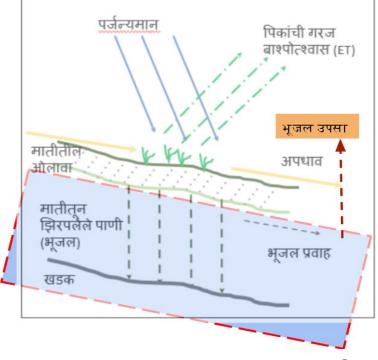
Meeting with GSDA on GW Recharge Plans

Team IIT Bombay 09/04/2020

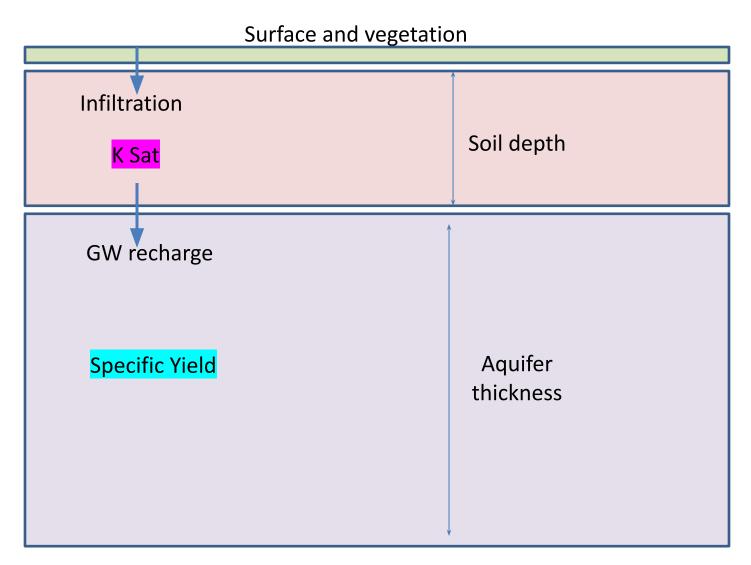
Overview

- Objective
 - To calibrate
 - GW recharge during monsoon using GSDA methodology (WTF method)
 - Rabi AET (using IITB model soil moisture and GW extraction data of GSDA)
- Brief about IITB water balance model and GSDA model
- GSDA GW Recharge Plan Analysis -
 - Interim report prepared
 - Letter sent to GSDA regarding doubts and issues in reports
 - Calibration on field ongoing

IITB Water Balance Model

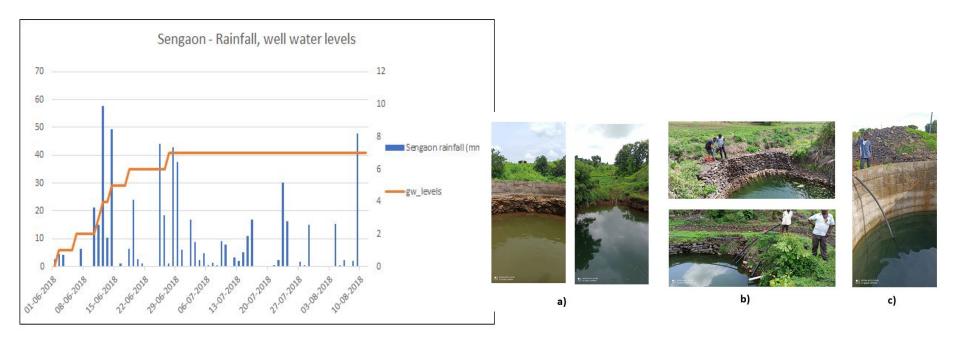

Soil water balance method

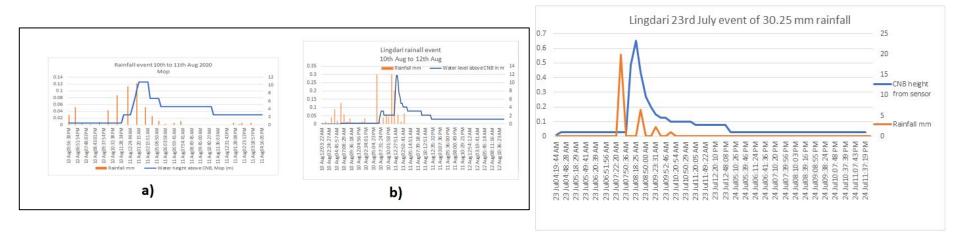
Inputs


- Weather data hourly rainfall, wind speed. Temperature, etc
- Terrain data DEM, slopes
- Soil data Texture, Depth (Field capacity, Wilting point, Ksat etc.)
- Land use and land cover data Cropping pattern, forest cover etc.

