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Abstract—Developing automatic speech recognition technolo-
gies requires transcribed speech so as to learn the mapping from
sound to text. It is traditionally assumed that transcribers need to
be native speakers of the language being transcribed. Mismatched
crowdsourcing is the transcription of speech by crowd workers
who do not speak the language. Given there are phonologi-
cal similarities among different human languages, mismatched
crowdsourcing does provide noisy data that can be aggregated
to yield reliable labels. Here we discuss phonological properties
of different languages in a coding-theoretic framework, and how
nonnative phoneme misperception can be modeled as a noisy
communication channel. We show the results of experiments
demonstrating the efficacy of this information theory inspired
modeling approach, having native English speakers and native
Mandarin speakers transcribe Cantonese speech. Finally we
discuss how crowd workers whose native language background
give them the highest probability of faithful transcription can be
found by solving a weighted set cover problem.

Index Terms—channel selection, distance distribution, phonol-
ogy, mismatched crowdsourcing, set cover, speech transcription

I. INTRODUCTION

There are more than six billion people in the world speaking
more than six thousand living languages, but very few lan-
guages are spoken by more than a few thousand people each
[1]. Speech technology in minority languages has the potential
to empower minority communities, and in some cases promote
language preservation and diversity. In particular, speech is an
ideal medium for human-machine interaction since it is very
natural for people, whether literate or illiterate. Developing
speech technology, however, is data intensive.

To develop speech technology, it is necessary to have some
amount of recorded speech audio, some amount of text written
in the target language, and a transcription mapping that links
sound to text. Although speech audio can be recorded during
weekly minority-language broadcasts on local radio stations,
and text can be acquired from printed pamphlets and literacy
primers, the link is usually missing. Moreover, native language
transcription is beyond the economic capabilities of many
minority-language communities.

Paucity of labeled training data is problematic not just for
speech, but also for many other machine learning problems.
Recent demonstrations of deep learning have captured the
public imagination by approaching human-level performance
in image classification, but what is lost in the magic of
TED talks and social media company demonstrations is the
exceedingly large amount of human effort that goes into
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creating labeled training data. In order to run the ImageNet
Large-Scale Visual Recognition Challenge, human workers
from Amazon Mechanical Turk were recruited to classify 1.2
million training images, 50 thousand validation images, and
100 thousand test images into 1000 object classes reliably
despite their own individual unreliability [2].

So much effort for a single general task that any person is
qualified to do; similar effort may be needed for each different
machine learning task that arises, such as labeling phonemes in
thousands of languages where speech technologies are desired.
We could draw on a crowdsourcing platform, but there is a
significant mismatch between the number of native speakers
of languages in the world and the number of crowd workers
who speak that language, see Fig. 1. Moreover, native speakers
are often more willing to record a language than they are to
transcribe it, especially in the quantities necessary for modern
speech technology. The cognitive surplus in the world has a
distributional expertise mismatch with the expertise required
to complete tasks. How should we proceed?

Although there is growing interest in transfer learning [4],
we have developed a method that altogether bypasses the
need for native language transcription. Our method, which
we call mismatched crowdsourcing, proposes that speech in a
target language be transcribed by crowd workers who have no
knowledge of the target language, and that explicit models of
second-language perception be used to recover an equivalent
transcription in the language of the speaker [5], [6]. The reason
this may work is that phonemes are not abstract symbols
but have attributes along various phonological dimensions,
and many languages share these phonological dimensions.
Thus, even people that do not speak a language can correctly
perceive certain phoneme attributes.

Explicit decomposition of labeling tasks into subtasks based
on parts and attributes has previously been developed as a way
to mitigate lack of expertise in the crowdsourcing of fine-
grained tasks [7]. We have also made use of the factoring of
tasks into easier subtasks to develop error-correcting codes for
crowdsourcing [8].

Here the workers are not given an explicit decomposition
of the task into factors; rather we study properties of the
decomposition for speech transcription to determine whether
aggregation techniques can implicitly make use of attributes.
To do so, we use a coding-theoretic framework to study
the phonological structure of several world languages, and
to determine how nonnative phoneme misperception can be
modeled as a noisy communication channel.

