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Abstract—In many under-resourced languages it is possible
to find text, and it is possible to find speech, but transcribed
speech suitable for training automatic speech recognition (ASR)
is unavailable. In the absence of native transcripts, this paper
proposes the use of a probabilistic transcript: a probability mass
function over possible phonetic transcripts of the waveform.
Three sources of probabilistic transcripts are demonstrated. First,
self-training is a well-established semi-supervised learning tech-
nique, in which a cross-lingual ASR first labels unlabeled speech,
and is then adapted using the same labels. Second, mismatched
crowdsourcing is a recent technique in which non-speakers of the
language are asked to write what they hear, and their nonsense
transcripts are decoded using noisy channel models of second-
language speech perception. Third, EEG distribution coding is
a new technique in which non-speakers of the language listen
to it, and their electrocortical response signals are interpreted to
indicate probabilities. ASR was trained in four languages without
native transcripts. Adaptation using mismatched crowdsourcing
significantly outperformed self-training, and both significantly
outperformed a cross-lingual baseline. EEG distribution coding
and text-derived phone language models were both shown to
improve the quality of probabilistic transcripts derived from
mismatched crowdsourcing.

Index Terms—Automatic speech recognition, Under-resourced
languages, Mismatched crowdsourcing, EEG

I. INTRODUCTION

UTOMATIC speech recognition (ASR) has the potential

to provide database access, simultaneous translation, and
text/voice messaging services to anybody, in any language,
dramatically reducing linguistic barriers to economic success.
To date, ASR has failed to achieve its potential, because
successful ASR requires very large labeled corpora; the human
transcribers must be computer-literate, and they must be native
speakers of the language being transcribed. Large corpora
are beyond the resources of most under-resourced language
communities; we have found that transcribing even one hour
of speech may be beyond the reach of communities that
lack large-scale government funding. In order to create the
databases reported in this paper, for example, we sought
paid native transcribers, at a competitive wage, for the 68
languages in which we have untranscribed audio data. We
found transcribers willing to work in only eleven of those
languages, of which only seven finished the task.

Instead of recruiting native transcribers in search of a perfect
reference transcript, this paper proposes the use of probabilistic
transcripts. A probabilistic transcript is a probability mass
function, pg (¢), specifying, as a real number between 0 and 1,
the probability that any particular phonetic transcript ¢ is the
correct transcript of the utterance. Prior to this work, machine
learning has almost always assumed that the training dataset
contains either deterministic transcripts (ppr(¢) € {0,1},
commonly called “supervised training”) or completely untran-
scribed utterances (commonly called “unsupervised training,”
in which case we assume that pr (@) is given by some
a priori language model). This article proposes that, even
in the absence of a deterministic transcript, there may be
auxiliary sources of information that can be compiled to create
a probabilistic transcript with entropy lower than that of the
language model, and that machine learning methods applied to
the probabilistic transcript are able to make use of its reduced
entropy in order to learn a better ASR. In particular, this paper
considers three useful auxiliary sources of information:

1) SELF-TRAINING: ASR pre-trained in other languages
is used to transcribe unlabeled training data in the target
language.

2) MISMATCHED CROWDSOURCING: Human crowd
workers who don’t speak the target language are asked
to transcribe it as if it were a sequence of nonsense
syllables.

3) EEG DISTRIBUTION CODING: Humans who do not
speak the target language are asked to listen to its ex-
tracted syllables, and their EEG responses are interpreted
as a probability mass function over possible phonetic
transcripts.

II. BACKGROUND

Suppose we require that, in order to develop speech technol-
ogy, it is necessary first to have (1) some amount of recorded
speech audio, and (2) some amount of text written in the
target language. These two requirements can be met by at
least several hundred languages: speech audio can be recorded
from podcasts or radio broadcasts, and text can be acquired
from Wikipedia, Bibles, and textbooks. Recorded speech is,
however, not usually transcribed; and the requirement of native
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language transcription is beyond the economic capabilities of
many minority-language communities.

A. ASR in Under-Resourced Languages

Krauwer [27] defined an under-resourced language to be one
that lacks: stable orthography, significant presence on the in-
ternet, linguistic expertise, monolingual tagged corpora, bilin-
gual electronic dictionaries, transcribed speech, pronunciation
dictionaries, or other similar electronic resources. Berment [3]
defined a rubric for tabulating the resources available in any
given language, and proposed that a language should be called
“under-resourced” if it scored lower than 10.0/20.0 on the
proposed rubric. By these standards, technology for under-
resourced languages is most often demonstrated on languages
that are not really under-resourced: for example, ASR may
be trained without transcribed speech, but the quality of the
resulting ASR can only be proven by measuring its phone
error rate (PER) or word error rate (WER) using transcribed
speech. The intention, in most cases, is to create methods that
can later be ported to truly under-resourced languages.

The International Phonetic Alphabet (IPA [21]) is a set
of symbols representing speech sounds (phones) defined by
the principle that, if two phones are used contrastively (i.e.,
they represent distinct phonemes) in any language, then those
phones should have distinct symbolic representations in the
IPA. This makes the IPA a natural choice for transcripts used
to train cross-language ASR systems, and indeed ASR in a
new language can be rapidly deployed using acoustic models
trained to represent every distinct symbol in the IPA [39].
However, because IPA symbols are defined phonemically,
there is no guarantee of cross-language equivalence in the
acoustic properties of the phones they represent. This problem
arises even between dialects of the same language: a mono-
lingual Gaussian mixture model (GMM) trained on five hours
of Levantine Arabic can be improved by adding ten hours of
Standard Arabic data, but only if the log likelihood of cross-
dialect data is scaled by 0.02 [18].

Better cross-language transfer of acoustic models can be
achieved, but only by using structured transfer learning meth-
ods, including neural networks (NN) and subspace Gaussian
mixture models (SGMM). SGMMs use language-dependent
GMMs, each of which is the linear interpolation of language-
independent mean and variance vectors [37], e.g., 16% rel-
ative WER reduction was achieved in Tamil by combining
SGMM with an acoustic data normalization technique [32].
NN transfer learning can be categorized as tandem, bottleneck,
pre-training, phone mapping, and multi-softmax methods. In
a tandem system, outputs of the NN are Gaussianized, and
used as features whose likelihood is computed with a GMM;
in a bottleneck system, features are extracted from a hidden
layer rather than the output layer. Both tandem [44] and
bottleneck [47] features trained on other languages can be
combined with GMMs [47] or SGMMs [20] trained on the
target language in order to improve WER.

A hybrid ASR is a system in which the NN terminates in
a softmax layer, whose outputs are interpreted as phone or
senone [7] probabilities. Knowledge of the target language

phone inventory is necessary to train a hybrid ASR, but
it is possible to reduce WER by first pre-training the NN
hidden layers with multilingual data [17], [45]. A hybrid
ASR can be constructed using very little in-language speech
data by adding a single phone-mapping layer [42] or senone-
mapping layer [10] to the output of the multilingual NN.
A multi-softmax system is a network with several different
language-dependent softmax layers, each of which is the linear
transform of a multilingual shared hidden layer [17], [38],
[47].