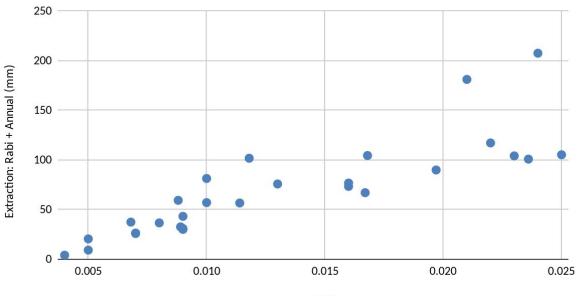
Outputs

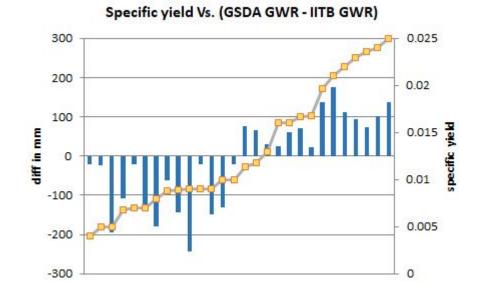
• Monsoon runoff, recharge, AET, soil moisture




Key attributes which decide the GW recharge

Proposed Plan for Improving IITB GW Estimates


- Incorporation of Base flows
 - Limiting groundwater recharge by aquifer capacity and accounting excess recharge as base flows
- Dependency on GSDA
 - Data Requirement
 - Specific yield values for all the aquifers in project area
 - Aquifer thickness for all the aquifers in project area



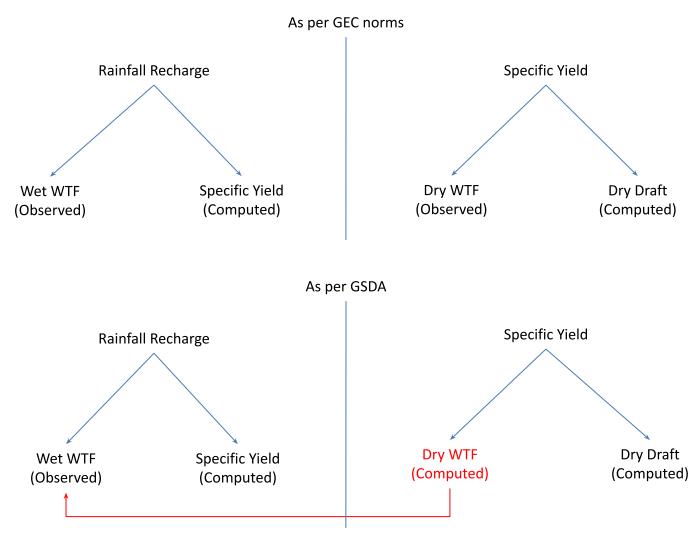
Observations on Specific Yield

Extraction: Rabi + Annual (mm) vs sy yield

sy yield

Issues in Specific Yield Calculations

- Missing water table level required for computing dry WTF
 - Assumed relationship of dry WTF with wet WTF
 - Dry WTF = (5/8) * Wet WTF


5/8	3/6	2/6	4/8	No factor is used as such	Total clusters where data is available
15	2	1	1	4	23

- Equation used by GSDA
 - Does not consider base flows and recharge from dry GW draft
- Area considered for calculation of specific yield

Cultivable Area	Total Area	Total clusters where data is available
15	8	23

- Dry draft used: Both Dug wells as well as bore wells for Jan-May
- Use of simple average instead of weighted average (Ignoring size of the villages)

Specific Yield

Other Issues

- Related to WTF
 - Inconsistency in Report and Data
 - Inconsistency in WTF within Report

WTF is consistent	WTF is NOT consistent	WTF could not be calculated	Data received
5	8	3	16

- Incorrect reference used
- Incorrect equation for Monsoon Recharge
- Observation on relationship of specific yield and extraction
- Observation on specific yield values: On lower side in some clusters
- Error in calculation of GW draft for agriculture use: Use of simple average
- Average unit draft per well: On higher side (8-10 TCM)
- Accounting of GW recharge once wells are full but rainfall continues

Groundwater Budget = GW Available - GW Draft

	IITB Water Budget	GSDA Groundwater Budget	पर्जन्यमान पिकांची गरज
Rainfall	Used in computation of groundwater recharge	Not used in any computation	बाश्पोत्श्वास (ET)
AET	Computed	Not considered	भूजल उपसा
Runoff	Computed	Not considered (Only in Recharge Plan and not in Groundwater Budget)	मातीतील ५ ५५ अपधाव ओलावा
Soil Moisture	Computed	Not considered	मातीतून झिरपलेले पाणी
Groundwater Recharge	Computed	Computed	(भूजल) भूजल प्रवाह
Groundwater Draft / Extraction	-	Computed	Gov
	_	Computed	

