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Abstract
Current Text-to-Speech (TTS) systems are trained on audio-
book data and perform well in synthesizing read-style speech.
In this work, we are interested in synthesizing audio stories as
narrated to children. The storytelling style is more expressive
and requires perceptible changes of voice across the narrator
and story characters. To address these challenges, we present
a new TTS corpus of English audio stories for children with
32.7 hours of speech by a single female speaker with a UK
accent. We provide evidence of the salient differences in the
suprasegmentals of the narrator and character utterances in
the dataset, motivating the use of a multi-speaker TTS for our
application. We use a fine-tuned BERT model to label each
sentence as being spoken by a narrator or character that is
subsequently used to condition the TTS output. Experiments
show our new TTS system is superior in expressiveness in both
A-B preference and MOS testing compared to reading-style
TTS and single-speaker TTS.
Index Terms: Expressive TTS, speech synthesis, new TTS cor-
pus, prosody modelling

1. Introduction
Text-to-speech systems target the acoustic realization of given
text from its linguistic specification. Apart from the phone se-
quence, information about intonation, stress, and rhythm also
influence the generated speech, ideally in a manner that rep-
resents the desired speaking style. Over the decades, research
objectives have extended from achieving acceptable intelligibil-
ity and naturalness to expressiveness and other salient charac-
teristics of the chosen speaking style. This has been accompa-
nied by the shift from an explicit specification of suprasegmen-
tal and other high-level aspects to the implicit learning of the
same from unannotated data. In such a situation, the quality of
the training dataset plays a major role in the eventual perfor-
mance of the TTS system. Well-known read speech datasets for
TTS are LJSpeech [1], M-AILABS [2], and Blizzard 2013 [3].
Blizzard 2013 has multiple genres and has been used for single-
speaker expressive TTS systems while Blizzard 2016 had a task
involving a relatively small dataset from commercial audio-
books [4]. Story-telling to children is more interactive than sim-
ple reading aloud and is closer to conversational speech. How-
ever conversational speech datasets are not expressive enough
[5]. In this work, we focus on the design of a corpus for a
children’s storytelling task, where modeling expressiveness, or
prosody, is of prime importance.

Since manual annotation of training speech data for
prosodic parameters is tedious, not the least due to the com-
plexity of fully specifying prosody, it is more common to use
architectures that learn latent representations directly from the

ground truth speech audio [6, 7, 8, 9]. Given that recording
new data of high quality for TTS training can be expensive, we
try to identify available resources that can be adapted to our
use case with relatively low effort. StoryNory[10] is a UK En-
glish podcast service with a human narrator reading out grade-
appropriate stories to children in a naturally expressive style
suited to the context. Each audio recording is accompanied by
the story in text form. Apart from the narrated story, the au-
dio recording contains extra utterances at the beginning (such
as introductory remarks) and at the end (e.g. bidding goodbye).
Finally, there is background music and animal sounds that typ-
ically occur during silences but occasionally overlap with the
narrator’s speech. In this work, we apply a suitable processing
pipeline to convert this found data to a corpus1 fit for training an
end-to-end TTS system in the matching style. Further, a salient
feature of the children’s storytelling style is the use of voice
modulation as the narrator switches to direct speech across dif-
ferent story characters in dialogs. We present and evaluate a
method exploiting multi-speaker TTS as an effective way to em-
ulate this.

End-to-end TTS architectures such as VAE [7] and GAN-
based [8] models have been shown to produce high-quality
speech using phoneme sequence and audio as input. Though
many TTS models give output comparable to human speech,
TTS models using GAN and Normalizing Flows [9] have per-
formed better in expressiveness [11]. VITS [12] is a non-auto
regressive TTS model using the Variational Auto-encoder ar-
chitecture [13]. It employs normalizing flows [14] for modeling
the prior distribution and GAN [15] pipeline to improve voice
quality. VITS can be used in single-speaker and multi-speaker
settings, where global conditioning similar to WaveNet [16] is
used for multi-speaker TTS. We present A-B preference and
MOS testing to evaluate our system for expressiveness with ref-
erence to a baseline model trained on a standard read-speech
corpus. For more insights, we compute objective measures for
intelligibility (ASR WER), as well as voice quality and prosodic
parameter correlations with the ground-truth.

