
Improved Hindi Broadcast ASR by Adapting the Language Model and
Pronunciation Model Using A Priori Syntactic and Morphophonemic

Knowledge

Preethi Jyothi1, Mark Hasegawa-Johnson1,2

1Beckman Institute, University of Illinois at Urbana-Champaign, USA
2 Department of ECE, University of Illinois at Urbana-Champaign, USA

jyothi@illinois.edu, jhasegaw@illinois.edu

Abstract
In this work, we present a new large-vocabulary, broadcast
news ASR system for Hindi. Since Hindi has a largely phone-
mic orthography, the pronunciation model was automatically
generated from text. We experiment with several variants of
this model and study the effect of incorporating word bound-
ary information with these models. We also experiment with
knowledge-based adaptations to the language model in Hindi,
derived in an unsupervised manner, that lead to small im-
provements in word error rate (WER). Our experiments were
conducted on a new corpus assembled from publicly-available
Hindi news broadcasts. We evaluate our techniques on an open-
vocabulary task and obtain competitive WERs on an unseen test
set.
Index Terms: Hindi LVCSR system, Broadcast news ASR,
Grapheme and phoneme-based models, Knowledge-based
language-model adaptation

1. Introduction
Hindi is the most widespread language in India, with roughly
200 million native speakers and many more who speak it as a
second language. Due to its large number of speakers, there
is immense potential for automatic speech recognition (ASR)
applications in Hindi. Unfortunately, there has not been much
progress in ASR for Hindi, especially in building large vocabu-
lary systems. The most comprehensive LVCSR system in Hindi
was developed by IBM-India in 2004 [1] where they utilized
existing English acoustic models to bootstrap their recognizer.
Other more recent attempts include an LVCSR system to rec-
ognize speech in the travel domain developed by CDAC, In-
dia [2, 3]. Many other recent attempts at Hindi ASR cater to ei-
ther small-vocabulary tasks or isolated word tasks ([4, 5, 6, 7],
to name a few).

In this work, we develop a new large-vocabulary ASR sys-
tem to recognize broadcast news in Hindi. We use publicly
available All India Radio (AIR) broadcasts to build our cor-
pus and utilize an open-source toolkit (Kaldi [8]) to config-
ure our ASR system. In Section 4, we investigate the use of
both graphemic and phonemic models in our ASR system. We
also introduce two techniques in Section 5 that are used to build
knowledge-based adaptations to the language model and study
its effect on ASR performance.

2. Hindi Broadcast News Corpus
We used publicly available news broadcasts from the All India
Radio (AIR) website [9] to build our corpus. Many of these

broadcasts are also accompanied by corresponding speech tran-
scripts. For each major language, there are typically multi-
ple regional news bulletins hosted from various cities in India,
where the language is predominantly spoken. For our corpus,
we restricted ourselves to bulletins from AIR-Bhopal (a city in
the Hindi-speaking region of India). These broadcasts included
news reports read by different speakers, with varying speaking
styles but a fairly standard Hindi accent, in a recording environ-
ment pre-determined by the broadcast station.

We collected a set of broadcasts totaling ⇡5.5 hours. Our
corpus comprised news broadcasts from Bhopal between the
months of April 2014 to July 2014.1 The transcripts corre-
sponding to these audio files were rendered in a legacy Hindi
font, Krutidev (commonly used for Hindi), which we converted
into a Unicode encoding. We lightly edited the transcripts to
match the newsreader’s speech where there were noticeable dif-
ferences between the speech and the transcript text (mostly due
to word substitutions or paraphrases).