Surface Runoff

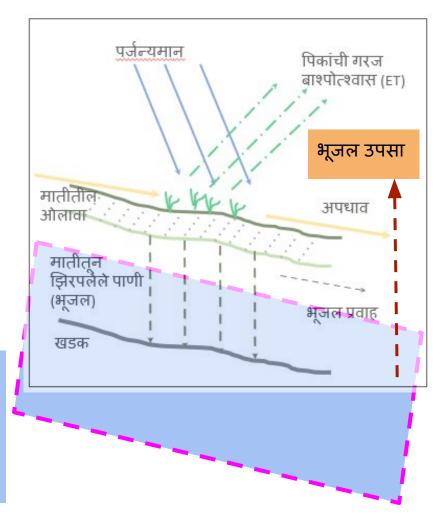
- Runoff Generated in Cluster = Cluster Area * 75 % dependable rainfall of average annual rainfall * Runoff coefficient for the area where, runoff coefficient is taken from Strange Table Method
- When runoff is computed using this method, it does not consider some of the important factors like
 - Rainfall of the concerned year
 - Rainfall distribution for the year
 - Rainfall intensity of the rainfall events

	RUN OFF ESTIMATION	
1	Total catchment area (Cluster area) in Ha	3132.00
2	Average annual rainfall in mm	715.74
3	75% dependable rainfall in mm	514.00
4	Average slope of area in %	2 to 4
5	Run off coefficient for the area in fraction	0.12
6	Run off yield from the area in TCM	1851.33
7	Utilizable Run off for harvesting in TCM = 65% of Row 6 (35% left as riparian rights of the downstream)	1203.36
8	Run off booked for existing WCS structures in TCM	145.00
9	Run off ultimately available for harvesting (7-8) in TCM	1058.36
10	No. of fillings assumed	2.00
11	Approximate water storage capacity that can additionaly be created (50% of 9) in TCM	529.18

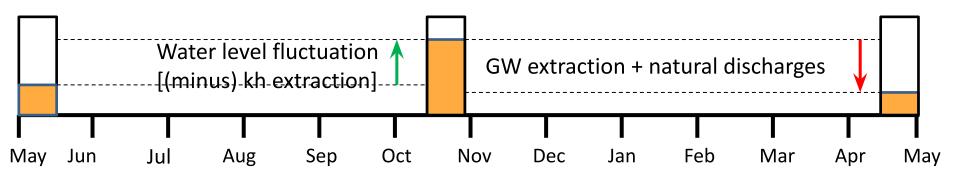
Groundwater Budget

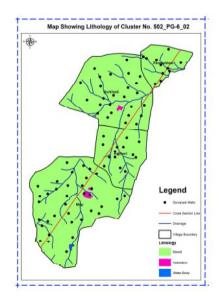

GW Budget = GW Available - GW Draft

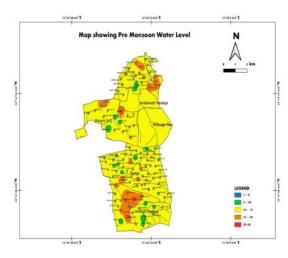
[surplus (+), deficit (-)]

