

A better MOSS alternative?

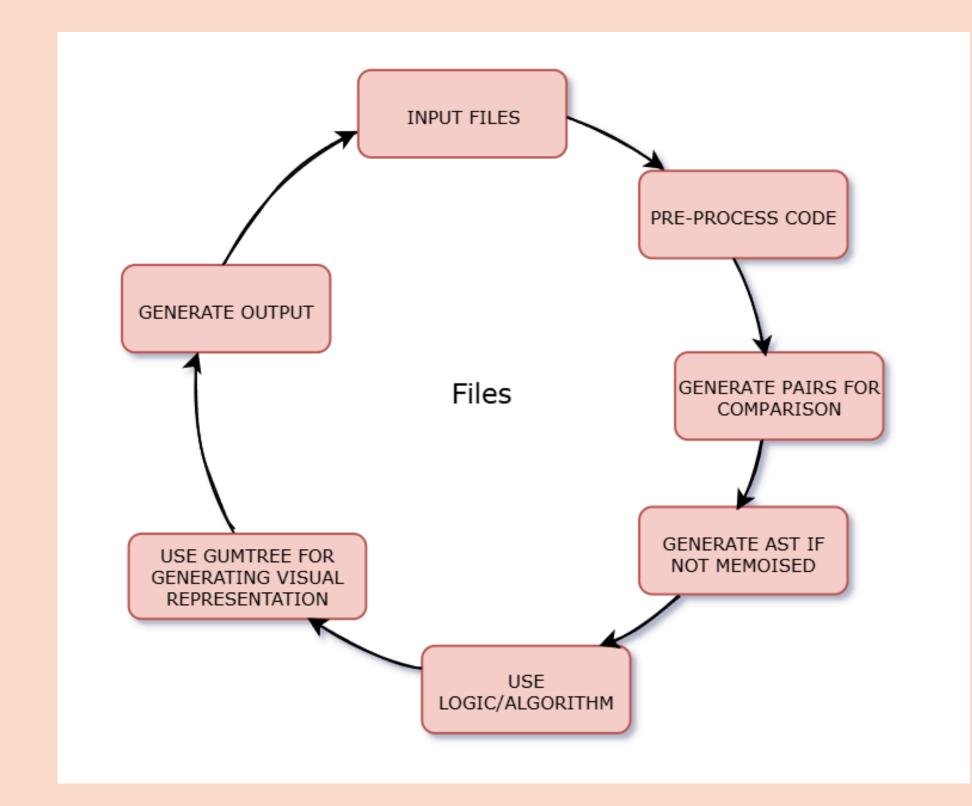
Ruchika Shirsath, Dr. Uday Khedker Department of Computer Science and Engineering, IIT Bombay

What is MOSS?

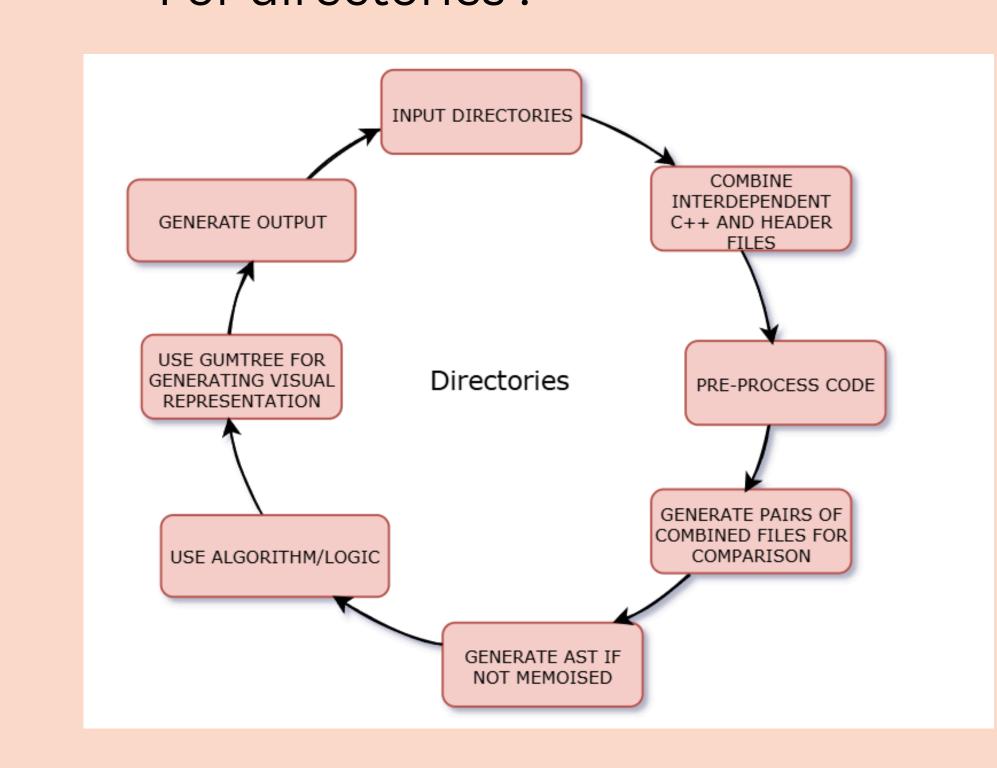
 MOSS (Measure of Software Similarity) is a widely adopted plagiarism detection tool in academia, primarily used to identify similarities in source code

