable word graphs that serve as inputs to the aver-
aged perceptron algorithm to train the parameters of the dis-
criminative language model. Experiments on a large vocabu-
lary speech recognition task show significant word error rate
reductions when compared to a baseline using a trigram model
trained with the maximum likelihood criterion.
Index Terms: Language Modeling, Weighted Finite State
Transducers, Confusion Matrix, Perceptron Algorithm

1. Introduction
Statistical n-gram language models play a significant role in
the speech recognition process by constraining the vast search
space of all possible word sequences. N-gram language mod-
els are obtained via maximum likelihood estimation from large
bodies of text and aim at reducing the perplexity on unseen test
data. However, when used in speech recognition, such an objec-
tive may not be optimal. Discriminative training algorithms are
used to adjust a language model with an objective function that
is optimized to improve speech recognition performance (word
error rate).

[1] used a discriminative objective function to directly up-
date n-gram counts and change the lexicon to add new words.
[2] used the minimum classification error (MCE) training cri-
terion to train the language model via the generalized proba-
bilistic descent (GPD) algorithm. [3] describes a multi-pass al-
gorithm based on global linear models that used the perceptron
algorithm for feature selection and then used regularized maxi-
mum conditional likelihood to train the language model param-
eters. [4] proposes a WFST model that generalizes the discrim-
inative linear model described in [3] and incorporates acous-
tic, duration and language components. For these systems, both
acoustic waveforms and their corresponding transcriptions need
to be available at training time.

We approach the problem of discriminatively training a lan-
guage model using only the transcriptions and no acoustic data.
Within this framework, we construct a confusion matrix that at-
tempts at closely modeling the phonetic confusions prevalent in
the recognizer. As detailed in our previous work [5], we com-
bine counts of phonetic confusions derived from the recogni-
tion errors (information from the pronunciation model) along
with phone Hidden Markov Model (HMM) distances (informa-

tion from the acoustic model) to build this confusion matrix.
The confusion matrix is a representation of the phonetic and
acoustic confusability inherent in the recognizer. [6] adopts a
similar motivation of not using acoustic data but use a condi-
tional entropy criteria and a simple phone error model to update
the language model parameters. We use a WFST framework
to generate confusable hypotheses, that are further used to train
our discriminative language model. Apart from the confusion
matrix, we only need an initial language model (LM), a lexi-
con with pronunciations for all the words in the LM, and input
transcriptions to train our discriminative language model.

The following section describes the WFST prediction
framework used to generate confusable sentences for a given
input utterance and details the learning algorithm used to train
our discriminative language model. Section 3 describes our ex-
perimental setup and details of the task. Section 4 presents our
analysis of two sets of experiments in detail. For the first set
of experiments, we use training data from the same corpus that
was used to train the baseline recognizer for our discriminative
LM experiments. The second set of experiments use only tran-
scripts, and no acoustic data, from a different corpus to train our
LM. This strengthens our claim that our training model can be
used effectively with only transcript data and that the confusion
matrix within our WFST framework does a good job of captur-
ing the acoustic errors made by the recognizer. Finally, Section
5 concludes with suggestions for future work.

2. Error Prediction and Learning
Algorithms

2.1. Predictive WFST Framework

We employ the framework outlined in [7] that incorpo-
rates acoustic confusability, pronunciation model and language
model information to generate a lattice of confusable word se-
quences for a given word sequence using WFSTs. Taking ad-
vantage of the invertible nature of transducers, we build a lattice
of all possible confusable word hypotheses corresponding to the
input utterance W using:

Wconf = (W oLm−1 o P−1 o Ac−1 o Ac o P o Lm) (1)

where Ac is an FST that maps acoustic features to phones using
the acoustic model scores, P is the pronunciation model FST
mapping phones to words and Lm is the language model FSA
(with ngram scores). Since Lm is a deterministic finite state
automaton, Lm−1=Lm; composition with Lm−1 is not neces-
sary as it just provides a constant scaling for the correct string
W . Given the infeasibility of the task of representing the con-
tinuous space of acoustic features (Ac−1 o Ac) within a WFST
framework, [7] assumes that the acoustic errors made by a rec-
ognizer can be encapsulated within a confusion matrix (C) be-
tween phones derived from speech recognition errors. (1) now



becomes:

Wconf = (W o P−1 o C o P o Lm) (2)

In our previous work [5], we observed that providing the
confusion matrix with acoustic model information in the form
of distances between confusable phone HMMs, along with
word-based phone confusion scores, improved the prediction
capabilities of the confusion matrix. The distance between two
phone HMMs was considered to be a weighted sum of the aver-
age distance between the Gaussian Mixture Models (GMMs) of
the aligned states for every possible alignment of HMM states,
normalized by the sum of all weights. The weights are derived
from the probability of the alignment between the states of the
HMMs of the two phones in question. In this paper, we make
use of outputs from this WFST framework, in the form of con-
fusable word graphs (Wconf), to train a linear discriminative lan-
guage model built using the perceptron algorithm.

