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Abstract

One of the most popular speech recognition architectures con-
sists of multiple components (like the acoustic, pronunciation
and language models) that are modeled as weighted finite state
transducer (WFST) factors in a cascade. These factor WFSTs
are typically trained in isolation and combined efficiently for
decoding. Recent work has explored jointly estimating param-
eters for these models using considerable amounts of training
data. We propose an alternative approach to selectively train
factor WFSTs in such an architecture, while still leveraging in-
formation from the entire cascade. This technique allows us
to effectively estimate parameters of a factor WFST using rel-
atively small amounts of data, if the factor is small. Our ap-
proach involves an online training paradigm for linear models
adapted for discriminatively training one or more WFSTs in a
cascade. We apply this method to train a pronunciation model
for recognition on conversational speech, resulting in signifi-
cant improvements in recognition performance over the base-
line model.

Index Terms: Pronunciation models, weighted finite state
transducers, large-margin training.

1. Introduction

Weighted finite state transducers (WFSTs) provide a generic
and efficient framework to represent the main components
(acoustic, pronunciation and language models) of an automatic
speech recognition (ASR) system [1]. These components (or
factor FSTs, as we will refer to them henceforth) are composed
into a decoding graph that can be efficiently searched during the
ASR decoding task [2, 3].

The individual factor FSTs in this framework are typically
trained in isolation. After they are composed together to obtain
the decoding graph, the transition weights of this graph could be
further optimized using discriminative training criteria [4, 5, 6].
Unfortunately, this graph typically runs into millions of arcs,
especially for large vocabulary tasks, and hence requires large
amounts of training data to effectively optimize weights on its
arcs. We propose an alternative approach to selectively train a
factor WFST, while still leveraging information from the entire
ASR cascade. For small factor WFSTs, this technique allows
us to effectively estimate parameters with limited amounts of
training data.

We mainly borrow inspiration from previous work on dis-
criminatively learning weights corresponding to the scores in a
WEST by introducing a linear model on its arcs [7, 6, 8]. Our
current approach builds on techniques introduced in [9] where
a dynamic Bayesian network was converted to a WFEST cascade

and then discriminatively trained. The main difference in our
approach, compared to prior work, is that we selectively learn
weights on a single factor FST within a cascade.

We apply this technique to pronunciation models for rec-
ognizing conversational speech. This was done mainly for two
reasons:

e Unlike acoustic and language models that are automati-
cally learned from data, pronunciation models are typically de-
rived from existing hand-designed dictionaries that map a word
to one or more canonical pronunciations. There have been a
number of previous attempts to stochastically learn weights for
the pronunciations of a word [10, 11] and predict pronunciations
of new words [12, 13]. There has also been recent work that in-
troduces discriminatively trained phoneme confusion models to
handle pronunciation variation [14]. Our approach is different
in that we use a frame-level pronunciation model and train it in
the context of other frame-level components in the ASR. This,
in particular, allows our trained pronunciation model to cap-
ture information about phoneme durations. This is described in
more detail in Section 3.

e Pronunciation models are typically much smaller than
the acoustic and language models. This allows us to experiment
with limited amounts of training data in order to discrimina-
tively reweight the arcs of the pronunciation model.

We mainly demonstrate our technique with an isolated word
recognition task on conversational speech from the Switchboard
corpus [15] that shows significant performance improvements
using our discriminatively trained pronunciation model. We
also report preliminary results on a task using continuous word
sequences from Switchboard that suggest that this approach is
promising. Sections 3 and 4 elaborate on our experimental setup
and results.

2. Methodology

Following notation first introduced in [1], the decoding graph in
an ASR system can be written as the composition of the follow-
ing components (or factor FSTs):

D=HoCoLoG (D

where H represents Hidden Markov Models (HMMs) trained
for context-dependent phonemes in the acoustic model, C is
a context-dependency transducer mapping context-dependent
phonemes to monophones, L is the pronunciation (or lexicon)
model and G is the language (or grammar) model. D transduces
state sequences of the HMMs to word sequences. Often, C and
L are unweighted and H and G are probabilistic, with the costs
on their arcs being negative log-likelihood values. We shall start
from such a baseline system, and discriminatively reweight L.