While effective, its reliance on surface-level analysis leaves room for circumvention

Why is MOSS being discussed?


- Easy to Evade: Its reliance on n-gram analysis (in either string or tokenized form) makes it susceptible to simple obfuscation techniques.
- Limited Scope: It does not really account for the entirety of the source code and ignores deeper structural and semantic aspects.
- Need for Improvement: Loopholes exist, highlighting the need for more robust detection methods.

What does my tool do?


- AST-Based Analysis: The tool uses Abstract Syntax Trees (ASTs) of source codes for analysis at a structural level.
- Enhanced Similarity Detection: ASTs allow for a more comprehensive examination beyond surface-level comparisons.
- Syntax-Aware Differencing: Utilizes Gumtree, a syntax-aware diff tool, to visualize code differences effectively, highlighting changes such as insertions, additions, and deletions based on syntax structure.

Tool pipeline

• For files:

For directories :

5. In what cases does my tool perform better than MOSS?

Case	MOSS	SPDT
Copy case	93%	100%
Code Modification	91%	100%
Code Reordering	31%	84.62%
Redundant code addition	56%	100%
Changing control flow statements		87.5%
MOSSAD		75%

This comparison highlights cases where MOSS falls short in detection, while my tool demonstrates improved efficiency

Example

Code Reordering

Before reordering 1 #include <iostream> 3 int multiply(int a, int b) { return a * b; 7 void printMessage() { std::cout << "Hello, ";

add(int x, int y) { return x + y;13 } 15 void printResult(int result) { std::cout << "the result is: " << result << std::endl;</pre> 17 } 18 19 int main() int num1 = 5;int num2 = 3;printMessage(); int product = multiply(num1, num2); int sum = add(num1, num2); printResult(product + sum); 27 28

After Reordering

return 0;

29 }

```
1 #include <iostream>
 3 void printResult(int result) {
       std::cout << "the result is: " << result << std::endl;
 7 void printMessage() {
      std::cout << "Hello, ";
 9 }
11 int multiply(int a, int b) {
       return a * b;
13 }
15 int add(int x, int y) {
       return x + y;
17 }
18
19 int main()
       int num1 = 5;
      int num2 = 3;
22
23
      printMessage();
      int product = multiply(num1, num2);
      int sum = add(num1, num2);
      printResult(product + sum);
28
      return 0;
29 }
```

Results

MOSS

Options -l cc -m 10

Moss Results Fri Jan 5 22:26:29 PST 2024

[How to Read the Results | Tips | FAQ | Contact | Submission Scripts

File 1	File 2	Lines Matched
a1.cpp (31%) a	2.cpp (31%)	8

Any errors encountered during this query are listed below.

SPDT

root@LAPTOP-CVV9FMJL:~/changes# spdt t5.cpp t6.cpp Checking files Processing t5.cpp Processing t6.cpp Waiting for response				
File 1	File 2	Percentage Similarity	Conclusion	
t5.cpp	t6.cpp	84.62%	Plagiarism found.	
Execution time: 1.1055538654327393 seconds. root@LAPTOP-CVV9FMJL:~/changes#				

MOSSAD

MOSS - Adversarial or MOSSAD is a tool meant for evading MOSS, it adds random variable declaration and initialization to tamper with the n-gram formation. MOSS fails with MOSSAD whereas my tool captures this to a good extent!