To validate our theoretical development, we also conduct



Fig. 1. There is a distributional mismatch in native language between crowd workers surveyed on Amazon Mechanical Turk [3, Table 1] and the native
language populations around the world [1]. Native languages with more than 20 speakers among crowd workers in Pavlick, et al.’s survey are shown. Note,
e.g., that there are proportionally more workers than population in English, Tamil, and Malayalam, whereas there are less in Hindi, Spanish, and Chinese.
Taking numbers for these 35 languages as probability mass functions, the log2-relative entropy between the world at large and the crowd workforce is 1.0846.

experiments with human subjects (we have obtained clearance
from the Institutional Review Board for the Protection of
Human Subjects at the University of Illinois at Urbana-
Champaign). We demonstrate there is indeed differential
performance in mismatched transcription, depending on the
language background of workers. In particular, performance
is partly explained by the absence/presence of discriminative
phonological dimensions in the workers’ native language. The
experiment involves English and Mandarin native workers
transcribing Cantonese.

Finally, we use our framework of phonological structure to
determine how to find crowd workers whose native language
background give them the highest chance of faithful transcrip-
tion, by casting as a weighted set cover problem, which also
takes into account the native language distribution of workers
in the crowd. In addition to Amazon Mechanical Turk (which
is common in speech applications [9], [10]), we also consider
UpWork (formerly oDesk) which is a freelance market [11]
that allows workers to list skills. Note that although there
is individual variation among people [12], we characterize
workers simply by their native language.

A. Language and Information Theory

This work continues a long strand of research at the intersec-
tion of linguistics and information theory. Shannon developed
stochastic language models via human-based prediction and
used these models to estimate the entropy of English [13]; the
same human-based prediction approach—Shannon’s guessing
game—has been used to estimate entropy of other languages
such as Hindi [14]. In one study reminiscent of mismatched
crowdsourcing, the person playing Shannon’s guessing game
does not know the language to be predicted, only knowing
their native language. Performance is said to indicate the level
of similarity between the native language of the guesser and
the language being guessed [15]. The statistical methodology
of Shannon’s guessing game can be improved using gambling
rather than guessing [16]. Note that this stochastic approach

has classically been criticized by Chomsky as not descriptive
of human language [17].

All of these studies were concerned with orthographic sym-
bols, rather than sounds. There has been study of phonology
using the tools of statistical communication theory, dating
back to Cherry, Halle, and Jakobson [18] where ideas of
phonological dimensions were discussed. However, this line
of investigation was not pursued further in the communication
theory literature. The idea that some languages are closer
to others also has a long history and is motivated by dis-
parate concerns such as in historical linguistics [19] or in
international trade and migration [20]. Notions of language
similarity have been particularized to phonetic similarity [21];
we will revisit this in an information-theoretic framework
as we pursue our engineering concern of building automatic
speech recognition technology for under-resourced languages.

II. DISTINCTIVE FEATURES AND CODING THEORY

A. Background

In phonetics and phonology, dating back to the theoretical
framework of the ancient Sanskrit grammarian Pān. ini, spoken
language is represented as abstract segments that are discrete
and serially ordered. Segments are phonological representa-
tions that consist of distinctive features [22]–[24]; they are ab-
stractions of articulatory or auditory units of speech production
or perception. Segmental phonology studies the distribution
of speech sounds and their patterning to understand how
contrastive sounds trigger lexical or grammatical differences
in languages. A key theoretical construct is the phoneme, a
minimally distinctive sound in a particular language having a
set of contrastive segments based on phonological principles.
Each spoken language uses a set of consonants and vowels
to form words; this set is called a segment inventory. A
segment inventory implicitly encodes the phonetic dimensions
employed by a phonological system to form meaningful con-
trasts.



Fig. 2. Contrastive phonological features in several languages. Languages are represented by their ISO 639-3 codes, given in Table I.

Distinctive features represent abstract properties of speech
sounds, modeled as binary feature values. Features are viewed
as anatomically grounded in that they correspond to articu-
latory settings that have relatively stable, distinctive acoustic
properties. As segments are bundles of distinctive features, two
speech sounds contrast if they differ by at least one distinctive
feature. The feature matrix expresses contrasts among speech
sounds by distinctive features; the matrix can be used to
calculate how much two segments differ by summing up the
oppositions of their features, i.e. Hamming distance. That is,
this is equivalent to a code matrix in coding theory.

The International Phonetic Alphabet has symbols as short-
hand for representing articulatory features, but as an abstract
set of symbols. Featural writing systems are less common and
encode distinctive features within the shapes of symbols in the
script; Korean Hangul is a prominent example.