Each individual news broadcast was typically 5–11 mins
long and the transcripts were provided for the entire broad-
cast. In order to derive sentence-level transcripts from the lat-
ter to train our acoustic models, we adopted a semi-automatic
technique using the Praat open-source toolkit [10]. The “To
TextGrid (silences)” command in Praat marks speech inter-
vals as silence or non-silence sounds using tunable parameters
including a silence duration threshold and a silence intensity
threshold (set to 0.25 ms and -25 dB in our experiments, respec-
tively). The output from this program is a set of time-aligned in-
tervals that are labeled as either silence or non-silence. This pro-
cedure labels almost all sentence boundaries as silences. How-
ever, some pauses within a sentence are also labeled as silences.
We manually removed these intra-sentence silences; this can be
achieved with a real time factor close to 1. This technique was
employed since we did not have access to a baseline Hindi ASR
system that could provide a set of alignments automatically. We
note that the ASR systems built in this work can be subsequently
used to automatically align larger Hindi datasets (as in [11, 12]).

3. Data Preparation
We split our 5.5 hour corpus into disjoint training, develop-
ment and evaluation sets, comprising approximately 4 hours,
0.5 hours and 1 hour of speech, respectively. Table 1 shows

1The audio files and transcripts were downloaded separately and
manually matched with each other. This process was not amenable to
automation, due to how the data files are organized on the AIR website.
This was the main bottleneck in collecting a larger corpus, and will be
addressed in future work.

Train Dev Eval
Number of sentences 2242 223 547

Number of word tokens 43173 4290 10245
Number of word types 4749 1254 2064

Size of dataset (in mins) ⇡252 ⇡23 ⇡62
Speaker composition 7M,3F 1M,1F 1M,1F

Table 1: Statistics of the data sets used for training, develop-
ment and evaluation, respectively. M and F refer to male and
female speakers, respectively.

detailed statistics for our chosen data splits. Keeping with stan-
dard practice, the speakers in the development and evaluation
sets were kept disjoint from the speakers in the training set.

We set up an open vocabulary broadcast news task. In or-
der to build the vocabulary, we used written Hindi corpora from
the EMILLE monolingual Hindi text corpus [13]. The text was
suitably pre-processed and normalized. For example, HTML
tags and special characters were deleted, Hindi/Roman numer-
als were written as Hindi words, consistently occurring Uni-
code errors were fixed, etc. Words with very small counts in
the text corpus (< 5) were discarded to obtain a final list of
29924 words. With this word list, the out-of-vocabulary (OOV)
rates on the development set and evaluation sets were 1.8% and
2.28%, respectively.

We extracted text from the EMILLE corpus, restricted to
the dictionary words, to train our language model. We also in-
cluded transcripts from our 4-hour training set totaling over 6
million word tokens in the language model training text.

4. Graphemic and Phonemic Models
Hindi has a largely phonetic orthography i.e., words in Hindi are
mostly pronounced exactly as they are written. However, there
are a few exceptions to this rule: one of them is due to the schwa
deletion phenomenon in Hindi which also occurs in many other
Indo-Aryan languages. Consonants in written Hindi are associ-
ated with an implicit schwa ([@]), but implicit schwas are some-
times deleted in pronunciation. The orthography does not pro-
vide any indicators of where the schwas might be dropped. For
example, the word badal ([b@d@l]) retains the schwas after the
first two consonants; however, in the word badali ([b@dli:]), the
inherent schwa after [d] is not pronounced. There are many
rules that govern when schwas are not pronounced [14].

We experiment with both graphemic and phonemic models
to learn about their effect on ASR performance. We start with
a purely graphemic system (G0) that deterministically maps
Hindi Unicode characters in a word to a sequence of graphemes.
We used a total of 46 graphemes: 11 for the non-schwa vowels,
2 for the consonantal diacritics (anusvara and visarga) and 33
for the consonant letters. The next variant considers graphemic
models with word boundary context information (G1) [15].
Each grapheme now has an accompanying marker that speci-
fies whether it appeared at the beginning (B), inside (I) or at
the end (E) of a word. The transcription for the word, / h a m
/ for example, changes to / h B a I m E /. The idea here is that
distinguishing the grapheme with information about its position
in a word might allow the acoustic models to implicitly learn
phonetic rules.

