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Abstract
We review our recent work, which includes several disparate ap-
proaches and tasks, all with the goal of using latent articulatory
structure while learning discriminatively.12

1. Introduction
A major challenge in articulatory approaches to speech recog-
nition is that it is difficult to obtain ground-truth articulatory
data. This is certainly the case at test time, where it is infeasible
to collect such data, but also the case at training time, where
only relatively small databases including articulatory informa-
tion exist. Moreover, the types of articulatory data that exist
have some drawbacks. There are two main types of articulatory
data available: continuous physical measurements via electro-
magnetic articulography, X-ray microbeam, MRI, and so on;
and manual labels of discrete articulatory features. The for-
mer often exclude some measurements (e.g., velum, voicing)
and are difficult to normalize across speakers; the latter is ex-
tremely time-consuming to obtain directly and quite noisy when
obtained from phonetic transcriptions.

The approach we take here minimizes the use of any ar-
ticulatory data, building articulatory structure into the model
using knowledge from phonology and speech science. The ar-
ticulatory variables are always hidden (latent) at both train and
test time. In particular, we are interested in training such mod-
els discriminatively, which has been very successful for phone-
based models but has not been widely applied for articulatory
models. We review several threads of research united by this
goal. We focus on conversational speech, where pronunciation
variation still significantly hampers performance to this day [8].

Our starting point was a class of generative articulatory pro-
nunciation models represented as dynamic Bayesian networks
(DBNs) [9, 1], shown in Fig. 1. This model, inspired by ideas
from articulatory phonology [10], describes alternative pronun-
ciations as the result of either asynchrony between articulators
or substitution of one articulatory value for another. On a lexical
access task, where surface articulatory features serve as proxy
for the acoustic signal (i.e., we assume that we have perfect ar-
ticulatory classifiers), such models improve over typical models
of phonetic substitutions, insertions, and deletions [1].

There are multiple ways to incorporate ideas from such a
model into a complete system while taking advantage of dis-
criminative training: the model can be converted to an HMM
or FST and incorporated into a standard HMM- or FST-based

1Many details and citations are left out for brevity; please see [1, 2,
3, 4, 5, 6, 7] for a more complete description and related literature.
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Figure 1: Articulatory DBN for pronunciation modeling [1],
showing two articulatory streams over two frames i, i+1. Each
stream includes a position variable (state index in the dictionary
pronunciation); target and surface (observed) articulatory states;
context of previous and next targets and previous surface state;
and a “sync” variable modeling inter-articulator asynchrony.

recognizer (see Sec. 3 below and [1]); it can be applied to
score/align new examples to obtain feature functions for a dis-
criminative linear/log-linear model (see Sec. 2 and [4]); or parts
of the model can be represented directly as feature functions in
a linear/log-linear model (see Sec. 4 and [5, 6, 7]).

2. Large-margin model for lexical access
Lexical access is the task of inferring, given a surface pronun-
ciation p (a sequence of surface phonetic units), which single
word w this represents from a vocabulary V (i.e., |V|-way clas-
sification). We use data from the Switchboard Transcription
Project (STP) [11], which is transcribed at a narrow phonetic
level including nasalization, fricated stops, and so on. We define
our word classifier as w∗ = argmaxw∈V θ · φ(p, w), where
φ(p, w) is a vector of feature functions and θ is a vector of
corresponding weights, learned by a large-margin approach [4].

Some of the feature functions φ are based on a context-
independent variant of the DBN in Fig. 1. The DBN aligns each
input surface pronunciation with each possible word, and we de-
fine feature functions based on counts of asynchronous articula-
tory states, counts of substitutions of one articulatory value for
another, and the alignment score itself. Other (non-articulatory)
feature functions are based on phonetic alignment between the
surface form and the dictionary, word-specific counts of pho-
netic units, deviations in length between the dictionary and sur-
face form, and a dictionary lookup function.

