Water balance for POCRA

Update meeting 12/9/2011 CTARA, IITB

Project Objective

- Design of series of tools to help answer core questions of water availability assessment and water balance using both supply side analysis (SW, GW) as well as demand side analysis (*PoCRA MoU*)
- Output to feed into watershed development plans for the cluster
- To be validated in pilot watersheds

Components of water balance

- Other considerations:
 - Watershed as the unit of analysis
 - Village as the unit for planning
 - Different land-use patterns (spatial)
 - Seasonal balance (Kharif, Rabi)

Key Outputs

- Run-off at key locations
 - Indicates run-off available over time at key locations within a stream (e.g. at village crossings, stream joining, current structure locations etc.)
 - Inputs: Rainfall pattern, soil properties, LULC, slope
- Vulnerability maps (Kharif deficit)
 - Village level maps that indicate agricultural zones within village which are likely to be vulnerable due to poor soil type, soil thickness and slope
 - Inputs: Rainfall pattern, soil properties, LULC, slope, typical Kharif crops
- Zone level GW stock (Rabi balance)
 - Indicates groundwater stock availability in various agricultural zones based on given cropping pattern
 - Inputs: GW prospect maps...

V2

V1

Kharif Vulnerability and Mitigation

- Objective and use: To identify and indicate agricultural zones within a village that are prone to Kharif stress especially during dry spells
- Procedure:
 - Demand side: Estimating irrigation requirement (PET-AET) at a point
 - Inputs: Rainfall pattern, soil properties, LULC, slope, typical Kharif crops

Kharif Vulnerability and Mitigation

- Supply side procedure:
 - Estimating available run-off in nearby stream by aggregating the point model

- Matching Kharif protective irrigation demand to available run-off to generate vulnerability zones
- Considerations
 - Different rainfall and dry-spell scenarios
 - Cropping pattern: typical crops vs. actual cropping pattern

Kharif vulnerability and mitigation: Methodology

- Kharif protective irrigation requirement
 - Point-level daily water balance model taking daily rainfall, soil parameters and daily crop PET as input and point run-off, soil moisture, AET and point GW recharge as output
 - Run-off calculation using curve number, a simplified model that assumes soil as a single layer/ 2 layers
 - Generating PET-AET zone maps
- Scientific validity:
 - Validation of output against SWAT
 - Field level validation of model input and output in pilot clusters

Sample PET-AET maps: Bajar Wahegaon

Sample PET-AET maps: Gondala

Rainfall: 837 mm Kharif crop assumed: Soyabean

Run-off map

- Method:
 - Point level run-off calculation using SCS Curve number methodology
 - Inputs: Rainfall, LU type, soil type, slope
 - Run-off aggregation by demarking the catchment area for point of interest
 - Inputs: location of current interventions
- Model validation:
 - Validation of output against SWAT
 - Field level validation of key outputs in pilot clusters

GW Stocks and Rabi balance

- Objective and use: A simplified model to indicate the groundwater availability at the end of Kharif and during Rabi season for different agricultural zones in a village. This is useful to determine zone wise water balance for Rabi based on given cropping pattern
- Needs to consider ground water in-flow and outflow
- Inputs: In addition to inputs for Kharif balance, needs groundwater prospect maps, aquifer properties like specific yield.

GW Stocks and Rabi balance

- Methodology:
 - Point wise model (same as Kharif model) used to estimate point level GW recharge during monsoon months
 - Aggregation at zone level by creating zones of roughly similar GW behavior
 - Estimation of fraction of GW inflow and outflow and time-delay/ conductivity
- Model validation:
 - Validation of output against Modflow
 - Field level validation of key inputs and outputs in pilot clusters

Sample image: Gondala

Gondala Cluster Water Balance and LU Map

Sample maps: Bajar Wahegaon

Putting it together

GoM JYS "action" plan

 Mapping zones to recommended watershed activities

Next steps

- Technical development
 - Point-level water balance validation against SWAT (ongoing)
 - Aggregated run-off analysis (ongoing)
 - QGIS coding and representation (ongoing)
 - GW model development (under design)
- Template/format process development (to be designed)
 - Process : POCRA PMU/IT, CTARA, microplanning team
 - Data collection and validation formats
- Reporting and validation:
 - Preliminary report on model selection: 16th Sep
 - Field visit and model validation in Hingoli and Jalna pilot clusters : Sep 22-24
- Data needed
 - Year wise LULC
 - GW potential
 - Better DEM, contour
 - Stream map

Thank you!