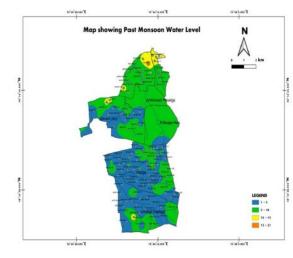

where,

GW Available = GW Recharge - Base flows,


GW Draft = Extraction for (Domestic + Agriculture) use




- Groundwater Recharge
- Groundwater Draft for Agriculture



Groundwater Recharge

Pre-monsoon water levels

Post-monsoon water levels

Map showing selected wells for sampling

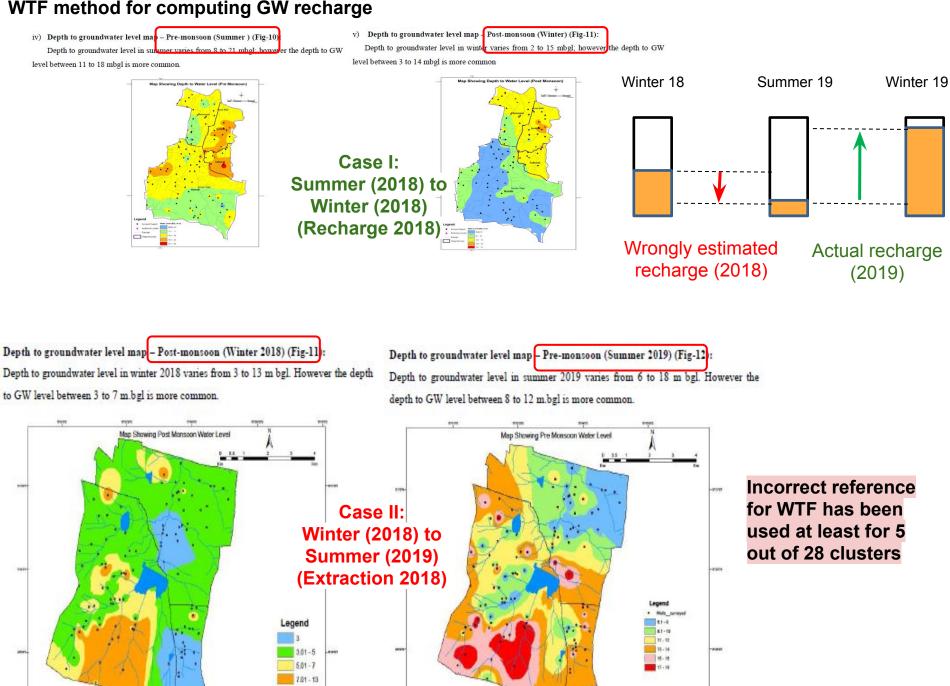
Groundwater extraction - Well Census Method

Total GW draft = unit draft per well (ham) x number of wells in the watershed

unit draft per well (ham) = discharge per hour in cum/hr x pumping hours per day x total pump operation days

- This is computed season-wise as extraction pattern changes as per the season
- The data for discharge, pumping hours per day and total operational hours to calculate unit draft per well is collected by GSDA (Hydrogeological Survey)
- Number of wells in watershed is taken from the secondary data (as per revenue record)

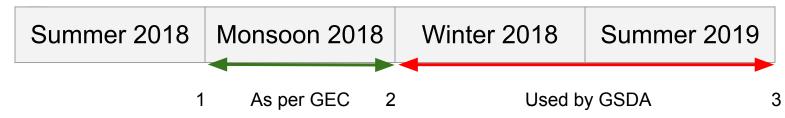
Groundwater extraction - Cropping Pattern Method


Total GW draft = Σ [extraction per ha for (crop i, irrigation method j) x area under crop i, method j]

- This is computed for all seasons kharif, rabi and summer
- It requires -
 - Farmer level data through questionnaires for few selected farmers
 - Cropping pattern of farmer, irrigation method, number of irrigations
 - Amount of water per irrigation = assumed 0.067 ham for flood
 - Aggregate cropping pattern for the cluster
- Extrapolation to whole village
 - Method used to extrapolate farmer level irrigation data to cluster is not explained
 - Different cases of number of irrigations provided are not fully considered
 - Only two cases considered viz. No irrigation and Required (Desired) irrigation

Data and survey formats used by GSDA

Water Level							
Parameters	On the date of Survey				wiour (Rep-		
			June-Sept	Oct-Dec	Jan-Mar	Apc-May	
Depth to GWL(DWL) m.bgl	8.5			~			
Stattic GWL(SWL) m.bgl	8.5		8.4	3.5	14.40	2.2.60	
Pumped GWL(PWE) m.bgl	10.7		-	12-40	20.10	26.20	
Drawdown (DD) m.			-				
Pumping hours per day	E 1			8	8	6	
Quantity of water pumped per day in Cum							
Volume of water pumped from well storage in Cum							
Rate of inflow into the well during pumping in Cum/hr							
Time required to recupe upto SWL in hours	1-14	2		6-8	10-12-	12-14	
Total Operating days in season (approx.)							
Total GW withdrawl from well during day& season in Ham							
Whether BW water is poured in if yes mention months and perio						40	
Dug well	Section				Other con		
Lithology		De	oth in mbgl		nflow in DW	that?	
YEND SOIL (ANUVIAL)	V	10.5		Direction		From	
thanking +		10		No.of Horizontal Bore holes in DW		20	
Pollules + -		-14	.40	Approx. Ie	ngth of HB	10 -4	
Sand 4 TENDA Soil		-19	200	Aquifer th	ickness		
MONUM		1000	1.65				
T 24V			1.10			- E	
MB						Sa	
		100	. fr				