2. Dataset
The StoryNory[10] website has stories for children between the
age of 7-11 years, narrated expressively by professional ac-
tors in UK accent, recorded in the studio. These stories are
broadly classified into fairytales, classics by authors like Rud-
yard Kipling and Charles Dickens, and stories written by own-
ers of the website. In this section, we discuss the processing
pipeline used to obtain our TTS corpus and also present its
salient features.

1https://github.com/tpavankalyan/Storynory (Code, labelled TTS
dataset and checkpoints are avialable here.)



2.1. Data Segmentation and Filtering

The audio recording and accompanying story text are scraped
from the website for the female narrator Natasha who has the
single largest contribution of 66 hours of speech out of a total
of 146 hours across 6 identified speakers. Modern TTS models
require training data in the form of audio chunks of duration
10-20 seconds along with the matched transcript [1, 2, 3].
The scraped data is converted into this format by solving two
problems: (i) obtaining the needed audio segments with aligned
text and (ii) discarding noisy audio data (i.e. speech with
background sounds).

The story text is split into sentences based on end-of-the
sentence punctuations and quotation marks, with standard text
normalization carried out. Audio segments corresponding to
these sentences are obtained via Connectionist Temporal Clas-
sification (CTC) segmentation [17] similar to [18]. We use
Nvidia-Nemo2 to perform the CTC-segmentation that outputs
a score indicating the probability of finding the correct align-
ment for each utterance. A poor score indicates poorly matched
acoustics to the given text, such as that which arises with the
extraneous speech in the beginning and the end. We use a
threshold of –2 on this score to discard all such instances of
mis-alignment. The above process reduced the audio data from
66 hours to 34.6 hours of properly aligned audio-text segments.
To account for instances where the speaker might actually al-
ter the reference text while speaking, we run these audio seg-
ments through QuartzNet ASR [19]. Inspecting the distribution
of WER, we retain segments that have a WER of less than 10
%. This step also helped us eliminate speech segments with au-
dible non-speech backgrounds. Thus, the final filtered dataset
consists of 32 hours of audio data in the form of short utterances
with the corresponding aligned transcripts as shown in Table 1.

Table 1: Statistics of the Storytelling TTS dataset.

Total duration 32.79 hours
Number of utterances 18641
Mean (s.d.) utterance duration 6.33 (5.04) sec
Total unique words 26148
Total distinct IPA phonemes 53
Total unique stories 251
Mean (s.d.) duration per character 0.09 (0.02) sec

2.2. Data Characteristics

Almost all stories present in this new dataset have an omniscient
narrator. An omniscient narrator knows everything about the
story, story event, character’s thoughts, emotions and character
events. Thus, in the audio, the narrator in the story switches be-
tween speaking the narrator sentences and character dialogues
using voice modulation, and this was evident during informal
listening. To understand the differences better in speech for
narrator and character spoken sentences, we extracted multiple
meaningful acoustic features for each type of speech utterance.

The first task is to identify the narrator and character spoken
sentences from the story’s text. The scraped dataset contained
stories with punctuation and also stories with noisy punctua-
tion. We use quotation marks to identify the character or narra-
tor sentence. All the sentences of a story within the quotation
marks are labelled as character sentences and the rest as narrator

2https://github.com/NVIDIA/NeMo

sentences. One example of noisy punctuation is an extra quo-
tation mark, which can lead to incorrect labelling of a sentence
as narrator or character. To avoid such instances, we collect
sentences from stories having at least 10 character and narra-
tor sentences, and have even number of quotation marks in the
text. Since the TTS corpus was created after splitting the text
based on quotation marks, we find these labelled sentences in
the TTS corpus to identify the corresponding segmented audio
files. Finally, 2000 audio files each for narrator and character
voices were used to perform the acoustic analysis.