For a given input utterance X, the decoder’s function is to
search for a path of arcs in D that minimizes the cost of a se-
quence of words best matching the acoustic input signal (HMM
state sequence on D). This can be written as:

a" = argmin we (X, a) 2)
acD
where a is a path in the decoding graph D and w is a scoring
function that assigns a score to such a path; w is parameterized
by a (which we shall train). Since D = H o C o L o G, this
scoring function is given by

wa (X, a) = min  wi(X,a™) + wé (X, a)

(a™,a 0% a%)

consistent with @
+wg(X,a”) +wi(X,a?) ©)

where (az, ac,ar,ag) is a tuple of paths in the factor FSTs.
Such a tuple is said to be consistent with a if the sequences of
input and output labels of a match those of the paths in the first
and last factors (i.e., in[a] = in[ay], out[a] = out[ag])
and the sequence of output labels of the path in each factor
FST matches the input labels of the path in the next factor (i.e.,
out [ay] = in[ac] and so on). Also, w* (X, az) is the score
assigned to the path ay in H, and so on. Although in Equa-
tion 3 we have parameterized the weight functions of all the
factor FSTs with a, we can choose to parameterize only those
of the factors we intend to train. We will now formally describe
our training algorithm and some implementation details of this
algorithm using WFSTs.

2.1. Training Paradigm

For a training utterance X with output word sequence W, we
first define fx a () = wa (X, @) where f is a scoring function
that linearly combines feature values associated with arcs in the
path @.! The weights for this linear combination, c, are the
parameters of our model. We define this function as:

fxala) =a- ¢(X, a)+ (X, a) )

where a is a path in the decoding graph D, X corresponds to
the acoustics for the given utterance, ¢(X, a) refers to feature
values on arcs of the factor FSTs that are trained and (X, a)
refers to arc weights in the factor FSTs that are not trained.
We also define the following function:
gx,w(a) = min Ix,a(c) (5)
a, st out[a]=W

gx,w (@) corresponds to the best path in D for X such that the
output sequence of a is the same as the reference word sequence
'W. We note here that gx,w () is a concave function because
it is a min over a set of affine functions (fx,,(c)) in cv. We
also define gx v (v):

Ix,a(c) (6)

which corresponds to the best path in the FST for X, with an
output sequence other than W.

As an optimization problem, we would like to minimize the
expected zero-one loss over the training set:

g o) = min
gX,W( ) a, st outa]AW

o’ = argmin IE(X,W) |:1W7£argminw/ gx,W/(a):| @)

!In this section, in order to represent the final objective function as a
difference of concave functions, it helps to define f and g as functions
of a.

Algorithm 1 Algorithm using CCCP to optimize (9)

Require: Training samples 7 = {X;, W;}¥,, factor FSTs
H, C, L and G, learning rate A, number of epochs E.
1: Initialize oo /*See Section 3.2%/
2: D:=HoCoLoG
3: fore :=1to E do

4: ﬁo = Qle—1

5. fori:=1toN do

6: a; = argmin  wg,(X;,a)
a, st outfa]=W;

7:  end for

8: fori:=1toN do

9: a; = argmin  wg, ,(X;,a)
a, s.t. out[a]AW;

10: Ap = d)(X“ &Z) — ¢(X¢,Ei)

11: A= P(Xy, ai) — (X, @)

12: n = min{%7 hmgeloss(fzz“éA(M_AW)}

13: Bi = Pi—1 +nA¢

14:  end for

15: Qe 1= ﬁ Efil Bi

16: end for

Instead, we replace the zero-one loss function with a smooth
structural hinge-loss function and the expectation is replaced
with the empirical average over the training data (V instances)
to give an upper bound to the function in (7):