Cross-linguistic comparisons of segment inventories provide
insights into the factors that shape phonology in human
language. For example, it has been well-noted that the set of
consonants and vowels that can make up a segment inventory
are constrained [25] and occur with varying frequencies in
languages around the world [26]. Recently a comprehensive
database of cross-linguistic phonological inventory data, Pho-
netics Information Base and Lexicon (PHOIBLE), has been
compiled from source documents and tertiary databases [27].
The 2014 edition of PHOIBLE, of which we use a subset in the
sequel, includes 2155 inventories that contain 2160 segment

types found in 1672 languages, as well as distinctive feature
data for every phoneme in every language [28]. We have drawn
Fig. 2 to illustrate which distinctive features are used in several
global languages of varying popularity.

B. Noisy Channel Model

Following distinctive feature theory, let us think of com-
munication as binary symbols along phonological dimensions
perturbed by a noisy channel, rather than full phonemes going
through a noisy channel. The ability to perceive foreign phono-
logical contrast dimensions is largely lost after the age of one
year [29]–[31]. Hence, we can model a mismatched worker
as a low-noise binary symmetric channel for phonological
dimensions that are discriminative in the native language, and
as a very noisy binary symmetric channel for phonological
dimensions that are not discriminative in the native language.
In the extreme, this would be pure noise for foreign dimensions
and noiseless communication for native dimensions. In a sense,
this gives erasures for nonnative dimensions (but without
a special erasure symbol), and it is known that maximum
distance separable (MDS) codes are optimal for the binary
erasure channel.

Let us consider an example. Of the 27 phonological di-
mensions in Hindi, 25 are also used in English (tap and trill
are not used), so roughly 2 symbols of information may be
erased in transmission. Since there may be redundancy in
the transmission procedure, less than 2 information bits may



Fig. 3. Entropic characterization of the phonology in several languages.
Languages are represented by their ISO 639-3 codes, given in Table I.

actually be erased. Nevertheless, we can make a comparison
to our past experiments in mismatched crowdsourcing where
Hindi was transcribed by native English speakers that did
not know any other language [6]. We saw that equivocation
(conditional entropy) of English letters given Hindi phones
for different phone classes in experimental data is 2.90 bits,
so erasures of phonological dimensions do explain much of
the loss. After all, even native Hindi transcribers from the
crowd are unreliable and would leave some equivocation.
This remaining equivocation should be mitigated by a sec-
ond worker who corrects the result [32, Fig. 8], whether a
Hindi speaker or another mismatched worker that covers the
remaining uncertainty (as we will see in Sec. IV).

We can also note that there may be some loss due to
the mismatched crowd worker mapping from sounds into
his own native orthography, constructed from graphemes that
are the basic, minimally distinctive symbol of a particular
writing system. There are models of phoneme-to-grapheme
transduction that may be used for correcting such errors [6].

C. Explanatory Principles

It is clear that if there are n binary distinctive features, there
can be a maximum of 2n distinctive sounds in a language; this
is called the feature bounding principle in phonology [33].
Thinking of the segment inventory of a language as a binary
code in Hamming space Hn

2 , one might wonder if it densely
fills the space, in terms of the level of redundancy.

The feature economy principle in phonology suggests that
there should not be too much redundancy in the code, as
quantified by a measure called the economy, the ratio of
the number of sounds to the number of features [34]. To
measure feature economy, we consider its logarithm for several
languages in Fig. 3. Note that although measured in bits, Fig. 3
does not take frequency of phoneme occurrence into account,
and so is an upper bound on entropy. Phoneme frequencies in

Fig. 4. Probability mass function (cdf) of the Hamming distance (in terms of
phonological dimensions) for Hindi; some of the bimodal nature is explained
by differences between vowels and consonants. A binomial spectrum for
length 27 and 94 codewords is shown for comparison; clearly Hindi is not a
random code.

several languages seem to follow Yule distributions [35], and
so the entropy is much less than the logarithm of the number
of phonemes (see [36] for a phoneme entropy computation
for Hindi). As we observe, the inventories of languages are
nowhere near 1 bit/dimension and there is a great deal of
redundancy, so the feature economy principle alone is insuf-
ficient as an explanatory principle.