Tab. 1 shows the error rates obtained on data from STP.
The large-margin model shows a sizable improvement over both
previous work and a conditional log-likelihood (CLL) train-



Model ER
lexicon lookup (from [9]) 59.3%
phonetic S/I/D model (from [1], based on [12]) 32.1%
articulatory DBN [1] 29.1%
discriminative model, CLL training [4] 21.5%
discriminative model, large-margin training [4] 15.2%

Table 1: Lexical access error rates (ER). Lexicon lookup is a
sanity check baseline using a lookup of the surface form in
the dictionary. Phonetic S/I/D is a typical model of context-
dependent phonetic substitutions, insertions, and delections.

ing approach that maximizes the word posterior P (w|p) ∝
exp(θ · φ(p, w)) Most of the gain comes from discrimina-
tive training, and a small gain comes from the articulary fea-
tures; however, the articulatory model used here is context-
independent. Ongoing work is extending the feature functions
and incorporating the model into a complete recognizer using a
segmental model to allow for our whole-word features.

3. Discriminative training of pronunciation
models via conversion to FSTs

Sec. 2 described articulatory model-based feature functions in
a large-margin whole-word classifier. Such models can also be
incorporated into traditional frame-based ASR pipelines. In [2],
we developed an approach for compiling DBNs into cascades of
Weighted Finite State Transducers (WFSTs). Both DBNs and
WFSTs have a Markovian structure that encodes time; however,
the state space of the DBNs within a time step is much larger
than that of typical WFSTs in ASR. Variables in the DBN can be
grouped based on the DBN’s conditional independence assump-
tions to vastly speed up decoding: we subdivide the DBN into
multiple levels, attempting to minimize the number of edges
between levels. Each level becomes a WFST (across time); the
composition of all of these WFSTs represents the whole DBN.

There are two advantages to this approach: first, we can
apply discriminative training techniques for WFSTs in order to
improve performance. In [2], we experimented with an aver-
aged perceptron approach for updating WFST weights,which
improved lexical access over a baseline DBN (from 43.0% to
35.9% error).3 The second advantage is that this can be imple-
mented in a standard WFST-based ASR system taking acous-
tic input. We developed a discriminative approach for training
individual WFST factors within cascades to allow training pro-
nunciation models with a small amount of data. We first applied
this technique to a phone-based (rather than articulatory) WFST
system, which significantly improved isolated-word recogni-
tion; promising preliminary results on continuous speech were
observed as well [3]. Interestingly, discriminatively training the
lexical WFST was more effective than discriminatively training
the entire WFST cascade with a small amount of data. We have
also seen some promising results using articulatory models for
the isolated-word recognition task.

4. Discriminative articulatory models for
spoken term detection

We have also explored the idea of jointly modeling the artic-
ulatory configuration space using factored conditional random
fields (CRFs) structured similarly to the generative DBN of
Fig. 1. While factored CRFs can be computationally expensive,
restricting the amount of asychrony limits the CRF state space
to the point where efficient polynomial-time inference can be

3NB: these experiments did not take into account context or long-
range features that were critical in [4].

System 500 1000 2500 5000
HMM-triphone 0.828 0.855 0.899 0.920

Disc. phone 0.874∗ 0.901∗ 0.917 0.933∗

Disc. artic. 0.888∗,† 0.898∗ 0.915 0.937∗

Disc. ph.+artic. 0.891∗,† 0.905∗ 0.920∗ 0.938∗,†

Table 2: Spoken term detection AUC results [6, 7]. ∗, † = signif-
icant improvement over triphone and Disc. phone, respectively.

used. Articulatory alignments produced by the factored CRF
were more accurate than those produced by the original DBN
from which the factored CRF was derived [5].

The ability to produce joint alignment scores allows us to
implement articulatory spoken term detection systems using
very little training data. Extending [13], we train a large-margin
classifier to separate positive keyword examples from negative
examples using features based on the factored CRF; training
optimizes the area under the receiver operating characteristic
curve (AUC) [6, 7]. In very low-resource conditions (training
on 500-5000 Switchboard utterances), phone-based discrimina-
tive systems outperform HMM baselines, and articulatory mod-
els improve performance even further (both alone and combined
with phone-based systems), as shown in Tab. 2.

5. Summary
Our work thus far has demonstrated that modeling articulatory
variables as latent and using discriminative training can be ef-
fective in pronunciation modeling for lexical access, with initial
results showing promise for continuous recognition and spoken
term detection. Along the way, we have developed new tech-
niques for representing such models as FSTs and new ways
of applying discriminative training for FST cascades and spo-
ken term detection. Much work remains to extend the articula-
tory models used in discriminative systems (which thus far have
been only simplified models) and to scale up to larger tasks.
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