Next, we build two phoneme-based systems, P0 and P1.
We implemented a rule-based schwa deletion algorithm as de-
scribed in [16] and apply it to grapheme sequences for words

to derive word pronunciations. As a preprocessing step, this
algorithm also handles the pronunciation of nasalization dia-
critics (such as “anusvara” and “visarga”). We note that our
implemention does not include any morphological decomposi-
tion; thus, compound words and multi-morphemic words might
end up having erroneous pronunciations.

An anusvara diacritic appearing at the end of a word results
in the nasalization of the preceding vowel. In P0, these nasal-
ized vowels are distinguished from their non-nasalized coun-
terparts and represented as separate phonemes. In P1, we re-
place all nasalized vowels with the vowel phoneme followed
by a single nasalization phoneme (a “meta phoneme”, of sorts,
representing nasalization). Considerable research proves that,
in many languages, all nasalized vowels should be distinctly
modeled, e.g., as phonemes in Portuguese [17] and as finals in
Mandarin [18], but conversely, orthographic conventions sug-
gest that nasalization is not as tightly bound to the vowel as
fronting and height (e.g., Devanagari transcribes vowel nasal-
ization using a diacritic, Portuguese using a tilde accent, and
Pinyin using a coda nasal consonant). Because of the loose as-
sociation between nasalization and the vowel, we form the hy-
pothesis that a small training dataset might adequately train a
separate coda-nasal acoustic model, even when it is inadequate
to train acoustic models for every phonologically distinct nasal-
ized vowel in the language; experimental comparison of models
P0 and P1 tests this hypothesis.

5. Knowledge-based Language Model
Adaptations

Hindi is a morphologically rich language. We explore two un-
supervised techniques to discover some of the morphological
patterns in the language. These learned patterns are then incor-
porated into the language model of our ASR systems.

5.1. Using Word Segmentation

Identifying stems and suffixes in Hindi words has been explored
in prior work (see e.g. [19, 20] and references therein). Our ap-
proach is most similar to that of [20] who also employ a statis-
tical analysis to discover stems. However, since our focus is not
on obtaining a linguistically precise stemmer, we use a simpler
approach devoid of various heuristics used to reduce erroneous
segmentations.

Our approach uses an unsupervised algorithm that automat-
ically discovers stems and suffixes from a corpus vocabulary.
The pseudocode of this iterative algorithm is described in Al-
gorithm 1; it requires a corpus vocabulary, a stem frequency
threshold (✓

P

) and a suffix frequency threshold (✓
S

) as inputs.
Step 1 corresponds to accumulating stems and suffixes by split-
ting all the words in the vocabulary, at every character (accord-
ing to the Unicode encoding). We define a bi-partite graph that
represents all the stems and suffixes as its partite sets with edges
between vertices corresponding to a valid word in the given vo-
cabulary. Then we restrict this graph to the maximal set of stems
and suffixes such that each stem has at least ✓

S

different suffixes
and each suffix has at least ✓

P

different stems. This maximal set
is found using a subroutine Prune which iteratively removes the
stems and suffixes corresponding to every vertex whose degree
is below the corresponding threshold.

Now, a word could be split in more than one way. For exam-
ple, in Step 1, the word ut

.

h

¯

at

¯

a is split at every character as, u-

Algorithm 1 Data-Driven Word Segmentation
Require: List of words, V and thresholds ✓

P

, ✓

S

1: Let P := {x | 9y, xy 2 V } and S := {y | 9x, xy 2 V }
/* all stems and suffixes */

2: Let G be the bipartite graph with partite sets P and S, and
edge set E := {(x, y) | xy 2 V }.