B. Self-Training

Self-training is a class of semi-supervised learning tech-
niques in which a classifier labels unlabeled data, and is
then re-trained using its own labels as targets. Self-training is
frequently used to adapt ASR from a well-resourced language
to an under-resourced language [5], [30], or in some cases,
to create target-language ASR by adapting several source-
language ASRs [48]. A self-trained classifier tends to be too
conservative, because the tails of the data distribution are
truncated by the self-labeling process [40]; on the other hand,
a self-trained classifier needs to be conservative, because the
error rate of the learned classifier increases at a rate more than
proportional to the error rate of the self-labeling process [19].
Self-training is therefore most useful when the in-language
training data are filtered, to exclude frames with confidence
below a threshold [46], and/or weighted, so that some frames
are allowed to influence the learned parameters more than
others [16]. Self-training of NN systems has been shown to be
about 50% more effective (1.5 times the error rate reduction)
as self-training of GMM systems [19].

C. Mismatched Crowdsourcing

In [24], a methodology was proposed that bypasses the need
for native language transcription: mismatched crowdsourcing
sends target language speech to crowd-worker transcribers
who have no knowledge of the target language, then uses
explicit mathematical models of second language phonetic
perception to recover an equivalent phonetic transcript (Fig. 1).
Majority voting is re-cast, in this paradigm, as a form of
error-correcting code (redundancy coding), which effectively
increases the capacity of the noisy channel; interpretation as

Human
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Fig. 1. Mismatched Crowdsourcing: crowd workers on the web are asked
to transcribe speech in a language they do not know. Annotation mistakes
are modeled by a finite state transducer (FST) model of utterance-language
pronunciation variability (reduction and coarticulation), composed with an
FST model of non-native speech misperception (mapping utterance-language
phones to annotation-language phones), composed with an inverted grapheme-
to-phoneme (G2P) transducer.



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE

EEG feature classifiers trained on
feature-labeled English phones

EEG response to
foreign phones
(epoched & averaged)

Foreign phone
——> misperception

m probabilities

Fig. 2. EEG responses are recorded while the listener hears speech in his
native language. A bank of distinctive feature classifiers are trained. The
listener then hears speech in an unfamiliar language, and his EEG responses
are classified, in order to estimate arc weights in the misperception FST.

a noisy channel permits us to explore more effective and
efficient forms of error-correcting codes. Assume that cross-
language phone misperception is a finite-memory process, and
can therefore be modeled by a finite state transducer (FST).
The complete sequence of representations from utterance
language to annotation language can therefore be modeled
as a noisy channel represented by the composition of up to
three consecutive FSTs (Fig. 1): a pronunciation model, a
misperception model, and an inverted grapheme-to-phoneme
(G2P) transducer.

D. Electrophysiology of Speech Perception

The human auditory system is sensitive to within-category
distinctions in speech sounds, but such pre-categorical per-
ceptual distinctions may be lost in transcription tasks, where a
listener must filter their percepts through the limited number
of categorical representations available in their native lan-
guage orthography. EEG distribution coding is a proposed
new method that interprets the electrical evoked potentials of
an untrained listener (measured by electroencephalography or
EEG) as a probability distribution over the phone set of the
utterance language (Fig. 2). A transcriber, in this scenario,
listens to speech in both his native language and an unfamiliar
non-native target language, while his EEG responses are
recorded. From his responses to English speech, an English-
language EEG phone recognizer is trained [9]. Misperception
probabilities p(i|¢p) are then estimated: for each non-native
phone ¢, the classifier outputs are interpreted as an estimate

of p(1[¢).

III. ALGORITHMS THAT INDUCE A PROBABILISTIC
TRANSCRIPT

A deterministic transcript is a sequence of phone symbols,
¢t = [#%,...,9Y%] where ¢, is a symbol drawn from the
phone set of the utterance language.

A probabilistic transcript is a probability mass function
(pmf) over the set of deterministic transcripts. Capital letters
denote random variables, lowercase denote instances: <I>f;T is a
random variable whose instance is ¢!, . Denote the probability
of transcript ¢¢ as pge(¢’), where p (“reference”) means that
poc (¢°) is a reference distribution—a distribution specified by
the probabilistic transcription process, and not dependent on
ASR parameters during training. The distribution label ®¢ is
omitted when clear from the instance label, e.g., p(¢%), but
pae(u). Superscript denotes waveform index, while subscript
denotes frame or phone index. Absence of either superscript or

[a]/0.3

[k1/0.4

[b11/0.45

[a]/0.5

[a]/0.4
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Fig. 3. A probabilistic transcript (PT) is a probability mass function (pmf)
over candidate phonetic transcripts. All PTs considered in this paper can
be expressed as confusion networks, thus, as sequential pmfs over the null-
augmented space of IPA symbols. In this schematic example, @ is the null
symbol, symbols in brackets are IPA, and numbers indicate probabilities.

subscript denotes a collection, thus ® = {®',... &L} (with
instance value ¢ = {¢',...,¢"}) is the random variable over
all transcripts of the database. In all of the work described
in this paper, the probabilistic transcript is represented as a
confusion network [31], meaning that it is the product of
independent symbol pmfs p(¢%)):

p(¢) =[] re") =TT I] r(¢%) (1)
{=1m=1

The pmf p(¢*) can be represented as a weighted finite state
transducer (WFST) in which edges connect states in a strictly
left-to-right fashion without skips, and in which the edges
connecting state m to state m + 1 are weighted according
to the pmf p(¢!,) (Fig. 3).

Three different experimental sources were tested for the cre-
ation of a PT. Self-training is now well-established in the field
of under-resourced ASR; we adopted the algorithm of Vesely,
Hannemann and Burget [46]. Mismatched crowdsourcing used
original annotations collected using published methods [25].
EEG was not used independently here, but rather, was used
to learn a misperception model applicable to the interpretation
of mismatched crowdsourcing.

A. Self-Training

The first set of PTs is computed using NN self-training.
The Kaldi toolkit [36] is first used to train a cross-lingual
baseline ASR, using training data drawn from six languages
not including the target language. The goal of self-training,
then, is to adapt the NN to a database containing L speech
waveforms in the target language, each represented by acoustic
feature matrix 2’ = [zf,... 2%], where z¥ is an acoustic
feature vector. The feature matrix x* represents an utterance
of an unknown phone transcript ¢* = [¢{, ..., #%,] which, if
known, would determine the sequence but not the durations
of senones (HMM states) s* = [s¢, ..., s&].

The feature matrix z* is decoded using the cross-lingual
baseline ASR, generating a phone lattice output. Using scripts
provided by previous experiments [46], the phone lattice is
interpreted as a set of posterior senone probabilities p(st|x?)
for each frame, and the senone posteriors serve as targets
for re-estimating the NN weights. Experiments using other
datasets found that self-training should use best-path alignment
to specify a binary target for NN training [46], but, apparently
because of differences in the adaptation set between our
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experiments and previous work, we achieve better performance
using real-valued targets. As in previous work, senones with a
posterior probability below 0.7 were removed from the training
set, thus the training target was a number between 0.7 and 1.0.