We consider two categories of acoustic features, viz.
prosodic and voice-quality related. We hypothesize that the
prosodic features (pitch, loudness, duration) are largely influ-
enced by the syntax, semantics and emotion, while the voice
quality changes most with assumed speaker identity (across the
narrator and story characters). We used the OpenSmile [20] im-
plementation of GeMAPS [21], a compact set of suprasegmen-
tal features found useful in speech emotion classification tasks.
We find two kinds of aggregates for each utterance and acous-
tic parameter, namely the mean and variation. Both computed
across the utterance, the mean is the average value and vari-
ation is the standard deviation representing contour dynamics,
essential to expressivity. Table 2 show the average along with
standard deviation of the utterance mean across the set of narra-
tor and character utterances for those parameters that displayed
statistically significant differences in both this mean value and
its dynamics3 (not shown in the table) across narrator and char-
acter classes (Mann-Whitney test, p < 0.001). We observe that
the number of voice quality parameters discriminating character
from narrator is relatively high, consistent with our hypothesis.
The distribution differences motivate our design choice of sepa-
rately modeling narrator and character-based utterances, further
detailed in Section 3.

3. Methodology
Our storytelling TTS system is based on the VITS architecture.
VITS [12] is a variational autoencoder-based TTS system that
models the prior using normalizing flows and uses adversarial
training for synthesising high-quality speech. The original for-
mulation of VITS is shown in equation 1, where z is the latent
space vector, c is an input phoneme sequence and log pθ(x|c) is
the marginal likelihood of the data.

log pθ(x|c) ≥ Eqϕ(z|x)

[
log pθ(x|z)−

qϕ(z|x)
pθ(z|c)

]
(1)

The VITS architecture consists of a posterior encoder, a prior
encoder, a decoder, a discriminator, and a stochastic duration
predictor. The prior encoder models pθ(z|c) and comprises
a text encoder that converts input phonemes into hidden rep-
resentations that are passed as input to a linear layer to pre-
dict the mean and variance of the prior distribution. Normal-
izing flows are used above this layer for improved modelling
of the prior distribution. The hidden vectors are also passed
to the stochastic duration predictor to estimate the distribution
of phoneme durations. The text-encoder and stochastic dura-
tion predictor modules jointly predict the latent-space vectors
that are extracted from the linear spectrogram using the poste-
rior encoder (qϕ(z|x)). The decoder (pθ(x|z)) then takes latent
vectors as input and generates the raw speech waveform which
is further input to the discriminator during training.

3Refer to the supplementary material here:
https://tinyurl.com/3mn56f85



Table 2: Comparison of utt. mean (s.d.) of different acous-
tic features for narrator and character speech. The parameter
names are from OpenSmile implementation of GeMAPS [21]
with definitions given in the supplementary material.

Narrator Character

Pitch
F0 semitone RisingSlope 222.4 (201.1) 172.17 (208.91)
F0 semitone FallingSlope 67.99 (69.52) 66.56 (115.74)

Loudness
loudness (in Sones) 0.50 (0.22) 0.70 (0.32)
loudness RisingSlope 9.58 (3.99) 11.22 (5.11)
loudness FallingSlope 7.45 (3.02) 9.15 (4.34)

Temporal
Voiced duration (sec) 0.22 (0.11) 0.30 (0.20)
Unvoiced duration (sec) 0.19 (0.07) 0.20 (0.09)
Number of Syllables 15.07 (11.27) 10.47 (8.47)
Number of Pauses 1.24 (1.61) 0.75 (1.26)
Rate of speech (per sec) 2.67 (0.78) 2.53 (0.87)
Articulation rate (per sec) 4.06 (0.86) 3.82 (1.03)

Voice-quality
alphaRatioV (in dB) -14.38 (4.14) -12.93 (4.68)
slopeV0-500 0.05 (0.04) 0.06 (0.04)
slopeV500-1500 -0.02 (0.01) -0.01 (0.01)
logRelF0-H1-H2 7.15 (3.9) 7.73 (4.28)
logRelF0-H1-A3 21.00 (4.91) 18.69 (5.44)
HNRdBACF (in dB) 6.99 (1.95) 7.96 (2.08)
shimmerLocaldB (in dB) 1.15 (0.25) 1.07 (0.28)

The difference between the acoustic characteristics for the
narrator and character roles, as discussed in Section 2.2, serves
as our main motivation to provide these labels as additional con-
ditional inputs to VITS. This new formulation can be realized by
using VITS in multi-speaker setting. Multi-speaker VITS uses
speaker embedding as additional conditional input to posterior
encoder, decoder and prior encoder. The posterior encoder and
prior encoder use WaveNet residual blocks and hence global
conditioning is used to add the speaker embedding. The decoder
uses an extra linear layer to transform the speaker embeddings
that are added to the latent space vector predicted from the prior
encoder. Similarly, the speaker embeddings added to the hidden
vectors predicted from the text encoder are given as input to the
stochastic duration predictor.