3: E

0
= Prune(E)

4: 8x 2 P , let µ(x) := length(x) ·
X

y:(x,y)2E

0

deg(y)

5: E

00
= {(x, y)|(x, y) 2 E

0
, (x, y) = argmax

(x0
,y

0):x0
y

0=xy

µ(x

0
)}

6: return Prune(E00
)

FUNCTION Prune(E)
t := 0, E0 := E

repeat
t := t+ 1

E

t

:= {(x, y) | (x, y) 2 E

t�1, deg
t�1(x) � ✓

P

,

deg

t�1(y) � ✓

S

}
where deg

t�1 is the degree in the graph defined by E

t�1

until E
t

= E

t�1

return E

t

END FUNCTION

-t

.

h

¯

at

¯

a, ut

.

h- -

¯

at

¯

a, ut

.

h

¯

a- -t

¯

a and ut

.

h

¯

at- -

¯

a.2 After Step 3, only
the splits ut

.

h- -

¯

at

¯

a and ut

.

h

¯

a- -t

¯

a are retained. However, we
need to identify at most one way to segment each word. Among
the multiple segmentations retained after Step 3, we choose the
one that maximizes the weight of the stem, where the weight
function µ is defined in Step 4.3 To compute the weight µ(x)
of a stem x, we accumulate the degrees of all the suffixes con-
nected to x in the pruned graph; this quantity is further scaled
by the length of x (number of characters) to account for the fact
that a longer stem is more desirable, in the sense that it conveys
more information. In Step 5, we only retain edges correspond-
ing to stems with the maximum µ among all its possible suffixes
(ties are broken arbitrarily). At this point some of the stems and
suffixes may have their degrees drop below the thresholds ✓

P

and ✓

S

, respectively. So we make a second and final call to
Prune in Step 6 to obtain our final set of edges, which specifies
a unique way to segment each word (if at all) into a stem and a
suffix. E.g., the word ut

.

h

¯

at

¯

a is split as ut

.

h- -

¯

at

¯

a.
The language model training corpus can be rewritten using

the above word segmentation and an N -gram language model
(encoded as an FST, LWS) can then be trained on this text.

5.2. Using Inflectional Agreement

In Hindi, adjectives are often inflected to agree with the case,
number and gender of the nouns they modify [21]. Further, an
inflected adjective is often directly followed by the noun that it
modifies. Since this pattern is very frequent, we devise a tar-
geted model to capture it.4

We consider three types of inflected words, denoted as ¯

a, ¯ı

2
t

.

h

¯

a consists of two characters, the consonant t

.

h and the symbol
corresponding to the vowel ¯

a. Note that in the split t

.

h- -

¯

a, -

¯

a stands for
the vowel symbol, and not the full vowel character ¯

a.
3deg(y) in Step 4 of Algorithm 1 refers to the degree of the vertex

y in the pruned graph with edge set E0.
4This pattern also holds for an inflected verb, which is often directly

followed by a form of hon

¯

a (to be). Both the inflected verb and the
form of hon

¯

a agree with the subject of the verb (and hence with each

āī

e

kavitā / 1

badī / 0 ānā / 0

hare / 0

0 kavitā / 0

hare / 0

badī / 1 ānā / 1

Figure 1: Structure of the “inflectional agreement” FST. All
four states and a few example arcs with labels and weights are
shown.

and e (reflecting the ending of the inflected word). Morpholog-
ically, not all words ending in these suffixes are inflected adjec-
tives. We consider a word to be inflected only if it occurs with
each of the three endings more than a threshold ✓

I

times in the
corpus. Further, we shall use the corpus to identify which type
of inflected words can precede a word and which ones cannot,
as described below.

For each type ⌧ 2 { ¯

a, ¯ı, e} and each word w 2 V , we
define count(⌧, w) as the number of instances in the corpus
when the word w was preceded by an inflected word of type ⌧ .
Let count⇤(w) =

P
⌧

02{ ¯

a,¯ı,e} count(⌧
0
, w) denote the number

of times when w is preceded by any inflected word. Also, let
count(w) denote the total number of occurrences of w in the
corpus.