B. Mismatched Crowdsourcing

The second set of PTs was computed by sending audio in
the target language to non-speakers of the target language, and
asking them to write what they hear. It would be preferable
to recruit transcribers who speak a language with predictable
orthography, but since transcribers in those languages were
more expensive, this experiment instead recruited transcribers
who speak American English. Denote using 7" the set of
mismatched transcripts produced by these English-speaking
crowd workers, which we wish to interpret as a pmf over
target-language phone sequences, p(¢|T'). As an intermediate
step, prior work [25] developed techniques to merge texts into
a confusion network p(\|T") over representative transcripts in
the annotation-language orthography (Fig. 4).

Once transcripts have been aligned and filtered to create
the orthographic confusion network p(A|T"), they are then
translated into a distribution over phone transcripts according
to:

p(6IT) ~ max p(éI\)p(AT)
Wp(as)) p(AIT) @

p
ES < P
The terms other than p(A|T) in Equation (2) are estimated as
follows. p(\) is modeled using a unigram prior over the letter
sequences in A. p(¢) is modeled using either a cross-lingual
phone unigram, a language-constrained cross-lingual unigram
(the cross-lingual unigram, constrained to take values from the
phone set of the tar%et language), or a language-specific phone
bigram p(¢) = [],,—; P(¢m|Pm—1). Sec. IV-C describes an
algorithm for training the phone bigram without using pro-
scribed test-language resources; Sec. V lists the PT accuracies
achieved using each of these three approaches. p(\|¢) is
called the misperception G2P, as it maps to graphemes in
the annotation language, A, fsrom phones in the utterance
language, ¢. Section III-C describes methods that decompose
p(\|@) into separate misperception and G2P transducers, but
it can also be trained directly using representative transcripts
A (and their corresponding native transcripts) for speech in

T=Mismatched
Transcripts
trabiza
ta peesome
ta pisha
chah peesh um
shapisha
sabeesham
chapiser
some pizza

Fig. 4. Probabilistic transcription from mismatched crowdsourcing: Tran-
scripts 7" are filtered to remove outliers, and merged to create a confusion
network over orthographic symbols, p(A|T), from which the probabilistic
transcript p(¢|T") is inferred. Example shown: Swahili speech, English-
speaking transcribers. Symbols in <> are graphemes, symbols in [] are
phones, numbers are probabilities.

languages other than the target language. The model learned
in this way is essentially a machine translation model, which
translates between graphemes in the annotation language (\) to
phonemes in any possible utterance language (¢). We assume
that misperceptions depend more heavily on the annotation
language than on the utterance language, and that therefore a
model p(A|¢) trained using a universal phone set for ¢ is also a
good model of p(\|¢p) for the target language. Note that, while
this assumption is not entirely accurate, it is necessitated by
the requirement that no native transcripts in the target language
can be used in building any part of our system.

C. Estimating Misperceptions from Electrocortical Responses

The misperception G2P described in Section III-B was es-
timated using a combination of mismatched and deterministic
transcripts of non-target languages. However, with a small
amount of transcribed data in the utterance language, it is
possible to estimate the misperception G2P using electrocor-
tical measurements of non-native speech perception. In this
approach, the misperception G2P is decomposed into two
separate transducers, a misperception transducer p(t|¢), and
an annotation-language G2P p(A|y)):

p(Alg) ~ pr (®l9) 3)

where ¢ is a phone string in the utterance language, v
is a phone string in the annotation language, and A is an
orthographic string in the annotation language. p(A|¢) is an
inverted G2P in the annotation language, e.g., trained on the
CMU dictionary of American English pronunciations [28].
p(|¢) is the mismatch transducer, specifying the probability
that a phone string ¢ in the utterance language will be mis-
heard as the annotation-language phone string ).

In principle, the mismatch transducer could be computed
empirically from a phone confusion matrix, if experimental
data on phone confusions were available for all phones in
the target language, and those data were based on responses
from a listener with the same language background as the
crowd worker transcribers. These goals are hard to meet. An
alternative is to use distinctive feature representations (origi-
nally proposed to characterize the perceptual and phonological
natural classes of phonemes [22]) to predict misperceptions
based on differences between the distinctive feature values of
annotation- and utterance-language phones. Given the assump-
tion that every distinctive feature shared by phones ¢ and
1 independently increases their confusion probability, their
confusion probability can be expressed as

p()]@) o exp Zwk 1) )
where wy (¢, ) is smaller if ¢ and ¢ share the k" distinctive
feature. The assumption of independence is a simplifying
assumption, given that many distinctive features have overlap-
ping acoustic correlates. For example, the frequencies of the
two lowest resonances of the vocal tract (the primary cues for
vowel identity) are determined by articulatory gestures of the
lips, jaw and tongue that are commonly represented by three
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or more distinctive features (e.g., height, backness, rounding,
and advanced tongue root). Moreover, the weights w; will
probably also depend on properties of the speaker and listener
(language, dialect, and idiolect), but data to train such a rich
model do not exist.

However, a reasonable approximate model can be learned
by assuming that wjy depend only on information about the
listener, which can be incorporated via measurements of
electrocortical activity. In particular, the weights wy of the
distinctive features can be set based on similarity of electro-
cortical responses (measured using EEG) as determined by a
classifier trained to compute distinctive feature representations
from electrocortical responses to the listener’s native language
phones. Thus, suppose a listener first hears phones ¢ = 1 in
the native language, EEG response signals y are recorded,
and a bank of binary classifiers gy (y) are trained to label the
distinctive features fi(¢) [9]. Second, the same listener hears
phones ¢ # 1 in a new language, and EEG response signals y
are recorded; then the contributions in Eq. (4) can be estimated
as

wi (¢, 1) = —InPr{gi(y) = fu(®)} %)

IV. ALGORITHMS FOR TRAINING ASR USING
PROBABILISTIC TRANSCRIPTION

An ASR is a parameterized pmf, 7(z, s|¢, ), specifying
the dependence of acoustic features, x, and senones, s, on
the phone transcript ¢ and the parameter vector 6, where the
notation 7(-) denotes a pmf dependent on ASR parameters.
Assume a hidden Markov model (HMM), therefore

HHW‘St‘St 1ot 0)m(xt|st, )

(=1t=1

(z,5|¢,0)

A. Maximum Likelihood Training

Consider two observation-conditional sequence distributions
(s, ¢|lz,0) and 7 (s, P|x, "), with parameter vectors 6 and 6’
respectively. The cross-entropy between these distributions is:

H(0)0)) == (s, ¢|z,0)Inn(s,¢lz,0')  (6)
8,0
=L0)-Q(0,0) (7)

where the data log likelihood, £ (6’), and the expectation
maximization (EM) quality function, @ (6,0’) [8], are

L) =Inn(z|0) 8)
Q0.0) = n(s,¢lx,0) nm(x,s,0[0) ©)
s,¢

Cross-entropy is bounded (H (0||6") > H (6||9)), therefore
L(0) = L(0)>Q(0,6") —Q(0,0) (10)

Given any initial parameter vector 6,,, the EM algorithm finds
0,+1 = argmaxy Q(6,,0"), thereby maximizing the mini-
mum increment in £(0). For GMM-HMMs, the quality func-
tion @ (6,0’) is concave and can be analytically maximized;
for NN-HMMs it is non-concave, but can be maximized using
gradient ascent [2].