In error-correcting codes, redundancy is used to reduce de-
coding error, and so perhaps this is also the case in languages.
This idea, having well-differentiated phonetic dimensions so
that members of an inventory are highly individualized and
distinct from one another, is called the robustness principle
in phonology [33]. In fact, distance has been proposed as an

Fig. 5. Cumulative distribution function (cdf) of the Hamming distance (in
terms of phonological dimensions) for several languages (all listed in Table I).
So it is easier to see the distinct functions which comprise staircase steps, the
upper envelope for each cdf is shown.
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Fig. 6. Phone pair distinction plotted against Hamming distance of phonological feature vectors restricted by transcribers’ native language. Data derived from
Cantonese speech transcribed by English speakers (on the left) and Mandarin speakers (on the right).

explicit optimization criterion for phonology [37], just like
in algebraic coding theory. If languages were optimal in the
sense of coding theory—achieving the Singleton bound for
binary codes—a language like Hindi with 94 codewords and
length n = 27 would have a minimum Hamming distance of
27 + 1− log2(94) ≈ 21, but as we will see in Figs. 4 and 5,
this is not the case either. So the robustness principle alone
does not explain language phonology.

It has also been observed that segment inventories in lan-
guages are spread out in feature space [38], so one might
wonder if inventories are just random codes. The average
distance distribution of a code chosen in the Hamming space
Hn

2 with uniform probability is the binomial spectrum, Aw =(
n
w

)
|C|/2n, as noted e.g. in [39]. As we see in Fig. 4, Hindi

phonology is clearly not random. There is structure.
Minimal redundancy, maximal minimum distance, and ran-

dom coding do not explain observed phonologies, but if we
look at the distance distribution of several languages in Fig. 5,
it appears there is some sort of universal law that governs
the phenomenon. An open question is to find an explanatory
theoretical framework. Previous proposals to explain spread-
ness of inventories include the idea that phonemes are like
particles that repel each other in space [40], similar to energy-
minimizing error-control codes [41]; and a successive division
algorithm operating in continuous feature space [38], similar
to tree-structured vector quantization [42].

III. EFFECT OF NATIVE LANGUAGE ON NONNATIVE
PHONE DIFFERENTIATION

In this section, we investigate the misperception of phones
by mismatched transcribers. Towards this, we devise an empir-

ical phone pair distinction measure, δ(α, β), between a pair
of phones {α, β}. We explore whether δ(α, β) is correlated
with the distance between α and β in the phonological feature
space. We also use this measure to visualize the effect of
the native language background of crowd workers on the
misperception of foreign sounds.

For our experiments, we choose Cantonese to be our foreign
language and we employ two sets of crowd workers with
different language backgrounds: English speakers (employed
on Amazon Mechanical Turk) and Mandarin speakers (em-
ployed on UpWork). Each crowd worker listens to a short
speech clip in Cantonese and provides a transcription that
is acoustically closest to what they think they heard. The
transcriptions from the English speakers are in English (mostly
in the form of nonsense syllables and not corresponding to
valid English words) and the Mandarin speakers use the Pinyin
alphabet. Using these two independent sets of transcriptions,
we estimate separate noisy channel models of Cantonese
phoneme misperception [6].

A Cantonese phone sequence can be aligned with its
corresponding mismatched transcription (either in English or
Pinyin) using these trained channel models. For a pair of Can-
tonese phones {α, β}, δ(α, β) is defined as the total variation
distance between probability distributions over symbols that
are assigned to the two phones in the aligned transcriptions.
Let Sα denote the probability distribution aligned to α, over
alphabet S; similarly, let Sβ be the symbol distribution cor-
responding to β. The total variation distance, ∆(Sα, Sβ) =
1
2

∑
x∈S |Sα(x)−Sβ(x)|. Then δ(α, β) = 1 when the phones

α and β can be perfectly discriminated and δ(α, β) = 0 when
α and β have identical symbol distributions.