We say that a word w is incompatible with type ⌧ if

count(⌧, w)

count

⇤
(w)

< ↵ and
count

⇤
(w)

count(w)

> �, (1)

where 0 < ↵,� < 1 are appropriately chosen parameters. That
is, w is incompatible with ⌧ if it is often preceded by an inflected
word, but not often by an inflected word of type ⌧ .

We build an FST, LIA, to encode inflectional agreement,
as discovered above. The purpose of this FST, which accepts
any string of words, is to assign a penalty whenever an inflected
word is followed by an incompatible word. It consists of four
states to remember the type of the last word seen (¯

a, ¯ı, e or null).
Figure 1 shows a few example arcs, leaving from the states 0
and e on words ¯

an

¯

a, bad

.

¯ı, hare and kavit

¯

a. These words are
of types ¯

a, ¯ı, e and null respectively, which determines the states
to which the corresponding arcs lead to; kavit

¯

a, bad

.

i and ¯

an

¯

a

are incompatible with type e, resulting in penalties on the cor-
responding arcs leaving from that state.

6. Experiments
6.1. Experimental Setup

Our ASR systems were configured using the Kaldi toolkit for
ASR [8]. As the acoustic features, we used standard Mel-
frequency cepstral coefficients (MFCCs) with delta and double
delta coefficients; linear discriminant analysis (LDA) and max-
imum likelihood linear transform (MLLT) feature-space trans-
formations were applied for feature-space reduction. These
acoustic features served as the observations to our Gaussian

other).

Graphemic/phonemic Language Dev Eval
model Model (LM) WER WER

G0

LM0

14.36 14.22
G1 12.91 13.36
P0 12.61 13.55
P1 12.56 13.44

P1

LM0 + IA 12.49 13.40
LM0 + WS 12.45 13.32

LM0 + IA + WS 12.38 13.24

Table 2: WERs on the development/evaluation sets using dif-
ferent systems.

mixture model (GMM) based acoustic models. We built
speaker-adapted GMMs using feature-space maximum likeli-
hood linear regression (f-MLLR) for tied-state triphones. These
GMMs were subsequently used to build subspace Gaussian
mixture models (SGMMs) that are implemented in Kaldi as de-
scribed in [22]. Our Hindi ASR system, along with a training
recipe, has been hosted online5 for public access.

6.2. Experiments with Graphemic and Phonemic models

The first four rows of Table 2 shows WERs on the develop-
ment and evaluation sets for different grapheme and phoneme-
based SGMM models with a trigram language model trained on
the EMILLE text (denoted by LM0). Using grapheme-based
models with word-boundary information (G1) gives a signifi-
cant reduction in WER on both the development and evaluation
sets, over graphemic models without the word-boundary con-
text (G0). Hindi exhibits phonetic variations that are associated
with word endings. The reduction in WER suggests that such
rules might be implicitly learned by incorporating word bound-
ary information. This kind of enhancement of graphemic sys-
tems with implicit phonetic information has been employed in
prior work on Arabic LVCSR [15].

The phonemic models P0 and P1 show small WER im-
provements compared to the graphemic model G1 on the devel-
opment set (and none on the evaluation set). We conjecture that
for languages with orthographies of high grapheme-to-phoneme
correspondence and sufficient amounts of training data, it might
be sufficient to use graphemic based acoustic models with word-
boundary context that implicitly captures phonetic information.

The ASR system using nasalized vowels (P0) performs
comparably to the system using a single meta-phone represent-
ing vowel nasalization at the end of words (P1). This suggests
we can adequately train a separate coda-nasal acoustic model
when the training data might be insufficient to reliably estimate
the nasalized vowel units.