		Farm	Wet (DV	V/BW/TW)	and Fam	वैक्षण माहिती n pond Inve	ntory				
	FARMINVENTORY										
	Date & Time of surv	2 6	11/201	2	Nad	ne of Geolog	111 14	F Fai	thate.		
	Grid No.		2.86		Kint		1000	18			
	Village Name	3	istral	3	Cen	nus No.	1	127027			
			31-2		Gra	m Panyhayai	ke	mali			
	Tabaka	33	mukto	únasa	Y Dist			algas			
	Toposheet No.		ssel	1	Qua		¥	13			
	Owner's Name Area of Gat No 1214	P	ladhut	far T	ambo	K P-Car	e				
			1-51			ivable areas	Hax	1.8			
3	Area type- (Comma					Mon - Co	anman				
	Whether the land go							Ho			
	Whether water is lift of yes method outs							HO			
	If yes mettion name and distance of source 120 Cropping and Irrigation Details										
	Crops		Ceopped	Irrigated	Source		No.of.	Days required	Gop berween		
		Area-	Area-	Area-	Imigation	higstion	applied	for each	1WO		
		9500	Your	Yew. 2018-191	(DR)BW:			watering	(in dress)		
		(11a)	(Ha)		Life	Sprinklar)					
	Khariff Crops (Ju	mr to Oct	oberi chi	TOOL Name 1	if crops con	sharedly if the	re is intere	rop)Ex Con	on + Tur , mo		
	Cotton + The		1.2	1-2	Dw	Drip.	4	2	15-18		
	Jower	0:30	-	-	DW	Flood	2		15-20		
17	Onion	0 30	031	0.31	DW	Flood	6		15-18		
	maize.	0.31	0.30	0.30	DW	Flood	3.		15-20		
									-		
	Rabbi Crops (Mit					Lauren	100				
	Wheat		0.61	0.61	DW	Flood	6	1	12-15		
	Groundrut	0.10	-	-	DW	Flood	4	1	16-18		
		1		-			-	-			
	POCRA SLEWY	No. California	and Proto	icol:				Page	21/30		
					14	-					
		-			(G					

ti allara

WTF method for computing GW recharge

GW Recharge Computation for 2018-2019 Using Post-monsoon to Pre-monsoon WTF

- Incorrect reference implies errors in computation of GW Recharge
- Only case when even incorrect WTF can have correct result is case II explained below

		Case I	Case II	Case III
Rechar	ge for 2018-2019 using	(Extraction	(Extraction and	(Extraction
	WTF		Recharge are	less than
		Recharge)	equal))	Recharge)
	GW level Pre-monsoon 2018			
1	in mgl	8	9	10
	(@ end of summer 2018)			
	GW level Post-monsoon			
2	2018 in mgl	3	3	3
	(@ start of winter of 2018)			
	GW level Pre-monsoon 2019			
3	in mgl	9	9	9
	(@ end of summer 2019)			
	WTF which should have			
4 = (1-2)	been used as per GEC	5	6	7
	method			

GW Recharge in Monsoon (For all 28 Clusters)

As per GEC 2015, groundwater recharge during monsoon season is given as,

Total Groundwater recharge during monsoon

= (Rise in water level in monsoon * Specific yield * Area) + Gross groundwater draft

=1+(4-3).....(from GEC GW Estimation Table)

Whereas GSDA has computed the same using following equation,

Total Groundwater recharge during monsoon

- = (Water table fluctuation * Specific yield * Area)
- + Recharge from WCS
- + Gross groundwater draft
- + Recharge from surface water irrigation
- = 1+2+(4-3)+5.....(from GSDA GW Estimation Table)

WTF includes recharge due to WCS and surface water irrigation

	Groundwater Estimation						
Mo	onsoon Recharge	TCM					
1	Rainfall recharge during monsoon (by WTF) in TCM =(area × wtf × sy) (4605*7*0.013)	3254.16					
2	2 Recharge from WCS during monsoon in Ham						
3 ati	3. Recharge from groundwater irrigation during monsoon in TCM (considered 10 %						
4	Groundwater Draft during monsoon in TCM	829.00					
5	Recharge from Surface water irrigation during monsoon in TCM	0					
6	Total groundwater recharge during monsoon in TCM =(1+2+(4-3)+5)	4047.26					

Inconsistency in WTF Used

- WTF reported in section 4. F. vi of the recharge plan
- WTF used while calculating GW Recharge during Monsoon
- vi) Annual groundwater fluctuation map (2018-19) (Fig-13):

Annual GW level fluctuates between 3 to 11 m. But major part of the area shows the GW fluctuations between 3 to 9 m. Thus average WTF for the cluster is considered as 6 m.