The probability 7(x, s, ¢|#) is computed by composing the
following three weighted FSTs:

H:s" = s /n(2’)s, ¢, 0) (11)
C: st = o' m(s°|4,0) (12)
PT : ¢" — ¢'/p(¢") (13)

where the notation has the following meaning. The probabilis-
tic transcript, PT, is an FST that maps any phone string to
itself. This mapping is deterministic and reflexive, but comes
with a path cost determined by the transcription probability
p(gbf), as exemplified in Fig. 3. The context transducer, C,
maps any senone sequence s’ to a phone sequence ¢° [33].
This mapping is stochastic, and the path cost is determined by
the HMM transition weights

T

17 (stlsi_s.6",0)

t=1

m(s'|p,0) = (14)
The acoustic model, H, maps any senone sequence to itself.
This mapping is deterministic and reflexive, but comes with a
path cost determined by the acoustic modeling probability

Hw

The posterior probability w(s,qﬁ\x,@) is computed by com-
posing the FSTs, pushing toward the initial state (normalizing
so that probabilities sum to one), then finding the total cost
of the path through PUSH (H o C o PT') with input string s
and output string ¢. The analytical maximum of @ (6,6’) can
be computed efficiently using the Baum-Welch algorithm, but
experiments reported in this paper did not do so, for reasons
described in the next subsection.

m(z|s%, ¢*, 0) (15)

|3ta

B. Segmental K-Means Training

The EM quality function, Q(6,6’), has properties that
make it undesirable as an optimizer for L. Suppose, as
often happens, that there is a poor phone sequence, ¢P,
that is highly unlikely given the correct parameter vector
6*, meaning that 7(z,s,¢P|0*) is very low. Suppose that
the initial parameter vector, 6, is less discriminative, so that
w(x,s,¢P|0) > w(x,s,¢P|0*). Indeed, the best speech rec-
ognizer is a parameter vector 6* that completely rules out
poor transcripts, setting m(x, s, ¢?|6*) = 0; but in this case
Q(0,6*) = —oo. It is therefore not possible for the EM
algorithm to start with parameters 6 that allow ¢P, and to find
parameters 6* that rule out ¢P. With probabilistic transcription,
this problem is quite common: if the human transcribers
fail to rule out ¢” (e.g., because the correct and incorrect
transcripts are perceptually indistinguishable in the language
of the transcribers), then the EM algorithm will also never
learn to rule out ¢P.

EM’s inability to learn zero-valued probabilities can be
ameliorated by using the segmental K-means algorithm [23],
which bounds £(6") as £(6") > R(0,6"):

R(0,0') = Inm(z, s*(6), ¢* (0)]0)
s%(0),¢™(0) = argrgaM(s, |z, 0)

(16)
a7
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<big><nowiki>Kichwa Swabhili G2P
kikubwa</nowiki></big><nowiki>kichwd — ¢ ¢ | )
kidogo</nowiki>Picha Ukitaka ny—sn Bigram phone
kutumia picha iliyopo katika — d |—— language model
Wikipedia. Picha iko tayari katika ng—y p(dL |0t 1)
Wikipedia commons. Hii ni jambo mb—mb

la kujaribu! Fungua makala katika nj—nd3

Fig. 5. Bigram phone language model is trained using Wikipedia text (left)
converted into phone strings using a zero-resource knowledge-based G2P
(center).

Given an initial parameter vector 6, therefore, it is possible
to find a new parameter vector 6’ with higher likelihood
by computing its maximum-likelihood senone sequence and
phone sequence s*(6),¢*(#), and by maximizing 6’ with
respect to s*(#) and ¢*(6). Maximizing R(6,6’) rather than
Q(6,60") is useful for probabilistic transcription because it
reduces the importance of poor phonetic transcripts.

C. Using a Language Model During Training

During segmental K-means, it is advantageous to incor-
porate as much information as possible about the utterance
language. Define G to be an FST representing the modeled
phone bigram probability 7(¢¢|0) = Hﬁ{:l (¢l |0t 1, 0).
Training results can be improved by using H o C o PT oG to
compute segmental K-means.

By assumption, phone bigram information is not available
from speech: we assume that there is no transcribed speech
in the target language. A reasonable proxy, however, can be
constructed from text. Fig. 5 shows text data downloaded from
Wikipedia in Swabhili, and a segment of a knowledge-based
G2P for the Swahili language. Because this phone bigram
will also be used in ASR testing, it is constructed using
a knowledge-based method that requires zero test-language
training data: The G2P is constructed by looking up “Swabhili
alphabet” on Wikipedia, downloading the resulting web page,
and converting it by hand into an unweighted finite state
transducer [15]. By passing the former through the latter, it
is possible to generate synthetic phone sequences in the target
language.

Composing PT o G is complicated by the presence of null
transitions in the PT. A null transition in the PT matches
a non-event in the language model, for which normal FST
notation has no representation. In order to compose the PT
with the language model, therefore, it is necessary to introduce
a special type of “non-event” symbol, here denoted “#2”, into
the language model (Fig. 6). A language model “non-event”
is a transition that leaves any state, and returns to the same
state (a self-loop). Such self-loops, labeled with the special
symbol “#2” on both input and output language, are added
to every state in G (Fig. 6 (b)). The probabilistic transcript,
then, is augmented with the special symbol “#2” as the output-
language symbol for every null-input edge (input symbol is

@t = 0).

D. Maximum A Posteriori Adaptation

PT adaptation starts from a cross-lingual ASR, and adapts
its parameters to PTs in the target language. The Bayesian
framework for maximum a posteriori (MAP) estimation has

#2:4#2

aa/p(alb) #5H2

a:a/0.8  bb/0.8

@)

0:#2/0.2  aa/0.2

#2:4#2

(a) Probabilistic Transcript, PT' (b) Language Model, G

Fig. 6. Deletion edges in the probabilistic transcript (edges with the special
null-phone symbol, @), required special handling in order to use information
from a phone language model. As shown in (a), a new type of null symbol,
“#2”, was invented to represent the output for every PT edge with an () input.
Such edges were only allowed to match with state self-loops, newly added to
the language model (b) in order to consume such non-events in the transcript.
a,b: regular phone symbols, e: null-string, p(b|a): bigram probability, 8(a):
language model backoff.

been widely applied to GMM and HMM parameter estimation
problems such as speaker adaptation [12]. Formally, for an
unseen target language, denote its acoustic observations x =
(z1,...,2L), and its acoustic model parameter set as @, then
the MAP parameters are defined as:

Omap = argmax w(f|z) = argmax 7(x|0)w(0) (18)

0 ]
where 7(f) is the product of conjugate prior distributions,
centered at the parameters of a cross-lingual baseline ASR. In
a GMM-HMM, the acoustic model is computed by choosing
a Gaussian component, Gf, whose mixture weight is c¢j; =
T se(k[j), and whose mean vector and covariance matrix
are {1 and X ;5. Maximum likelihood trains these parameters
by computing ; (j, k) = mg¢ ¢ (4, k|*, ), then accumulating
weighted average acoustic frames with weights given by
v£(4, k). Segmental K-means quantizes Tt (j]z*,0) — {0,1}
using forced alignment, then proceeds identically. MAP adap-
tation assigns, to each parameter, a conjugate prior 7(6) with
mode equal to @ (the parameters of the cross-lingual baseline),
and with a confidence hyperparameter 7y, resulting in re-
estimation formulae that are linearly interpolated between the
baseline parameters # and the statistics of the adaptation data,
for example:

/ TeCik + Y00 Vi (G )
Cil = : (19)
0 (ein + 0078 Gim))

E. Neural Networks

The NN acoustic model is mx¢|g¢(v]j,0) o vl (4),

i05) = £ Ry bl o) (20)
¢j 3ok exp (Wi b (v, won))
whose parameters ¢ = {c;j, w;j, w,p} include the senone

priors c¢;, the softmax weight vectors w;, and the parameters
defining the hidden nodes h;(v,w,p). NNs are trained by
using a GMM-HMM to compute an initial senone posterior,
Tge (§lz%, 6), then minimizing the cross-entropy between the
estimated senone posterior and the neural network output
vt (7), using gradient descent in the direction

r wqe(jlzt, 0
—VoH(S YY) =>"" L.)Veyf(j)

21
2.2 @b



IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE

Preliminary experiments showed that forced alignment im-
proves the accuracy of NNs trained from probabilistic tran-
scripts: the best path through the PT, and the best alignment
of the resulting senones to the waveform, were both computed
using forced alignment. The resulting best senone string was
used to train a NN using Eq. (21).

V. AUDIO DATA AND MISMATCHED CROWDSOURCING

Speech data were extracted from publicly available pod-
casts [43] hosted in 68 different languages. In order to generate
test corpora (in which it is possible to measure phone error
rate), advertisements were posted at the University of Illinois
seeking native speakers willing to transcribe speech in any of
these 68 languages. Of the ten transcribers who responded,
six people were each able to complete one hour of speech
transcription (the other four dropped out). One additional
language was transcribed by workers recruited at I?R in
Singapore, yielding a total of seven languages with native
transcripts suitable for testing an ASR: Arabic (arb), Cantonese
(yue), Dutch (nld), Hungarian (hun), Mandarin (cmn), Swabhili
(swh) and Urdu (urd). It is desirable to test the ideas in this
paper with corpora larger than one hour per language, but
larger corpora involve problems orthogonal to the purposes of
this paper, e.g., the Babel corpora contain telephone speech,
and therefore contain far more acoustic background noise than
the podcast corpora used in this paper.

The podcasts contain utterances interspersed with segments
of music and English. A GMM-based language identification
system was developed in order to isolate regions that corre-
spond mostly to the target language, which were then split
into 5-second segments to enable easy labeling by the native
transcribers. Native transcribers were asked to omit any 5-
second clips that contained significant music, noise, English, or
speech from multiple speakers. Resulting transcripts covered
45 minutes of speech in Urdu and 1 hour of speech in the
remaining six languages. The orthographic transcripts for these
clips were then converted into phonemic transcripts using
language-specific dictionaries and G2P mappings. In order
to make it possible to transfer ASR from training languages
(which have native transcripts) to a test language (that has
no native transcripts), the phone set must be standardized
across all languages; for this purpose, the phone set was based
on the international phonetic alphabet (IPA; [21]). Similarly,
in order to transfer ASR from training languages to a test
language, the training transcriptions must be converted to
phonemes using a grapheme-to-phoneme transducer (G2P).
G2Ps were therefore assumed to be available in all training
languages, but not in the test language. Since these G2Ps
are only used for training and not test languages, five of
them (Arabic, Dutch, Hungarian, Cantonese and Mandarin)
were trained using lexical resources, and only two (Urdu and
Swahili) were constructed using the zero-resource knowledge-
based method described in Sec. IV-C. English words in
each transcript are identified and converted to phones with
an English G2P trained using CMUdict [28], then other
words are converted into phonetic transcripts using language-
dependent dictionaries and G2Ps. The Arabic dictionary is

Method nld cmn urd arb hun swh

Universal set 87.4 88.86 | 97.95 | 79.04 | 92.87 | 88.56

Target set 78.12 87.4 87.81 | 66.39 | 84.78 | 59.83

Phone bigram 70.43 | 70.88 | 64.67 | 65.29 | 6398 | 50.45
TABLE I

LABEL PHONE ERROR RATE (LPER) OF PROBABILISTIC TRANSCRIPTS
FOR UNIVERSAL PHONE SET, TARGET-LANGUAGE PHONE SET,
TEXT-BASED PHONE BIGRAM.

from the Qatari Arabic Corpus [11], the Dutch dictionary is
from CELEX v2 [1], the Hungarian dictionary was provided
by BUT [14], the Cantonese dictionary is from I’R, and
the Mandarin dictionary is from CALLHOME [6]. For each
language, we chose a random 40/10/10 minutes split into
training, development and evaluation sets.

Mismatched transcripts were collected from annotators on
Amazon Mechanical Turk. Each 5-sec speech segment was
further split into 4 non-overlapping segments to make the non-
native listening task easier. The crowdsourcing task was set
up as described in [25]; briefly, the segments were played
to annotators, who transcribed what they heard (typically in
the form of nonsense syllables) using English orthography.
Each segment was transcribed by 10 distinct annotators. More
than 2500 annotators participated in these tasks, with roughly
30% of them claiming to know only English (Spanish, French,
German, Japanese, Chinese were some of the other languages
they reported knowing).

The quality of a probabilistic transcript derived from mis-
matched crowdsourcing is significantly improved by using a
phone language model during the decoding process (p(¢) in
Eq. (2)). Phone language models for each target language were
computed from Wikipedia texts using the methods described
in Sec. IV-C. Label phone error rate (LPER) of the 1-best path
through the resulting PTs are shown in Table I, computed with
reference to a native transcript in each language. As shown,
the use of a phone language model, derived from Wikipedia
text, reduces LPER by about 10% absolute, in each language.

LPER of the 1-best path does not accurately reflect the
extent of information in the PTs that can be leveraged dur-
ing ASR adaptation. Consider, for example, the four Urdu
phones [p,p",b,b]. An attentive English-speaking transcriber
must choose between the two letters <p,b> in order to
represent any of these four phones. The misperception G2P
therefore maps the letters <p,b> into a distribution over the
phones [p,p",b,bf]. There is no reason to expect that the
maximizer of p(¢p|A) is correct, but there is good reason
to expect the correct answer to be a member of a short
N-best list (N < 4 phones/grapheme). A fuller picture is
therefore obtained by pruning the PT to a small number
of paths, then searching for the most correct path in the
pruned PT. One useful metric is entropy per segment, defined
as HY(®) = —L 2%21 > l0gs poe (u), e.g., a PT in
which every segment has two equally probable options would
measure H*(®) = 1. Fig. 7 shows the trend of LPER (for three
languages) obtained by pruning the PT at several different
levels of H*(®). LPER rates drop significantly across all
languages within 1 bit of entropy per phone, illustrating the
extent of information captured by the PTs.
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Fig. 7. LPER plotted against entropy rate estimates of phone sequences in
three different languages.