6.3. Experiments with Language Model Adaptations

The last three rows of Table 2 show the effect of incorporating
the language model adaptations described in Section 5, namely
inflectional agreement (IA) and word segmentation (WS). The
lattices from the base system were rescored using the two FSTs,
LWS and LIA from Section 5. The language model scaling fac-
tor was tuned on the development set. In constructing LWS, we
set ✓

P

= 4 and ✓

S

= 30 in Algorithm 1 and trained a 4-gram
language model.6 ✓

P

, ✓
S

, ↵ and � were tuned using a coarse

5https://sites.google.com/site/hindiasr/
6Since the stems and suffixes are units of different length compared

to the full words, we used a higher-order N -gram model.

LM of System 1 LM of System 2 Dev Eval
using DNN using SGMM WER WER

LM0 - 11.98 12.66

LM1
LM0 11.31 11.61

LM0+IA+WS 11.12 11.50

Table 3: Final WERs using lattice interpolation with DNN-
based models.

grid search such that the resulting stem-suffix splits (for LWS)
and inflectional agreement among word pairs (for LIA) were
most meaningful; this was determined by a manual inspection.
In constructing LIA in Equation 1, we set ↵ = � = 0.1.

We see modest WER improvements using both language
model adaptations. It is informative to examine the kinds of
errors that were corrected by these incremental models. For
example, the base system recognized part of an utterance as
k

¯

a yog instead of k

¯

a yug as they are acoustically confusable.
However, yog being a feminine noun, cannot be preceded by a
masculine postposition k

¯

a. If the word yog appears frequently
enough (in appropriate contexts), we will infer its gender and
incorporate a penalty for k

¯

a yog in LIA. On the other hand, an
N -gram language model would favor k

¯

a yug over k

¯

a yog only
if the former word bi-gram appeared frequently.

Lattice interpolation with DNN models: We used the Deep
Neural Network (DNN) training recipe in Kaldi (with RBM pre-
training and frame-level cross-entropy training [23]) to build
DNN-based acoustic models. The first row in Table 3 shows
the significant WER improvements compared to the SGMM
systems in Table 2. The next two rows show the results from
combining two different ASR systems using lattice interpola-
tion. The best results are obtained by interpolating lattices
from a DNN-based system and an SGMM-based system. Fur-
ther, using a different language model LM1 for the former led
to improved results. LM1 was built using a small text cor-
pus of about 200,000 word tokens, obtained from transcripts
from AIR-Bhopal (disjoint from the development and evalua-
tion data). As shown in Table 3, we see small but consistent
WER improvements by using our language model adaptations.7

7. Conclusions
This work describes a new large-vocabulary broadcast news
ASR system in Hindi. We study various graphemic and phone-
mic acoustic models; graphemic models with word-boundary
markers perform almost as well as our phonemic models.
We develop knowledge-based language model adaptations for
Hindi, derived from a large text corpus and demonstrate small
improvements in ASR performance.

This work provides a competitive baseline system as a
starting point and suggests many possible directions for future
work. Our adaptations could be further improved by incorporat-
ing more morphophonemic constraints (e.g., schwa deletions in
compound words). The models in this work could also be poten-
tially used to bootstrap ASR systems for other Indian languages
that are similar to Hindi in morphology (such as Marathi, Gu-
jarati, Punjabi, etc.).

7We note that LWS uses a 4-gram language model. To rule out the
possibility that the improvement is solely due to having a higher order
language model in the system, we considered rescoring the language
model LM0 in System 2 in the second row of Table 3 with a 4-gram
language model. This gives WERs of 11.24 and 11.57 on the develop-
ment and evaluation sets, respectively.

8. References
[1] M. Kumar, N. Rajput, and A. Verma, “A large-vocabulary con-

tinuous speech recognition system for Hindi,” IBM journal of re-
search and development, vol. 48, no. 5.6, pp. 703–715, 2004.

[2] M. Rajat, Babita, and K. Abhishek, “Domain specific speaker in-
dependent continuous speech recognition using Julius,” in Proc.
of ASCNT, 2010.