Rainfall recharge during monsoon (by WTF) in TCM =(area × wtf × sy) (4605*7*0.013)

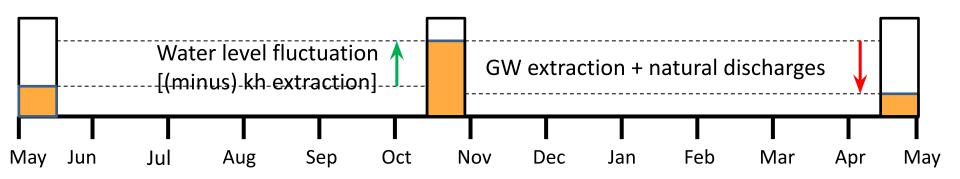
• WTF calculated using data (as shared by GSDA) for 16 reports

No. of cluster where data is received	No. of clusters where WTF could not be calculated	No. of clusters where WTF used for calculation is consistent with WTF calculated from raw data	No. of clusters where WTF used for calculation is NOT consistent with WTF calculated from raw data
16	3	5	8

No explanation or details are provided in the recharge plan on if any specific method is used while considering WTF for overall cluster

Out of 8 clusters where WTF is not consistent, 2 clusters shows error of about 75 mm and other 2 of about 25 mm

Issues with the raw data shared (16 Clusters)


• Use of different data formats

- Inconsistency in data points collected
 - Pumping data is not available in 2 clusters and is provided only partly for 10 clusters
 - Data on cropping pattern is either missing or only partly provided in most of the clusters (available only for a cluster)
- Difficulties in using a standard method for analyzing data received
- What data is important for IITB for GW recharge calculation
 - Pre and Post monsoon water level (For WTF to be used)
 - Pump discharge, pumping hours, operational days in monsoon (for calculation of GW extraction in monsoon)

To compute groundwater recharge both of the above mentioned data points are essential

Specific Yield Calculated by GSDA

- No clarity on the data used for computation of the specific yield
- The method of computing specific yield using dry season method is very much sensitive to the groundwater extraction
 - Extraction data needs to be accurate to the maximum possible extent
- If GSDA has computed specific yield for all the studied clusters then they must have used
 - Water table levels at the start of Rabi (Post-monsoon) and at the start of next monsoon (Pre-monsoon) : This data is missing in raw data
 - Pumping data: Either is not consistent or missing in raw data

	Sanjarpu	Sanjirabad	Manjari	Malunja	Maholi	Hadiyabad		
Area cultiv	270	170	1700	500	820	270		3730
density	34.07	17.06	19.35	45.00	20.12	35.93		28.59
WTF	4.9	4.53	4.59	4.77	4.05	5.43		4.71
dry wtf	3.063	2.831	2.869	2.981	2.531	3.394		2.94
Dry Draft	24.88	10.89	152.63	28.31	32.58	11.84		261.1308
Dft DW	16.640	7.230	103.280	14.400	26.600	7.740		175.89
Sy	0.030	0.023	0.031	0.019	0.016	0.013	0.022	0.022
Sy DW	0.020	0.015	0.021	0.010	0.013	0.008	0.015	0.015
	0.025	0.019	0.026	0.014	0.014	0.011	0.018	
RF recharge	39.8144	17.4317	244.203	45.29	52.12	18.95	417.80928	