VI. EEG RECORDING AND ANALYSIS

To compute distinctive feature weights for the misperception
transducer shown in Egs. (4) and (5), cortical activity in re-
sponse to non-native phones was recorded by an EEG. Signals
were acquired using a BrainVision actiCHamp system with
64 channels and 1000 Hz sampling frequency. All procedures
were approved by the University of Washington Institutional
Review Board.

Auditory stimuli were consonant-vowel (CV) syllables rep-
resenting consonants of three languages: English, Dutch and
Hindi. The inclusion of only two non-English languages was
dictated by the relatively high number of repetitions needed
for good signal-to-noise ratio from averaged EEG recordings.
The choice of Dutch and Hindi was made based on language
phonological similarity, defined as the number of many-to-
one mappings (Njs20) between the English phoneme inven-
tory and the non-English phoneme inventory. Many-to-one
mappings are expected to pose a problem for the non-native
transcription task being modeled by the misperception trans-
ducer, so to test the contribution of EEG we chose languages
that differed greatly in this property. Using distinctive feature
representations of the phonemes in each inventory from the
PHOIBLE database [34], a many-to-one mapping was defined
by finding, for each non-English phoneme ¢, the English
phoneme *(¢) to which it is most similar. The number of
many-to-one collisions is then defined as

> [ (¢1) =" (g2)]

P17 P2

1
Nir2o = o] (22)

v

where |Qy| is the size of the English phoneme inventory,
and [-] is the unit indicator function. The frequency of many-
to-one mappings is listed in Table II for several languages.
Hindi was chosen for having a large number of many-to-one
mappings with English, while Dutch has relatively few. Note
that, although Hindi podcasts were not included in the training
data described in Section V, colloquial spoken Hindi and Urdu
are extremely similar phonologically [26], and considering that
the auditory stimuli for the EEG portion of this experiment
are simple CV syllables, it is reasonable to consider Hindi
and Urdu as equivalent for the purpose of computing feature
weights for the misperception transducer.

To construct the auditory stimuli, two vowels and several
consonants were selected from the phoneme inventory of each
language (18 consonants for English, 17 for Dutch, and 19
for Hindi). Consonants were chosen to emphasize differences
in the many-to-one relationships between English-Dutch and

Language  Njso0 Language  Njsreo | Language  Njso0

spa 0.862 | yue 1.280 | cmn 1.531

por 1.152 | jpn 1.333 | amh 1.844

nld 1.182 | vie 1.393 | hun 1.857

deu 1.258 | kor 1.429 | hin 2.848
TABLE 11

FREQUENCY OF MANY-TO-ONE MAPPINGS Njs20 BETWEEN OTHER
LANGUAGES’ PHONEME INVENTORIES AND THE INVENTORY OF ENGLISH.
LANGUAGES ARE REPRESENTED BY THEIR ISO 639-3 CODES.

L1l

Consonants used in the EEG experiment ‘

engl|| p t k tf|v|0|z|m| n
nld || p t Y v Z|m
hin[[p bl d ¢ dfk g [v] [ [m[afn
eng|| p" th KoM fleff]1 ]
nid || p" th Ko | (S| R]j
hin bﬁ lh th dﬁ qﬁ kh gﬁ

TABLE III

CONSONANT PHONES USED IN THE EEG EXPERIMENT REPRESENTED
USING IPA. VERTICAL ALIGNMENT OF CELLS SUGGESTS MANY-TO-ONE
MAPPINGS EXPECTED BASED ON DISTINCTIVE FEATURE VALUES.

English-Hindi, while maintaining roughly equal numbers of
consonants for each language. The consonants chosen for each
language are given in Table III; the vowels chosen were the
same for all three languages (/a/ and /e/).

Two native speakers of each language (one male and one
female) were recorded (44100 Hz sampling frequency, 16
bit depth) speaking multiple repetitions of the set of CV
syllables for their language. Three tokens of each unique
syllable were excised from the raw recordings, downsampled
to 24414 Hz (for compatibility with the presentation hardware,
Tucker Davis Technologies RP2.1), and RMS normalized.
Recorded syllables had an average duration of 400 ms, and
were presented via headphones to one monolingual American
English listener. The stimuli were presented in 9 blocks of
15 minutes per block, for a total of 135 minutes. Syllables
were presented in random order with an inter-stimulus interval
of 350 ms. Twenty-one repetitions of each syllable were
presented, for a grand total of 9072 syllable presentations.

EEG recordings were divided into 500 ms epochs. The
epoched data were coded with a subset of distinctive features
that minimally defined the phoneme contrasts of the English
consonants. Where more than one choice of features was
sufficient to define those contrasts, preference was given to
features that reflect differences in temporal as opposed to
spectral features of the consonants, due to the high fidelity of
EEG at reflecting temporal envelope properties of speech [9].
The final set of features chosen was: continuant, sonorant,
delayed release, voicing, aspiration, labial, coronal, and dorsal.

Epoched and feature-coded EEG data for the English sylla-
bles only were used to train a support vector machine classifier
for each distinctive feature. The classifiers were then used
(without re-training) to classify the EEG responses to the
Dutch and Hindi syllables. Fig. 8 shows equal error rates of
these classifiers when applied to the three languages. EER of
the classifier when applied to English phones is comparable
to those reported in [9], the only prior work to attempt a
recognition of speech phonemes from EEG of the listener.
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Fig. 8. Classifiers were trained to observe EEG signals, and to classify the
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Fig. 9. Phone confusion probabilities between English and Dutch phones
using models in which the negative log probability is proportional to un-
weighted or weighted distance between the corresponding distinctive feature
vectors. Left: unweighted. Right: feature weights equal negative log confusion
probability of EEG signal classifiers.

Eq. (4) defines a log-linear model of p(1)|¢), the probability
that a non-English phoneme ¢ will be perceived as English
phoneme . Denote by py(1|¢) the model of Eq. (4) with
uniform binary weights for all distinctive features. Denote by
pEEc(¥|@) the same model, but with weights wy derived
from EEG measurements (Eq. (5)). Fig. 9 shows these two
confusion matrices: py(¥|¢) on the left, prrc(¥|¢p) on
the right. The entropy of the binary weighting, py(¥|®), is
too low: when a Dutch phoneme ¢ has a nearest-neighbor
1*(¢) in English, then few other phonemes are considered
to be possible confusions. prprc(¥|¢) has a very different
problem: since distinctive feature classifiers have been trained
for only a small set of distinctive features, there are large
groups of phonemes whose confusion probabilities can not
be distinguished (giving the figure its block-matrix structure).
The faults of both models can be ameliorated by averaging
them in some way, e.g., by computing the linear interpolation
pr($l¢) = (1= a)pu (P|¢) + apprc(|¢) for some constant
0<a<l.

In order to evaluate the effectiveness of the EEG-induced
misperception transducer we looked at the LPER of mis-
matched crowdsourcing for Dutch when performed using 1) a
multilingual misperception model p(A|¢) (the machine trans-
lation model described in Sec. III-B), 2) feature-based misper-
ception transducer computed using binary weighting, py (¢|¢),
or 3) EEG-induced transducer combined with the feature-
based transducer, p7(1|¢). Both method (2) and method (3)
required the use of a G2P in order to compute p(A|)):
the Dutch G2P was estimated using the CELEX database,

while the Hindi G2P was estimated using the zero-resource
knowledge-based method described in Sec. IV-C. The constant
a = 0.29 was chosen as the average of the values selected
by all folds in a leave-one-out cross-validation. LPER of the
multilingual model was 70.43% (as shown in Table I), of
the feature-based model, 69.44%, and of the EEG-interpolated
model, 68.61%.