We define distance between two phones {α, β} in the
phonological space, η(α, β), as the Hamming distance be-
tween their feature vectors. We restrict the feature vectors to
those phonological dimensions that appear in the transcribers’
native language. To visualize the correlation (if any) between
δ(α, β) and η(α, β), we plot each Cantonese phone pair {α, β}
as a point (x, y) = (δ(α, β), η(α, β)). Fig. 6 shows a heat map
where regions with a higher concentration of such points are
shown in darker colors. The plots also include a regression
line fit to the data.1

As is evident from Fig. 6, there is a clear positive cor-
relation between δ(α, β) and η(α, β). This correlation holds
for transcriptions by both the English speaking and Mandarin
speaking transcribers. This suggests that it is reasonable to
model the channel in terms of the phonological features of
the phones being transmitted. Comparing the two plots in
Fig. 6, we see a similar trend across both sets of transcribers
despite the experiments being conducted in different settings.2

However, we also observe that points in the plot for Mandarin
speakers are shifted to the right. This suggests that, on average,
the Mandarin-speaking transcribers can distinguish between
a pair of Cantonese phones better than the English-speaking
transcribers, even if the distance between the phones is similar
in the respective phonological feature spaces. This indicates
that the channel model is not solely characterized by the
unweighted Hamming distance between phonological feature
vectors. Gaining full understanding is an open problem for
future investigation.

A direct comparison between the phone-pair distinction by
the two sets of transcribers is given in Fig. 7. The horizontal
and vertical axes corresponds to δ(α, β) computed using
the transcripts from, respectively, the English-speaking tran-
scribers and the Mandarin-speaking transcribers. The warmer
colors in the heat map indicate cells containing larger number
of phone pairs. We observe in Fig. 7 that most phone pairs
are well-differentiated by both sets of transcribers. We also
observe that there are many phone pairs which are not well-
differentiated by English transcribers, but are significantly
differentiated by Mandarin transcribers (i.e., have a low δ value
on the horizontal axis and a high δ value on the vertical axis).

IV. CHOOSING TRANSCRIBERS

Sec. II-B had developed a simple erasure channel model for
mismatched crowdsourcing based on native/nonnative phono-
logical dimensions, and Sec. III experimentally demonstrated
the reasonableness of the model. Based on the simple model,
we now develop an approach to select mismatched crowd
workers that would be most effective for a given source
language. We also take the potential scarcity of certain kinds

1The regression line was generated using a local polynomial regression fit
algorithm implemented in R by the function loess.

2The English transcriptions from the English speakers on Amazon Me-
chanical Turk were derived for 5-second Cantonese clips by first splitting the
clip into four roughly equal-sized splits and concatenating their respective
mismatched transcriptions. On the other hand, the Pinyin transcriptions from
the Mandarin speakers on UpWork were acquired without splitting the clips.
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Fig. 7. Phone pair distinction in Cantonese using both English and Pinyin
transcriptions.

of workers into account as weights in the optimization. The
problem formulation is similar to channel selection in wireless
communication systems, but due to our erasure model, it is
combinatorial in nature.

The selection of transcriber languages for a given source
language can be viewed as a weighted set cover problem:
Select the minimal-cost set of transcriber languages from a
universe of languages L such that all the phonological features
of a source language L0 are covered. Formally, this can be
written as:

S∗ = min
S⊆L

∑
L∈S

wL s.t.
⋃
L∈S

ΦL ⊇ ΦL0
(1)

where wL is the cost associated with the language L and ΦL
is the set of phonological features corresponding to L. The set
S∗ corresponds to the best set of languages selected to cover
all the phonological features corresponding to L0.

Although the decision version of set cover is NP-complete
and the optimization version is NP-hard, our optimization
problem can be set up as an integer linear program and solved
exactly.3 Table II shows the results of solving (1) for all
languages listed in Table I. We consider an unweighted and
weighted version of the problem. In the unweighted version,
for each source language L0, we let L be the set of all
languages excluding L0, and the costs wL to be uniformly
1. In the weighted version, consider L to be the entire list
of languages, and the costs wL to be inversely proportional
to the number of translators available on UpWork for L
(see Table I). In the weighted version of the problem, it is

3We use the integer linear programming solver implemented in Matlab by
the function intlinprog.