2.2. Linear Discriminative Language Model

We approach the problem of learning parameters of a discrimi-
native language model using a global linear model as described
in [8][3]. Given a set of training examples (xi,yi) where xi ∈ X
, yi ∈ Y for i = 1 . . . N ,a function GEN that lists a set of can-
didates GEN(x) for an input x, a feature vector Φ(x, y) ∈ Rd

for each (x, y) ∈ X × Y and a parameter vector α ∈ Rd, there
is a mapping from an input x to F (x) given by the equation:

F (x) = argmax
y∈GEN(x)

Φ(x, y) · α (3)

where Φ(x, y) ·α is the dot product
∑

i αiΦi(x, y). We use the
training examples (xi,yi) to learn the parameter values α and
the decoding algorithm searches for a value of y that maximizes
(3). We use the perceptron algorithm shown in Fig. 1 [3] to
train the parameters α of the model. As in [8], we use the aver-
aged parameter values during decoding; αAV G =

∑
i,tα

t
i/NT ,

where αt
i is the parameter vector obtained after the t’th iteration

on the i’th example in the algorithm described in Fig. 1.

2.2.1. WFST Implementation of the Perceptron Algorithm

Similar to [3], we use WFSTs to implement the perceptron algo-
rithm. This fits in nicely with our prediction framework that out-
puts the final confusable word graph as a deterministic WFST.
To apply the perceptron algorithm outlined in Fig. 1 to our gen-
erated confusion strings, we need to define the training exam-
ples (xi, yi), GEN and the feature vector mapping Φ. xi ∈ X
are the input word sequences, GEN(xi) is the set of word hy-
potheses obtained from the confusable word graph correspond-
ing to xi (Wconf in (2)) and yi ∈ Y is the reference transcription.

The main difference in our model from the one proposed in
[3] is that we use confusable word graphs generated from input
transcriptions as opposed to word lattices produced by the rec-
ognizer and this is reflected in the first dimension, φ0(x, y) of

Inputs: Training examples (xi, yi)
Initialization: Set α = 0
Algorithm:

For t = 1 · · ·T, i = 1 · · ·N :
Calculate zi = argmaxz∈GEN(xi)

Φ(xi, z) · α
If (zi 6= yi) then α = α+Φ(xi, yi)−Φ(xi, zi)

Output: Parameters α.

Figure 1: Collins’ perceptron algorithm [3]
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Figure 2: Trigram model represented as a WFA with failure
transitions

the feature vector Φ. We set φ0(x,y) to be the sum of weights
along the path of a confusable hypothesis in the confusable
word graph and this serves as an acoustic surrogate to the log
score output from the baseline recognizer word lattices used by
[3]. We only require the reference transcriptions to generate our
confusable strings and this eliminates the need for acoustic data.

The remaining features in Φ correspond to the unigram, bi-
gram and trigram counts of all the n-grams (up to length 3)
that appear in the confusable word graphs of all the training
set sentences. These features can be efficiently represented as
a deterministic weighted finite-state automaton (WFA) [9]. Fig.
2 shows how a trigram model can be represented as a WFA.
There are transitions corresponding to each word wi leaving a
bigram history state wi−2wi−1 and there are failure transitions,
labeled φ, that are traversed only if the next word in the input
word sequence does not correspond to any of the word arcs leav-
ing this history state. In such a representation, the weight of a
word arc wi leaving a history state wi−2wi−1 must account for
the trigram(wi−2wi−1wi), bigram(wi−1wi) and unigram (wi)
weights since encountering a trigram feature automatically im-
plies that the corresponding bigram and unigram features also
need to be taken into consideration. We note that for our ex-
periments, the perceptron reached optimal performance after T
= 1 or 2 iterations. Thus, the number of n-gram features with
non-zero weights is very small compared to the total number of
n-grams seen in the training word graphs.

Using the above definitions for (xi, yi), GEN and the fea-
ture vector mapping Φ, the algorithm in Fig. 1 is implemented
using WFSTs as shown in Fig. 3. Since we generate the con-
fusable word graphs using the reference transcriptions, the best
path from (α0Wconfi o D) returns the reference transcription.
Thus, in order to account for more confusable words in the de-
coded sentence (zi), we extract the nth best confusable sentence
from the word confusable graph where n=100, 500 or 1000.
In Section 4, we will describe in detail the motivation behind

Inputs: Confusable Word Graphs Wconfi and
reference transcriptions ri for i = 1 . . . N .
Value of α0 is chosen to be a fixed constant by
optimization on the development set (α0 = 1).
Initialization: D is the discriminative language
model with all weights corresponding to the
ngrams in D set to 0.
Algorithm:

For t = 1 . . . T , i = 1 . . . N :
Compute zi = nthbest (α0Wconfi ◦ D)
Update αj = αj + φj(xi, ri)− φj(xi, zi)
corresponding to the weights on the arcs in
D for all j = 1 · · · d where Φ(x, y) ∈ Rd.