Sanjarpur	Sanjirabad	Manjari	Malunja	Maholi	Hadiyabad
270	170	1700	500	820	270
=92/2.7	=29/1.7	=329/17	=225/5	=165/8.2	=97/2.7
4.9	4.53	4.59	4.77	4.05	5.43
=D36*(5/8)	=F36*(5/8)	=H36*(5/8)	=J36*(5/8)	=L36*(5/8)	=N36*(5/8)
=SUM(D27:E28)	=SUM(F27:G28)	=SUM(H27:I28)	=SUM(J27:K28	=SUM(L27:M2	=SUM(N27:O2
=SUM(D27:D28)	=SUM(F27:F28)	=SUM(H27:H28)	=SUM(J27:J28)	=SUM(L27:L28	=SUM(N27:N2
=D38/(D34*D37)	=F38/(F34*F37)	=H38/(H34*H37)	=J38/(J34*J37)	=L38/(L34*L37	=N38/(N34*N3
=D39/(D34*D37)	=F39/(F34*F37)	=H39/(H34*H37)	=J39/(J34*J37)	=L39/(L34*L37	=N39/(N34*N3
=AVERAGE(D40,	=AVERAGE(F40,I	=AVERAGE(H40,	=AVERAGE(J4	=AVERAGE(L2	=AVERAGE(N-
=D34*D36*D40	=F34*F36*F40	=H34*H36*H40	=J34*J36*J40	=L34*L36*L40	=N34*N36*N4(
	270 =92/2.7 4.9 =D36*(5/8) =SUM(D27:E28) =SUM(D27:D28) =D38/(D34*D37) =D39/(D34*D37) =AVERAGE(D40,	270 170 =92/2.7 =29/1.7 4.9 4.53 =D36*(5/8) =F36*(5/8) =SUM(D27:E28) =SUM(F27:G28) =SUM(D27:D28) =SUM(F27:F28) =D38/(D34*D37) =F38/(F34*F37) =D39/(D34*D37) =F39/(F34*F37) =AVERAGE(D40, =AVERAGE(F40,I	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	270 170 1700 500 =92/2.7 =29/1.7 =329/17 =225/5 4.9 4.53 4.59 4.77 =D36*(5/8) =F36*(5/8) =H36*(5/8) =J36*(5/8) =SUM(D27:E28) =SUM(F27:G28) =SUM(H27:I28) =SUM(J27:K28) =SUM(D27:D28) =SUM(F27:F28) =SUM(H27:H28) =SUM(J27:J28) =D38/(D34*D37) =F38/(F34*F37) =H38/(H34*H37) =J38/(J34*J37) =D39/(D34*D37) =F39/(F34*F37) =H39/(H34*H37) =J39/(J34*J37) =AVERAGE(D40, =AVERAGE(F40,I =AVERAGE(H40, =AVERAGE(J4	270 170 1700 500 820 =92/2.7 =29/1.7 =329/17 =225/5 =165/8.2 4.9 4.53 4.59 4.77 4.05 =D36*(5/8) =F36*(5/8) =H36*(5/8) =J36*(5/8) =L36*(5/8) =SUM(D27:E28) =SUM(F27:G28) =SUM(H27:128) =SUM(J27:K28 =SUM(L27:M2) =SUM(D27:D28) =SUM(F27:F28) =SUM(H27:H28) =SUM(J27:J28) =SUM(L27:L28 =D38/(D34*D37) =F38/(F34*F37) =H38/(H34*H37) =J38/(J34*J37) =L38/(L34*L37 =D39/(D34*D37) =F39/(F34*F37) =H39/(H34*H37) =J39/(J34*J37) =L39/(L34*L37 =AVERAGE(D40, =AVERAGE(F40,J =AVERAGE(H40, =AVERAGE(J4 =AVERAGE(L4

Other Observations on Specific Yield

5.9 NORMS FOR ESTIMATION OF RECHARGE

5.9.1 Norms for specific yield

S.No	Formation	Recommended Value	Minimum Value	Maximum Value	
		(%)	(%)	(%)	
(a)	Alluvial areas				
	Sandy alluvium	16.0	12.0	20.0	
	Silty alluvium	10.0	8.0	12.0	
	Clayey alluvium	6.0	4.0	8.0	
(b)	Hard rock areas				
	Weathered granite, gneiss and schist with low clay content	3.0	2.0	4.0	
	Weathered granite, gneiss and schist with significant clay content	1.5	1.0	2.0	
	Weathered or vesicular, jointed basalt	2.0	1.0	3.0	
	Laterite	2.5	2.0	3.0	
	Sandstone	3.0	1.0	5.0	
	Quartzite	1.5	1.0	2.0	
	Limestone	2.0	1.0	3.0	
	Karstified limestone	8.0	5.0	15.0	
	Phyllites, Shales	1.5	1.0	2.0	
	Massive poorly fractured rock	0.3	0.2	0.5	

Other Issues / Observations

- Pumping hours data (and hence GW extraction) for April-May as mentioned in the report is not consistent with the raw data for some of the clusters (at least 6 out of 16)
- Number of wells/borewells considered for aggregation while calculating GW draft
 - As per revenue record
 - No clarity on number of operational wells considered while aggregating
- Average unit draft per well: On higher side in some clusters
 - Possibly because selected wells are in concentrated in stream proximity
- Error while using spreadsheet formulae (1-2 clusters)
 - Average calculated

		Saldara	
Well Type		DW	BW
Total no. of irrigation wells in the area	1	35	1
Total no. of wells in use		35	1
Total no. of wells surveyed		11	1
No of perennial wells (perennial pumping)		2	1
% of perennial wells (perennial pumping)	0	18	100
Average depth of wells in the area in m		9	45
Average pump discharge/well /per hour (cum/hr)		21	20
Average pumping hours a day	June-Sept	0	0
	Oct-Dec	5	6
	Jan-March	2	6
	April -May	4	3
Average pump operation days	June-Sept	0	0
	Oct-Dec	24	40
	Jan-March	17	30
	April - May	15	20
	Total	56	90
Average annual draft of a well (unit draft) in Ham	June-Sept	0	0
	Oct-Dec	0.24	0.48
	Jan-March	0.07	0.36
	April - May	=G1	7*G1
	Total	3*G9/10	
Total groundwater draft in the area in Ham	June-Sept	0	00
	Oct-Dec	8.57	0.48
	Jan-March	2.54	0.36
	April -May	4.41	0.12
	Total	15.52	0.96
	Total	16.48	
	TOTAL		