VII. AUTOMATIC SPEECH RECOGNITION

ASR was trained in four target languages in topline,
baseline, and experimental conditions. Training methods are
detailed in Sec. VII-A. Results are desribed in Sec. VII-B.

A. ASR Methods

Automatic speech recognition (ASR) systems were
trained in four languages (hun=Hungarian, cmn=Mandarin,
swa=Swahili, yue=Cantonese), using three different types of
transcription. First, a topline MONOLINGUAL system was
trained in each language using speech transcribed by a native
speaker of that language. Second, a baseline CL (cross-
lingual) system was trained using data from other languages,
and tested in the target language. Third, the experimental
PT-ADAPT system was created by adapting the cross-lingual
system to probabilistic transcriptions in the target language.
The MONOLINGAL topline system is trained using native
transcripts, and converted to the phone set of the test language
using the G2Ps described in Sec. V. These resoures were not
available to the CL or PT-ADAPT systems, which were not
permitted to use any natively transcribed training data in the
test language.

Audio data, native transcripts, and probabilistic transcripts
are as described in Sec. V. The MONOLINGUAL topline
system was trained using 40 minutes of training data, then
stream weights and insertion penalties were calculated using
10 minutes of development test data. Monolingual systems
were trained using a maximum likelihood (ML) criterion using
the 40 minute in-language training set: GMM parameters were
initialized using a monophone system trained on the same
40 minutes, NN parameters were initialized using a restricted
Boltzmann machine trained on five hours of unlabeled audio in
the same language. The CL baseline systems were each trained
using 40 minutes of training data in languages other than the
test language. CL systems were trained using ML, maximum
mutual information (MMI), minimum phone error rate (MPE),
and state-based minimum Bayes risk (sSMBR, [13]) training
criteria. The PT-ADAPT system was initialized using the CL
system (ML training), then adapted to the target language us-
ing PTs based on mismatched crowdsourcing (these transcripts
are described in detail in Sec. V). Probabilistic transcripts
based on EEG were not used to adapt ASR, because it is not
yet possible to use EEG to generate probabilistic transcripts
on a scale sufficient for ASR adaptation.

All systems were trained using the Kaldi [36] toolkit.
Acoustic features consisted of MFCC (13 features), stacked
+3 frames (13 x 7 = 91 features), reduced to 40 dimensions
using LDA followed by fMLLR. GMM-HMM systems di-
rectly observed this 40-dimensional vector; NN-HMM systems
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computed fMLLR+d+dd stacked £5 frames (40 x 3 x 11 =
1320 features/frame). All systems used tied triphone acoustic
models, based on a decision tree with 1200 leaves. Each
GMM-HMM used a library of 8000 Gaussians, shared among
the 1200 leaves. Each NN-HMM used six hidden layers with
logistic nonlinearities, and with 1024 nodes per hidden layer,
followed by a softmax output layer with 1200 nodes.

The PT-ADAPT system was adapted using MAP adaptation
(Sec. IV-D) co mputed over weighted finite state transducers
in Kaldi [36]. In order to efficiently carry out the required
operations on the cascade H o C' o PT o (G, the cascade for
PT includes an additional wFST restricting the number of
consecutive deletions of phones and insertions of letters (to a
maximum of 3). MAP adaptation for the acoustic model was
carried out for a number of iterations (12 for yue & cmn, 14
for hun & swh, with a re-alignment stage in iteration 10).

B. ASR Results

Tables IV and V present phone error rates (PERs) for four
different languages. The first column shows the phone error
rate (PER) of monolingual topline systems: evaluation test
results are followed by development test results in parentheses.
The column titled CL lists cross-lingual baseline error rates.
The column labeled ST lists the PERs of self-trained ASR
systems. The column headed PT-ADAPT in Table IV lists
PERs from CL ASR systems that have been adapted to PTs
derived from mismatched crowdsourcing. Phone error rates
are reported instead of word error rates because, in order to
compute a word error rate, it is necessary to have either native
transcriptions in the target language (thereby permitting the
training of a grapheme-based recognizer) or a pronunciation
lexicon in the target language. These resources are used by
the monolingual topline, but not by any of the baseline or
experimental systems.

The monolingual ASR is trained using only 40 minutes
of audio and transcript data per language, but performs rea-
sonably well (31.58% average PER, NN-HMM). The cross-
lingual ASRs, however, perform poorly. Using a text-based
phone bigram (denoted TEXT) gives significant improvement
over a cross-language phone bigram (denoted CL), but signif-
icantly underperforms a system that has seen the test language
during training. This is true even if the system has seen closely
related languages during training: the Cantonese cross-lingual
system has seen Mandarin during training, and the Mandarin
system has seen Cantonese during training, but neither system
is able to generalize well from its six training languages
to its test language. Three different types of discriminative
training were tested. MMI performs consistently worse than
MPE and sMBR, and is therefore not listed in Table IV.
Averaged across all languages and systems shown in Table IV,
the development-test PERs of ML, MPE, and sMBR training
are 73.43%, 73.04%, and 72.98% respectively; differences are
not statistically significant, therefore only the ML system was
tested on evaluation test data.

Evaluation test PER of each experimental system (columns
ST and PT-ADAPT, 20 systems) was compared to evaluation
test PER of the corresponding CL system (ML training, TEXT

LM) using the MAPSSWE test of the sc_stats tool [35].
Each neural net PT-ADAPT system was also compared to the
corresponding ST system (4 comparisons). There are therefore
24 independent statistical comparisons in Tables IV and V; the
study-corrected significance level is 0.05/24 = 0.002.

Self-training was only performed using NN systems; no
self-training of GMMSs was performed, because previous stud-
ies [17] reported it to be less effective. The Swahili ST system
was judged significantly better than CL at a level of p = 0.002
(denoted *); the Cantonese, Mandarin and Hungarian ST
systems were not significantly better than CL at this level.

The relative reductions in PER of the PT-ADAPT system
compared to both CL and ST baselines were all statistically
significant at p < 0.001 (denoted **). This suggests that
adaptation with PTs is providing more information than that
obtained by model self-training alone.

PT-adapt GMM-HMM systems were trained using four
different training criteria: ML, MMI, MPE and sMBR. MMI
training consistently underperformed MPE and sMBR, and
is therefore not shown. MPE training of PT-ADAPT systems
improves their PER by a little more than 1% on average,
comparable to the improvement provided to CL baseline
systems.