N
Z hinge-loss(margin, (c)) 8)

i=1

* 1
a = argoanm N
where margin,(a) = gx, w,(®) — gx;w,;(a) and
hinge-loss(z) = max(0, 1 — z). Henceforth, we shall refer to
gx;,w, (@) and gx . w, (o) as gi(c) and g, (cv), respectively.
This objective function in Equation (8) is neither a concave nor
a convex function; it can be expressed as a difference of two
concave functions (or equivalently, difference of two convex
functions) as follows:

1 N N
o = arginin N (Z gi(ax) — Z min{g;(a),g;(c) — 1}>
=1 =1 (9)

using the hinge-loss function that can be rewritten as:
hinge-loss(margin, (a)) = ¢i(e) — min(g;(ex), g, (ex) — 1).

Since the objective a difference of convex functions, we can
use the concave-convex procedure (CCCP) [16] to solve for o™
in Equation (9). The main idea in this optimization procedure
is to linearize the concave part of the function (i.e. >, gi(cx) in
(9)) around the solution (a) obtained in the current iteration so
that the objective function is now convex in o and can be solved
as a sequence of convex optimization problems (we use the on-
line passive-aggressive algorithm [17] for the convex optimiza-
tion problems). Our training algorithm, adapted from [18], is
formally described in Algorithm 1.

2.2. Implementation using WFSTs

This section describes some implementation details of Algo-
rithm 1; we used the OpenFst libraries [19] to construct, com-
bine and decode the WFSTs in this algorithm. We also used
utilities from the Kaldi toolkit [20].
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Figure 1: Illustration of decomposition of a path in D into com-
ponent paths in its factor FSTs. A path a of length 4 is shown
in D, with in[a] = abcd and with out [a] = wzyz. This
path is decomposed into paths azo.c, ac and ag in the fac-
tor FSTs, according to Equation (3). Given a, the sequence
of states in each of these paths is fixed, but the arcs (with la-
bels indicated by “?”") are solved for, subject to the constraints
in [ayoc] = abed, out [axoc] = infar], out [ar] = in[ag]
and out [ag] = wzyz.

In step 6 of Algorithm 1, for a given training utterance X,
we need to compute the best path of arcs corresponding to its
word sequence W ;. In order to find this path, we first compose
D with a finite state acceptor that takes as input the word labels
in W;. We then search for a path in this decoding graph con-
strained by W;. The decoding step in step 9 of Algorithm 1
finds the best path in D other than the correct word sequence
‘W;. For our isolated word task, we composed D with an ac-
ceptor that accepted every word other than the correct word.

In order to compute ¢, we need to decompose a path a in
D into a set of paths (ax, ac, ar, ac). Finding this best set of
paths is an optimization problem that is modeled as a shortest
path problem in an auxiliary network (as was previously done
in our prior work [9]). This is illustrated in Figure 1. Once these
paths are computed, we build the feature function A¢ by only
considering arcs in the path a* from @; and d..

3. Experiments: Isolated Word Recognition

In order to evaluate the utility of discriminative lexical model-
ing approaches, it is useful to see how these models can im-
prove word discriminability independent of a grammar. We val-
idate our approach using an isolated word recognition task for
conversational speech, where we may expect to see significant
pronunciation variation.

3.1. Experimental Design

Our experiments were conducted on a subset of the Switch-
board conversational speech corpus (called the Switchboard
Transcription Project, STP?) that is phonetically labeled at a
fine-grained level [21]. Words are excised from continuous ut-
terances in STP and are treated as isolated for this task. There
are 3328 words in the dictionary for this model, with a total of

Zhttp://www Licsi.berkeley.edu/Speech/stp/

Model | Dev ER (%) | Test ER (%)

Baseline system [ 46.1 [ 50.4
System with a discrimina- 38.8 41.1
tively trained £

System with a discrimina- 44.8 46.2

tively trained H o C

System with a discrimina- 41.2 41.5
tively trained HoCo L

Table 1: Error rates for the STP task.