To accurately identify whether a given sentence is spoken
by the narrator or a character, we introduced the narrator charac-
ter (N-C) module, which is a pre-trained BERT model [22] with
a 2-class classification layer. This model is fine-tuned using a
dataset constructed from the new TTS corpus as mentioned in
section 4.1. This module is useful when punctuations like quo-
tation marks are missing or noisy in the input text. The output of
this module is a label for narrator or character that can be input
to Multi-speaker VITS as speaker label. Figure 1 shows the ar-
chitecture of the multi-speaker VITS narrator character system.

4. Experiments and Results
We present analysis of the following systems:

1. VITS SS: VITS trained on 32 hours of the StoryNory dataset
with no modification to the VITS architecture.

2. VITS LJS: VITS trained on the LJSpeech dataset.
3. VITS NC: Our narrator character based VITS system. de-

scribed in Section 3. As described in section 3, we modified

Posterior 
encoder

Decoder

Flow

Monotonic 
alignment 

Search

Text 
encoder

Stochastic 
duration 
predictor

Discriminator

z

Prior encoder

Text sequence

BERT-classifier

Speaker label

Linear 
spectrogram

speech 
waveform

Only Training

Training + 
Inference

Figure 1: Architecture of multi-speaker VITS with N-C module.

VITS by adding the narrator character module to predict the
speaker label, resulting in a system called VITS NC.

4.1. Experimental Setup

The LJ Speech dataset is made up of 13,100 short audio clips
from a single speaker. The total length of the clips is about 24
hours, and the audio format is 16-bit PCM with a 22.05 kHz
sample rate. We used the dataset without making any modifica-
tions. Like VITS, we split the dataset randomly into three parts:
a training set (12,500 samples), a validation set (100 samples),
and a test set (500 samples). The StoryNory dataset is also sam-
pled at 22.05 kHz and contains 18,640 audio clips from a single
speaker. The total length of the clips is approximately 32 hours.
The training, validation and test set contains 18,000, 100 and
540 samples respectively. Training proceeded similar to VITS,
details of which are mentioned in the supplementary3.

To train the N-C module, stories with at least 10 sentences
within quotation marks were used as training data. The resulting
dataset contains 14,173 sentences, with 8,905 labeled as narra-
tor and 5,268 labeled as character dialogue based on the quo-
tation marks. This data was randomly divided into a training
set of 11,338 sentences and a validation set of 2,835 sentences.
Punctuation was removed, and the Bert-base-cased model was
utilized, with all layers frozen except for the classification layer.
The N-C module achieved a validation accuracy of 93%. The
fine-tuned model is used to label all sentences in the entire Sto-
ryNory dataset as either 0 (narrator) or 1 (character).

4.2. Subjective Evaluation

We conducted an A-B preference test with 25 L2 English-
speaking participants to evaluate a single story selected from
the test split of the dataset. Three types of sentences were
chosen: sentences spoken only by the narrator, sentences
spoken only by a character, and sentences that combine to
contain a transition from narrator to character or vice versa.
Each sentence conveyed different emotions such as happiness,
suspense, anger, hurriedness, and fear. Participants were
presented with two audio options for each sentence and asked
to select the one that best matched the meaning and context
of the sentence. The entire section of the story containing a
particular sentence was shown as a reference to the participant.
On average, each sentence consisted of 15 words. Two out
of five systems were randomly selected for each participant,
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Figure 2: Results of A-B preference test on expressiveness.

and each system was played at least 5 times per sentence, with
an average of 10 times. Figure 2 shows the results of A-B
preference test where one of the systems is always fixed as
VITS NC. Listeners have preferred VITS NC over VITS LJS
and VITS SS more than 75% of the time.