PER improvements for Swahili are larger than for the
other three languages. We conjecture this may be due to the
relatively good mapping between Swabhili’s phone inventory
and that of English. For example: all Swahili vowel qualities
are also found in English, and the Swahili phonemes that
would be unfamiliar to an English speaker (prenasalized stops,
palatal consonants) have representations in English orthogra-
phy that are fairly natural (“mb”, “nd”, etc. for prenasalized
stops; “tya”, “chya”, “nya”, etc. for palatals). In contrast:
Mandarin, Cantonese, and Hungarian each have at least two
vowel qualities not found in English; Mandarin and Cantonese
have many diphthongs not found in English; and some of
the consonant phonemes (e.g., Mandarin retroflexes) do not
have representations in English orthography that are obvious
or straightforward.

VIII. DISCUSSION

Models of human neural processing systems have often been
used to inspire improvements in machine-learning systems
(for a catalog of such approaches and a warning, see [4]).
These systems are often called neuromorphic, because the
system is engineered to mimic the behavior of human neural
systems. In contrast to that approach, our incorporation of EEG
signals into ASR resonates with the Human Aided Computing
approach used in computer vision [41], [49]. Together with our
EEG work presented here, this class of approach represents
a less explored direction for design of machine learning sys-
tems, whereby recorded neural data (rather than neuro-inspired
models) are used as a source of prior information to improve
system performance. Therefore, our work here suggests that,
by thinking about the kinds of prior information required by
a machine learning system, engineers and neuroscientists can
work together to design specific neuroscience experiments that
leverage human abilities and provide information that can be
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AM Monolingual Cross-Lingual (CL) CL + PT adaptation (PT-ADAPT)
LM Transcript CL Text Text

Training ML ML MPE sMBR ML MPE sMBR ML MPE sMBR
yue 32.77 (34.61) | 79.64 (79.83) (79.49) (79.48) | 68.40 (68.35) (68.02) (66.94)|57.20%* (56.57) 56.33%* (55.70) 55.97** (55.51)
hun 39.58 (39.77) | 77.13 (77.85) (78.67) (78.89)|68.62 (66.90) (67.09) (67.41)|56.98** (57.26) 57.05** (56.95) 57.05** (57.18)
cmn 32.21 (26.92) | 83.28 (82.12) (81.60) (81.76) | 71.30 (68.66) (66.35) (66.02) | 58.21%* (57.85) 55.17** (54.49) 55.07** (54.94)
swh 35.33 (46.51) | 82.99 (81.86) (81.80) (82.32) | 63.04 (64.73) (63.48) (62.99) | 44.31%* (48.88) 42.80%* (46.77) 43.61** (46.55)

TABLE IV

PHONE ERROR RATE OF GMM-HMMS: EVALUATION TEST (DEVELOPMENT TEST). AM=ACOUSTIC MODEL, LM=LANGUAGE MODEL, ML=MAXIMUM
LIKELIHOOD, SMBR=STATE-BASED MINIMUM BAYES RiISK. MAPSSWE W/RESPECT TO CL: ** DENOTES p < 0.001.

AM Monolingual Cross-Lingual (CL) Self-training (ST) | CL + PT adaptation (PT-ADAPT)
LM Transcript CL Text Text Text
Training ML ML MPE sMBR ML MPE sMBR ML ML
yue 27.67 (28.88) | 78.62 (77.58) (77.86) (77.92)|66.59 (65.28) (65.76) (65.76) | 63.79ns (62.46) 53.64** (53.80)
hun 35.87 (36.58) | 75.98 (76.44) (77.56) (77.61)|66.43 (66.58) (65.52) (65.67)| 63.53ns (63.50) 56.70%* (58.45)
cmn 27.80 (23.96) | 81.86 (80.47) (81.02) (80.93) | 65.77 (64.80) (63.90) (63.82)| 64.90ns (64.00) 54.07** (53.13)
swh 3498 (41.47) | 82.30 (81.18) (81.30) (81.24) | 65.30 (65.04) (63.78) (63.99)| 58.76* (59.81) 44.73%* (48.60)

TABLE V
PER OF NN-HMMS: EVALUATION TEST (DEVELOPMENT TEST). ML=MAXIMUM LIKELIHOOD, MPE=MINIMUM PHONE ERROR, SMBR=STATE-LEVEL
MINIMUM BAYES RISK. MAPSSWE W/RESPECT TO CL AM W/ TEXT-BASED LM: * MEANS p < 0.002, NS=NOT SIGNIFICANT. ** DENOTES A SCORE
LOWER THAN BOTH CL AND ST AT p < 0.001.

directly integrated into the system to solve an engineering
problem.

NN-HMM outperforms the GMM-HMM in all baseline
conditions, but not always when adapted using PTs. Table V
shows that PT adaptation improves the NN-HMM, but the
benefit to a NN-HMM is not as great as the benefit to a
GMM-HMM; for this reason, the accuracy of the PT-adapted
GMM-HMM catches up to that of the NN-HMM. Preliminary
analysis suggests that the NN is more adversely affected than
the GMM by label noise in the PTs. A NN is trained to match
the senone posterior probabilities 7 (s¢|z¢, #*, ) computed by
a first-pass GMM-HMM. Many papers have demonstrated
that entropy in the senone posteriors is detrimental to NN
training. In PT adaptation, however, entropy is unavoidable.
Forced alignment is better than using soft alignment, but is
not sufficient to make PT adaptation of the NN-HMM always
better than that of the GMM-HMM. Table I showed that PTs
computed using a text-based phone bigram language model
only achieve LPER in the range 50.45-70.88%, depending
on the language. These high error rates are, perhaps, in-
comprehensible to most speech technology experts, who are
accustomed to think of human transcriptions as having 0.0%
error rate, but there is good reason for this: the transcribers
don’t speak the target language, so they find some of its phone
pairs to be perceptually indistinguishable. Future work will
seek methods that can improve the robustness of NN training
in the face of label noise.

The primary conclusion of this article is economic. In most
of the languages of the world, it is impossible to recruit native
transcribers on any verified on-line labor market (e.g., crowd-
sourcing). Without on-line verification, native transcriptions
can only be acquired by in-person negotiation; in practice,
this has meant that native transcriptions are acquired only
for languages targeted by large government programs. Native
transcription (NT) permits one to train an ASR with PER of
31.58% (average, first column of Table V). Self-training (ST),
by contrast, costs very little, and benefits little: average PER is

62.75% (Table V). Probabilistic transcription (PT) is a point
intermediate between NT and ST: average PER is 52.29%,
cost is typically $500 per ten transcribers per hour of audio.
PT is therefore a method within the budget of an individual
researcher. We expect that an individual researcher with access
to a native population will wish to combine NT (as many hours
as she can convince her informants to provide) with PT (on
perhaps a much larger scale); future research will study the
best strategy for combining these sources of information if
both are available.

IX. CONCLUSIONS

When a language lacks transcribed speech, other types of
information about the speech signal may be used to train
ASR. This paper proposes compiling the available information
into a probabilistic transcript: a pmf over possible phone
transcripts of each waveform. Three sources of information are
discussed: self-training, mismatched crowdsourcing, and EEG
distribution coding. Auxiliary information from EEG is used,
together with text-based phone language models, to improve
the decoding of transcripts from mismatched crowdsourcing.
Self-trained ASR outperforms cross-lingual ASR in one of the
four test languages (Swabhili). ASR adapted using mismatched
crowdsourcing outperforms both cross-lingual ASR and self-
training in all four of the test languages.
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