Figure 3: Perceptron Algorithm Implementation using WFSTs



choosing a value for n and we present speech recognition re-
sults using different values of n.

3. Experimental Setup
We present preliminary results from experiments on the
Switchboard-1 Telephone Speech Corpus, Release 2, 1997 that
contains manually corrected word alignments and transcrip-
tions. The training set consists of 154723 transcribed utter-
ances. The development set contains 2235 sentences and the
evaluation test set contains 638 sentences. The baseline recog-
nizer for this task was built using the Hidden Markov Model
Toolkit (HTK) [10]. The acoustic model was developed with
tied-state intra-word triphones and the state output distributions
from each of the phone HMMs were modeled as 16-component
Gaussian mixtures. The pronunciation model was derived us-
ing the CMU dictionary. A bigram language model was built
using the maximum likelihood criterion from all the sentences
in the training set. The lattices derived from the recognizer were
rescored using a trigram language model and the baseline word
error rates (WERs) were generated from these rescored lattices.
We build the confusion matrix utilizing phone confusion counts
and HMM distances, as outlined in [5], using the ASR tran-
scriptions of the 2235 sentences in the development set.

4. Experimental Design and Analysis
We conduct two sets of experiments to demonstrate the utility of
confusable word graphs from our predictive WFST framework
to train our discriminative language model without making use
of any acoustic data. Due to time constraints, the first set of
experiments uses a smaller subset of the Switchboard training
set, comprising of 20000 sentences, to train our discriminative
language model. To further reiterate our hypothesis that this
framework is useful in cases where there is no real acoustic data,
our second set of experiments use 10000 sentences from the
Fisher corpus (Linguistic Data Consortium, LDC 2003) to train
the discriminative language model. Both sets of experiments
and the results are analyzed in detail in the following sections.
4.1. Error Prediction on the Switchboard Corpus

We evaluate the predictive capability of our framework by com-
puting the fraction of errors that are correctly predicted when
a threshold of “n” sentences from the word confusable graph
is applied. We calculate the number of “error chunks” that are
correctly predicted by the framework within the threshold of
“n” for all the sentences in the development set. “Error chunks”
are identified by removing the longest common subsequence of
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Figure 4: Recall rank of recognized error chunks in the devel-
opment set of the Switchboard Corpus

Table 1: Table of word error rates on the Switchboard test-set
using different confusion matrices

System Word error rate (%)
Baseline 49.7

FST-Words 49.2
FST-Words+HMM 48.8

the correct sentence and the misrecognized sentence from each
of these sentences and grouping together the remaining chunks
of the two sentences. For example, if the reference sentence
is “oh the last big lake i went to was Lake Fork” and the mis-
recognized sentence is ‘all the last big lake going to was Lake
Fork”, the error chunks after eliminating the longest common
subsequence (“the last big lake to was Lake Fork”) would be
“oh:all” and “i went:going”. Recall ranks of the generated “er-
ror chunks” are an important measure in that it computes the
capacity of our system to generate the misrecognized strings.
From Fig. 4, we observe that only about 30% of the erroneous
word chunks are correctly predicted for n = 100. For higher
values of n (n = 500/1000), about 42% of the erroneous word
subsequences are correctly predicted. This is closer to the word
accuracy rates obtained from the recognizer on the development
set (49%) indicating that a higher value of n should perform bet-
ter for our task of discriminatively training the language model.

4.2. Discriminative LM Experiments on Switchboard

We consider the 100th, 500th and 1000th best sentence from
the confusable word graphs to update the ngram weights of
those features that differ from the ngram features in the ref-
erence sentence. Table 1 shows us the word error rates
(WERs) for two models based on two different confusion matri-
ces. Both systems “FST-Words” and “FST-Words+HMM” use
10000 training sentences to train the discriminative LM and set
n = 1000. “FST-Words” is built using a confusion matrix that
sets the cost of each phone-phone mapping by computing an
alignment between the phonetic transcriptions of the reference
sentence and the recognized sentence. “FST-Words+HMM”
uses a confusion matrix with its costs set to phone HMM dis-
tances along with the phone-phone log-likelihood scores to
generate the confusable word graphs. We observe that “FST-
Words+HMM” gives a larger reduction in WER as compared to
“FST-Words” reiterating that adding information from the un-
derlying HMM topology of the phones in the form of HMM
distances to the confusion matrix helps provide a more accurate
picture of the possible phone confusions [5]. In our previous
work [5], we found that incorporating lexical constraints gave
superior predictive performance over pure phone-recognitions
with no lexicon.