5560 pronunciations. We use 2942 words from the subsets 24—
29 as training data to discriminatively train the pronunciation
model; 165 words from set 20 and 236 words from sets 21-22
were used as the development set and evaluation set, respec-
tively. The dataset is described in more detail in [22]. We will
refer to this task as the “STP task.”

The baseline recognizer for this isolated word dataset is a
standard, speaker independent GMM-HMM speech recognizer
that was built using the Kaldi toolkit [20]. We use an acoustic
model that is trained on all of Switchboard-I (i.e., around 320
hours of data) [15]. We exclude the STP sentences that were
used to construct the isolated word datasets from this training
data. The acoustic features are Mel-frequency cepstral coeffi-
cients (MFCCs) with delta and double delta coefficients; lin-
ear discriminant analysis (LDA) and maximum likelihood lin-
ear transform (MLLT) feature-space transformations were ap-
plied for feature-space reduction. These acoustic features serve
as the observations to model tied-state triphones using mixtures
of Gaussians (with a maximum of 100000 Gaussians in total
over all the tied-state triphones). Since this is an isolated word
task, the language model is a simple acceptor for all the 3328
words in the vocabulary. The isolated nature of the task makes
it harder than standard ASR since the acoustic-lexical models
cannot rely on the prior of a strong language model.

Our approach adapts the weights of the lexicon transducer
L. Since the WSFT updates are general, we can also update
weights on the complete graph (H o C o £), or leave the lexicon
out of the discriminative training (updating H o C).

3.2. Results and Discussion

The only difference between the baseline recognizer and the
systems used in our experiments is the pronunciation model.
We start with an untrained pronunciation model used in the
baseline recognizer and discriminatively train an indicator fea-
ture (that takes the value of 1 when the arc is traversed and 0
otherwise) on the arcs of this model. « is initialized (step 1 in
Algorithm 1) such that the starting point before discriminative
training coincides with the baseline system. We note here that
we used a frame-level pronunciation model that is trained in the
context of other frame-level ASR components. Typically, the
pronunciation model is at the phone level. This means that for
every phone recognized, H o C outputs a single (non-epsilon)
symbol. However, we observe that using a frame-level pronun-
ciation model allows us to capture phoneme duration informa-
tion and performs better empirically when compared to a phone-
level pronunciation model for our limited data tasks.

Table 1 shows error rates on the development set and test
set for the STP task. We obtain our best results by using a dis-
criminatively trained £ model. Our proposed approach reduces
error rate on the test set by an absolute 9% when compared to
the baseline model. This difference is statistically significant at



Case Baseline Our system with
system (%) | trained £ (%)

Words predicted cor- 38.1 342

rectly by both systems

All words { 49.9 { 46.8

Table 2: Phone alignment error rates on the evaluation set

p < 0.001 according to McNemar’s test (we used the NIST
SCTK toolkit [23] to perform this evaluation). These were
tuned on the development set and the best results were obtained
with A = 0.001 and 8 training iterations. Table 1 shows that
these are comparable to training weights on the entire decoding
graph (H o C o £). However, only training H o C gives much
lower improvement over the baseline, suggesting that most of
the improvement that comes from discriminative training can
be attributed to the pronunciation model. We suspect that this
improvement is due in part to the nature of the task: there are
many fewer data than one would find in a typical discriminative
acoustic modeling condition. It is possible that discriminative
acoustic modeling (training H o C) will be appropriate in larger
training data situations, suggesting that discriminative lexicon
training may be appropriate for low-resource conditions.