[3] K. A. S. Arora, B. Saxena and S. S. Agarwal, “Hindi ASR for
travel domain,” in Proc. of COCOSDA, 2010.

[4] G. Sivaraman and K. Samudravijaya, “Hindi speech recognition
and online speaker adaptation,” in Proceedings of ICTSM, 2011.

[5] K. Kumar, R. K. Aggarwal, and A. Jain, “A Hindi speech recogni-
tion system for connected words using HTK,” International Jour-
nal of Computational Systems Engineering, vol. 1, no. 1, pp. 25–
32, 2012.

[6] K. Bali, S. Sitaram, S. Cuendet, and I. Medhi, “A Hindi speech
recognizer for an agricultural video search application,” in ACM
Symposium on Computing for Development, 2013.

[7] A. Mohan, R. C. Rose, S. H. Ghalehjegh, and S. Umesh, “Acoustic
modeling for speech recognition in Indian languages in an agricul-
tural commodities task domain,” Speech Communication, vol. 56,
pp. 167–180, 2014.

[8] D. Povey, A. Ghoshal et al., “The Kaldi speech recognition
toolkit,” Proc. of ASRU, 2011.

[9] “All India Radio News,” Available from www.newsonair.com.
[10] P. Boersma and D. Weenink, “Praat: doing phonetics by computer

[computer program].” Version 5.3.51, Retrieved on 2 June 2013
from http://www.praat.org/, 2013.

[11] T. J. Hazen, “Automatic alignment and error correction of human
generated transcripts for long speech recordings.” in Proc. of In-
terspeech, 2006.

[12] M. Elmahdy, M. Hasegawa-Johnson, and E. Mustafawi, “Auto-
matic long audio alignment and confidence scoring for conversa-
tional Arabic speech,” in Proc. of LREC, 2014.

[13] P. Baker, A. Hardie et al., “EMILLE, A 67-Million Word Corpus
of Indic Languages: Data Collection, Mark-up and Harmonisa-
tion.” in Proc. of LREC, 2002.

[14] M. Ohala, Aspects of Hindi phonology. Motilal Banarsidass Pub-
lisher, 1983.

[15] F. Diehl, M. J. F. Gales, X. Liu, M. Tomalin, and P. C. Woodland,
“Word boundary modelling and full covariance gaussians for Ara-
bic speech-to-text systems.” in Proc. of Interspeech, 2011.

[16] M. Choudhury, “Rule-based grapheme to phoneme mapping for
Hindi speech synthesis,” in 90th Indian Science Congress of the
International Speech Communication Association (ISCA), Banga-
lore, India, 2003.

[17] H. Meinedo, D. Caseiro, J. Neto, and I. Trancoso, “Audimus. me-
dia: a broadcast news speech recognition system for the European
Portuguese language,” in Proc. of PROPOR, 2003.

[18] C. Huang, Y. Shi et al., “Segmental tonal modeling for phone set
design in Mandarin LVCSR,” in Proc. of ICASSP, 2004.

[19] A. Ramanathan and D. D. Rao, “A lightweight stemmer for
Hindi,” in Proceedings of EACL, 2003.

[20] A. K. Pandey and T. J. Siddiqui, “An unsupervised Hindi stem-
mer with heuristic improvements,” in Proceedings of the second
workshop on Analytics for noisy unstructured text data, 2008.

[21] M. C. Shapiro, A primer of modern standard Hindi. Motilal
Banarsidass Publ., 1989.

[22] D. Povey, L. Burget et al., “The subspace Gaussian mixture
model—A structured model for speech recognition,” Computer
Speech & Language, vol. 25, no. 2, pp. 404–439, 2011.

[23] Veselỳ, Karel and Ghoshal, Arnab and Burget, Lukás and Povey,
Daniel, “Sequence-discriminative training of deep neural net-
works.” in Proc. of Interspeech, 2013.