Table 2 gives us the WERs corresponding to the three dif-
ferent values of n. The baseline model consists of a max-
imum likelihood trained trigram model. The system “With
Lats” corresponds to using word lattices of the training sen-
tences from the baseline recognizer to train the discriminative
language model, as described in [3]. Keeping with the approach
in [3], the lattices are produced with an acoustic model that was
trained on the entire training set but with a language model that
was trained on data portions that did not include the current ut-
terance. Both “With Lats” and our system with n = 1000 give
a statistically significant reduction (p<0.05) in WER over the
baseline. Also, we observe that our system with n = 1000
performs comparably to “With Lats” that uses acoustic data in
the form of word lattices from the recognizer. Additionally,



Table 2: Table of word error rates on the Switchboard test-set
building discriminative LM using the Switchboard training set

System Word error rate (%)
Baseline 49.7

With Lats (audio), α0 = 2 [3] 48.4
With FSTs (audio-free), n = 100 49.2
With FSTs (audio-free), n = 500 48.7
With FSTs (audio-free), n = 1000 48.5

Table 3: Table of word error rates for experiments on the
Switchboard test-set using sentences from the Fisher corpus

System Word error rate (%)
Baseline 49.7

Baseline(with Fisher) 49.4
With FSTs, n = 1000 48.8

our word graphs were generated an order of magnitude faster
than generating training lattices using HTK. It should be noted
that we used a reference gold standard in “With Lats” and not
a minimum word error gold standard as mentioned in [8]. For
n = 500, the drop in WER from the baseline is almost sta-
tistically significant and for n = 100, the fall in WER is not
statistically significant compared to the baseline. This is in line
with the observations from our previous evaluation task that for
higher values of n, more acoustic errors of the recognizer are
captured. This increases the number of ngrams with a non-zero
weight in our newly trained discriminative language model and
contributes to the reduction in WER of the recognizer.

4.3. Experiments Using Fisher Corpus

Our second set of experiments aim at evaluating the perfor-
mance of our discriminative language modeling algorithm by
using audio-free transcript data from a corpus different from the
one used to train the baseline recognizer. We use 10000 tran-
scripts from the Fisher corpus to train our model. The sentences
were chosen such that there were no out of vocabulary words
with regards to the Switchboard corpus and were of least per-
plexity when evaluated against the trigram language model built
using all the training sentences from the Switchboard corpus.
“Baseline(with Fisher)” consists of a trigram language model
that was trained using all the training set sentences from the
Switchboard corpus and the newly extracted 10000 Fisher tran-
scripts. Table 3 shows that our system with n = 1000 gives a
statistically significant improvement (p<0.05) over “Baseline”.
It also shows an improvement over “Baseline(with Fisher)” that
is not statistically significant and we believe this is because we
used only 10000 sentences to train the model which may not
be sufficient for a large vocabulary task of spontaneous conver-
sations. This result is promising in that we see improvements
in the performance of the recognizer by using our system with
audio-free transcripts from a corpus different from the one used
to train the baseline recognizer.

5. Conclusions
We used a predictive WFST framework, consisting of a con-
fusion matrix that uses pronunciation and acoustic model infor-
mation from the recognizer to model possible phone confusions,
to generate confusable word sequences corresponding to an in-
put word utterance. We further used these erroneous word hy-
potheses to train a global linear discriminative language model
using the averaged perceptron algorithm. We observe that our
system performs significantly better than a baseline recognzer

that uses a generatively trained trigram language model. Also,
it performs comparably to a system that uses acoustic data in
the form of word lattices from a recognizer and runs an order of
magnitude faster. Though these results need to be validated with
a stronger baseline system, they are promising in that they are
indicative of the fact that the confusion matrix is a fitting model
for the phonetic confusions prevalent in the recognizer and thus
allows us to use only transcript data (no audio data) to get signif-
icant improvements in word accuracy rates from the recognizer.
To further this point, we use transcripts from the Fisher corpus
to train our discriminative language model and observe that we
see a reduction in WER when compared to baselines that use
generatively trained trigram LMs. This is an encouraging result
in that it allows us to use audio-free transcripts from a differ-
ent corpus than the one used to train the acoustic model of the
baseline recognizer and still report improvements in the perfor-
mance of the recognizer. Future work will include expanding
the feature set beyond simple n-gram features and incorporat-
ing additional features such as part-of-speech information that
can be extracted from just the transcripts. We also intend to ex-
periment with different distributions around n rather than using
a single nth best hypothesis from our confusable word graphs.
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