Our trained pronunciation model outperforms the baseline
model beyond what the error rate improvements (Table 1) sug-
gest. For the STP data set, we have manually transcribed ut-
terances at the phonetic level that we can use as a reference.
Since our pronunciation model is also at the frame level, we can
produce phone labels for each frame; we measure phone align-
ment error rates computed by an edit distance between a frame-
level reference phone sequence and our hypothesized phone se-
quence. We compute the minimum number of edits (insertions,
deletions or substitutions) required to change our hypothesized
phone sequence to the reference phone sequence at the frame
level. Table 2 reports these phone alignment error rates on the
evaluation set. The first case refers to utterances in the evalu-
ation set that are correctly predicted by both systems and “All
words” refers to using all of the evaluation data in the analysis.
We highlight the fact that even in the cases where the baseline
model gets the word right, our trained model outperforms the
baseline on the frame level by an absolute 4%.

4. Pilot experiments: Continuous ASR

We also conduct preliminary experiments on a Switch-
board [15] continuous word recognition task to demonstrate the
feasibility of extending this approach to full recognition.

4.1. Experimental design

Based on the data split from the WS96 JHU workshop, we have
68719 sentences as training utterances, 1344 sentences as the
development set and 409 sentences as the evaluation set. As in
the STP task, the acoustic models are Gaussian mixture models
for tied-state triphones using MFCC delta + double-delta fea-
tures with LDA, MLLT feature-space transformations. The pro-
nunciation model (with one pronunciation per word) has 30247
words, including disfluencies such as um, uh, and non-speech
sounds such as noise and laughter. A trigram grammar was used
to constrain decoding in the baseline system.

In order to facilitate rapid-turnaround experiments that in-
tegrate the discriminative lexical model into a full recognition
process, we conduct pilot studies utilizing a limited data setting:
we discriminatively train our pronunciation model with 1/8th of

Model | Dev WER (%) | Test WER (%)
Baseline system [ 44.6 [ 39.9
Our system with a dis- 44.1 39.7

criminatively trained £

Table 3: Preliminary word error rates (WER) for the SWB con-
tinuous decoding task.

the training data. We also remove “excess utterances,” where
the same transcription has been seen 20 times already; this pri-
marily removes single-word utterances.

For efficiency purposes, we generate decoding lattices us-
ing the baseline system and its trigram language model; these
lattices are used to constrain our word hypotheses during dis-
criminative training. The discriminative training requires mul-
tiple decoding passes; we use a unigram language model during
these decodes to allow for more confusable words, similar to
strategies used for discriminative acoustic modeling [24, 25].
Final decoding after discriminative training reintroduces the tri-
gram grammar.

4.2. Results

Table 3 shows preliminary results after 4 epochs of discrimi-
natively training the frame-level pronunciation model. The pi-
lot system improves word recognition for the development and
evaluation sets, albeit by a margin that is not statistically sig-
nificant (p > 0.05). We find the performance improvement
encouraging: the pilot study suggests that discriminative lexi-
cal modeling may be helpful beyond the isolated word domain
(where we saw significant success). We are investigating this
setting further, including enlarging the training set beyond 1/8th
of the data, to further improve recognition for continuous ASR.

5. Conclusions

This paper proposes a general approach to selectively train a
factor FST within an ASR cascade using large-margin train-
ing. This technique allows us to use limited amounts of training
data to effectively estimate parameters for small factor FSTs.
We demonstrate our approach by training a phone-based pro-
nunciation model for recognition on conversational speech. We
show significant improvements in recognition performance (ab-
solute 9% improvement) on an isolated word task using our
trained pronunciation model. We also present preliminary re-
sults on a continuous word recognition task that suggest that
this paradigm will prove useful in that setting as well.

For future work, we intend to explore this approach further
by using more complex pronunciation models that model words
as overlapping sequences of articulatory features [9]. Also,
we only report preliminary results on the continuous word task
and constrain our approach to use word lattices from the base-
line recognizer. In order to use the entire decoding graph, a
more streamlined decoding procedure, possibly along the lines
of those in [26, 27], needs to be developed.
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