TABLE I
LANGUAGES IN CORPUS

Language Language (ISO 639-3) Number of Translators
Albanian als 374
Amharic amh 99
Arabic (Moroccan) ary 13518
Arabic (Egyptian) arz 13518
Bengali ben 180
Bulgarian bul 1324
Czech ces 0
Chinese (Mandarin) cmn 3746
German deu 0
Dinka din 1
Greek ell 1854
English eng 159683
Estonian est 0
Fijian fij 0
Filipino fil 5696
Finnish fin 0
French frav 27666
Gujarati guj 0
Hebrew heb 845
Hindi hin 3647
Croatian hrv 2083
Hungarian hun 1286
Armenian hye 0
Indonesian ind 2827
Italian ita 0
Japanese jpn 5914
Kannada kan 222
Khmer khm 0
Kurdish kmr 38
Korean kor 0
Lao lao 0
Lithuanian lit 0
Malayalam mal 0
Macedonian mkd 0
Maltese mlt 0
Burmese mya 48
Nepali nep 80
Dutch nld 3717
Norwegian nob 0
Punjabi pan 0
Persian pes 237
Polish pol 0
Portuguese por 8559
Pashto pst 106
Romanian ron 2472
Russian rus 12366
Sinhalese sin 32
Slovenian slv 0
Somali som 63
Spanish spa 33043
Swedish swe 0
Swahili swh 751
Tamil tam 797
Thai tha 1320
Tigrinya tir 8
Tongan ton 0
Turkish tur 2608
Ukrainian ukr 0
Urdu urd 2374
Vietnamese vie 1470
Cantonese yue 663
Malaysian zsm 0

TABLE II
RESULTS OF UNWEIGHTED AND WEIGHTED SET COVER

Target Unweighted Cover Weighted Cover
als pst fra
amh pst, tir amh
ary heb, kmr ary
arz ary arz
ben tir eng, spa
bul pst fra
ces pst fra
cmn pst eng
deu pst fra
din hin eng, spa
ell tir eng, spa
eng hin eng
est hin eng, spa
fij hin eng, spa
fil hin eng, spa
fin hin eng, spa
fra pst fra
guj hin eng, spa
heb ary ary
hin som eng, spa
hrv pst fra
hun pst fra
hye amh amh
ind hin eng, spa
ita pst fra
jpn hin eng, spa
kan hin eng, spa
khm — khm
kmr ary arz
kor hin eng
lao hin eng
lit pst fra
mal hin eng, spa
mkd pst fra
mlt hin eng, spa
mya hin eng, spa
nep hin eng, spa
nld hin eng, spa
nob hin eng, spa
pan hin eng, spa
pes hin eng, spa
pol pst spa
por ary ary
pst hin fra
ron hin fra
rus hin fra
sin hin eng, spa
slv hin eng, spa
som hin, khm eng, spa, vie
spa hin spa
swe hin eng
swh hin fra
tam hin eng, spa
tha hin eng, spa
tir amh amh
ton hin eng, spa
tur hin eng, spa
ukr hin fra
urd hin eng, spa
vie som vie
yue hin eng
zsm hin fra



best to use native speakers for languages with sufficiently
many workers available—English, Spanish, French, Arabic,
and Vietnamese—but not for any others. Khmer has an unusual
phonological feature (advanced tongue root) that can only be
covered by Khmer speakers in our worker pool.

This basic combinatorial channel selection problem can be
extended to the setting where several languages need to be
transcribed by several workers, so multiple covers are needed
simultaneously [43].

V. CONCLUSION

In this paper, we have considered mismatched crowdsourc-
ing of speech transcription as a noisy channel. Rather than
thinking of phonemes as the alphabet that is perturbed by noise
in the transcription process, we have considered binary sym-
bols drawn from distinctive phonological dimensions, such that
each phoneme corresponds to more than twenty binary sym-
bols. Phonological dimensions that are native to the transcriber
should have less noise than phonological dimensions that are
not native. This modeling approach is borne out in experiments
we have conducted with transcription of Cantonese by native
English and native Mandarin speakers. Taking the model to the
extreme of noiseless native dimensions and completely noisy
nonnative dimensions yields a novel combinatorial channel
selection problem that can be solved using an integer linear
programming formulation of weighted set cover, which we
apply to obtain an effective method to allocate specialized
workers to tasks.

As part of our study, we also uncover basic open questions
in understanding phonology. Distance distributions are used
in coding theory to estimate error probabilities in decoding.
We have looked at distance distributions of several world
languages and there seems to be some universal non-random
description that is unexplained by optimality principles in
channel coding theory. For a principled explanation, perhaps
the difficulty of production, cf. [44], must be considered. Per-
haps a joint source-channel coding framework would provide
more insight, whether taking the statistics of language sources
into account, or through a combinatorial optimization [45].
We also note that Hamming distance between the feature
vectors of phonemes does not fully explain the performance
of human transcribers. A second open question is whether
there is something more than unweighted distance that can
be considered in channel modeling.
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