For the Mean opinion score (MOS) test, we presented 20
sentences from the same story to a separate group of 30 listen-
ers. Each system was judged at least 5 times by each listener,
resulting in a total of 150 judgments per system [23]. The lis-
teners were asked to rate the expressiveness of the generated
audio on a scale of 1 (very poor) to 5 (excellent) as appropri-
ate to the local story context. Table 3 shows the results of the
MOS test for all the systems. VITS NC outperforms VITS LJS
and VITS SS and performs closer to the ground truth according
to the MOS. These results imply that the multi-speaker VITS
trained on Story Nory is better at synthesizing the storytelling
speech as compared to single-speaker VITS trained on Story
Nory or LJSpeech datasets. Low performing examples were
found to arise mostly from narrator/character mislabeling.

Table 3: Comparison of MOS (95% confidence intervals)

Systems MOS (CI)

Ground Truth (StoryNory) 3.96(±0.19)
VITS LJS 3.03(±0.22)
VITS SS 3.27(±0.18)
VITS NC 3.62(±0.18)

4.3. Objective Evaluation

We used Whisper ASR [24] to evaluate the intelligibility of
speech generated by each system. Table 4 contains the Word Er-
ror Rate (WER) and Character Error Rate (CER) of the speech
samples generated for the test set. As the StoryNory dataset is
more expressive, the output has more aspiration, larger varia-
tions in the speaker’s intonation patterns and exaggerated stress
compared to the LJSpeech dataset leading to higher WERs with
the former. VITS NC yields significantly lower WERs com-
pared to VITS SS, and is closer in WER to the ground-truth
samples. This indicates that our multi-speaker VITS NC model,
that learns the acoustics of the narrator and character separately,
results in more intelligible samples overall.

We also apply t-SNE analysis to the latent space of
VITS SS and VITS NC to show the effect of multi-speaker
training for the StoryNory dataset. We randomly sample 100
sentences each from the narrator and character sets and run the
inference using VITS NC and VITS SS to obtain the latent vec-
tors. Figure 3 shows the t-SNE plot for VITS SS (left) and
VITS NC (right). The plots indicate the far superior cluster-
ing of the latent space into narrator and character for VITS NC,
validating the effectiveness of multi-speaker training.

Table 4: Comparison of WER and CER of the test samples.

Systems WER % CER %

Ground Truth (LJSpeech) 3.05 1.01
Ground Truth (StoryNory) 10.31 4.30
VITS LJS 7.58 2.30
VITS SS 16.55 6.86
VITS NC 12.62 5.35

Figure 3: t-SNE plot for latent space vectors obtained during
inference from VITS SS (left) and VITS NC (right).

Finally, we also estimate the Pearson correlation between
the utterance-level acoustic features extracted from first 500
synthesized utterances of the test set and the corresponding
Ground Truth (GT). Figure 4 shows the average over parameters
within the same acoustic category as listed in table 2 that have
statistically significant (p < 0.01) coefficient of correlation (r)
for both GT-VITS SS and GT-VITS NC pairs. The r-values
corresponding to the individual parameters are provided in the
supplementary material3. VITS LJS showed very low corre-
lation values and is not included. We note that features from
VITS NC are indeed better matched to the ground-truth with
especially prominent improvements over VITS SS for temporal
and certain voice-quality features.

Pitch

Loudness

Temporal

Voice quality

0.0 0.2 0.4 0.6 0.8

GT-VITS_SS GT-VITS_NC

Figure 4: Pearson correlation coeffecient for GT-VITS SS and
GT-VITS NC pairs averaged over aggregates of parameters
from the same acoustic group mentioned in table 2.

5. Conclusions
Using a suitable data preparation pipeline, we present the most
extensive single-speaker storytelling TTS corpus out of avail-
able audio podcasts. Our prosodic analysis indicates that story-
telling to children requires voice modulation on top of single-
speaker expressiveness. We investigated the conditioning of the
VITS model with automatically detected speaker identity (nar-
rator or character) to obtain significant improvements in expres-
siveness and voice quality. Future work could involve generat-
ing more fine-grained distinctions between different character
voices based on textual information drawn from the story text.
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