Wardha cluster - 504_WRWN-03_01

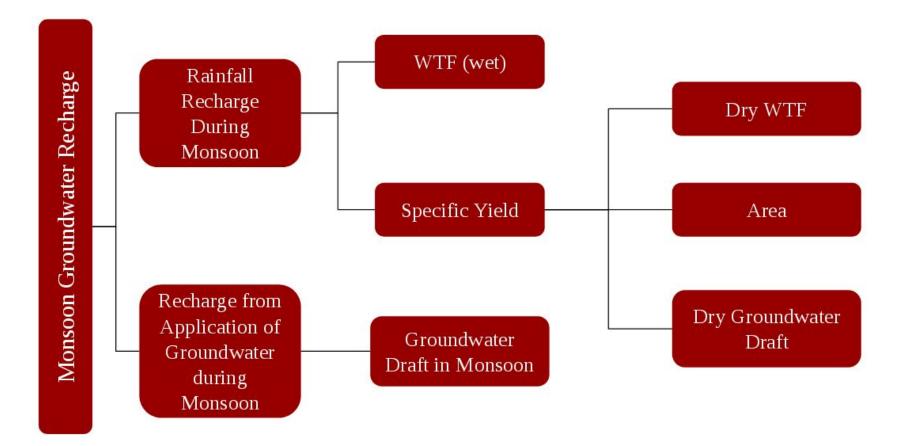
Average pump operation						
days						
June-Sept		23				0
Oct-Dec	15	25	35	40	20	23.8
Jan-March	13	20	20	25	10	17.3
April - May						15
Average annual draft of a well (unit draft) in Ham						
June-Sept	2010/02/02	834804.V	20022300.00	1-11-11-11-11-1	202000	0
Oct-Dec	0.117	0.18	0.315	0.36	0.216	0.2028
Jan-March	0.108	0.18	0.216	0.27	0.09	0.1642
April - May						0.025
Total groundwater draft in the area in Ham		1				
June-Sept						
Oct-Dec						
Jan-March						
April - May						

Error In Average Values

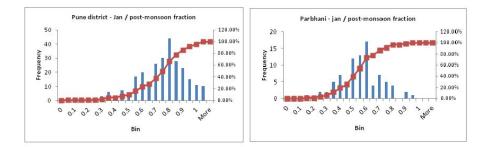
	W1	W2	W3	W4	W5	W6	W7	W8	W9	W10	Average
How it is entered in data		15									15
What it should have been so as to use formula in excel	0	15	0	0	0	0	0	0	0	0	1.5

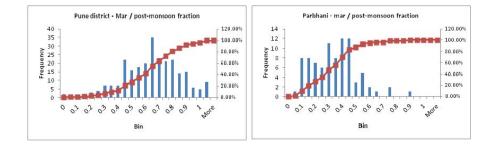
Data used for illustration is of Saldara village from Arvi cluster of Wardha						
Total no of wells in use in a village	35	35				
Avg pump discharge/well/hr	21	21				
Avg pumping hours	4	4				
Avg operational days in April-May	15	1.5				
Avg draft of a well in April-May	0.126	0.0126				
Avg annual draft of a well (assuming computation for other seasons is correct) in Ham	0.4436	0.3302				
Total draft (Ham)	15.524	11556				

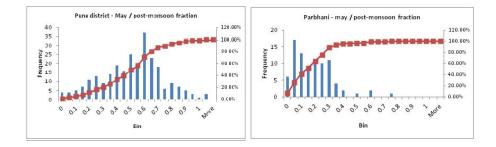
Calibrating GW Recharge With 2018/2019 As Reference


Issues in calibrating model based on results of GSDA for 2018-2019 / 2019-2020

- For clusters where incorrect WTF is used
 - a. What about WTF error? How do we address it while calibrating?
 - b. Difficulties in ground truthing the data used (which is mostly dynamic data i.e. subject to change for different years)
 - c. It is also difficult to understand and quantify error in calculating groundwater draft for each and every cluster (inconsistency)
 - d. Error in the computing GW recharge during Monsoon due to use of different equationi) Ignored given its little contribution to overall recharge
 - ii) Can be calibrated (Either using GSDA data or MLP app data for WCS)
- For clusters where correct WTF is used
 - Even when correct WTF has been used, issues mentioned as b, c and d persist.
 - Data on WTF can be used in its entirety only when corresponding pumping data is available: This is not the case for any of the cluster


All these factors make this method of calibration unsuitable as far as feasibility of execution and reliability of results is concerned.


IITB team shall work on the modified strategy to use whatever data we have got from GSDA in next phase (phase iv).


Source of Error in GWR Computation

THANK YOU!!!

