
Protocol to integrate databases containing geo-tagged data with
PoCRA’s GIS-dashboard

20th April, 2020
Prepared by Rahul Gokhale, Reviewed by Milind Sohoni

The GIS-dashboard is being developed with the aim of providing public facilities for
geo-visualizing various geo-tagged and geo-referenced data-sets generated under PoCRA. Two
of the basic and sought about use-cases are:

● Mapping a location-based (geo-tagged) data-set: Such data is linked to geographic
locations (in terms of, say <latitude, longitude> of each location). The user-requirement
is to be able to map these locations, or a user-specified filtered subset of them, on a
web-map (the GIS-dashboard’s map-view, in this case). A further requirement would be
to colour each of the mapped locations based on the value of a user-specified attribute.

● Visualizing project summaries/indicators for administrative regions: Such data is
linked to various administrative regions. Examples would be, the number of Farm-Field
Schools per district, number of beneficiaries under DBT per village, etc. The
user-requirement is to be able to visualize a map of the specified-level (district, taluka,
etc.) of administrative regions, filtered by some query. A further requirement would be to
colour each of these regions according to the value of a user-specified summary- or
indicator-attribute.

The data-sets are stored in databases that may be managed by different parties, while the GIS
dashboard prototype is being developed by IIT, which has no control over such databases.
Consequently, a protocol has to be set that allows integrating the project’s databases with
PoCRA’s GIS-dashboard in order to geo-visualize the geo-tagged data-sets stored in them.

A common approach for integrating database services over the internet is through web-APIs.
This is a safe approach even when the involved IT-services are not collaborating towards a
common task. However, it requires considerable time and efforts for design and implementation
of the API. Also, if the application’s data requirements are complex, the API design can be tricky
and hence demanding on the API implementers.

When the involved IT services are between mutually trusted-parties, a much simpler and
efficient approach is possible; namely to allow direct (although restricted) access to the
database from the application (that requires the data). A specific implementation of this
approach is where the database managers create database-views/-tables containing data-sets
that they wish to provide to the application. This approach eliminates the need for APIs and
hence saves on time and effort. Also, the complexity of data requests and its responses aptly
becomes the concern of the application developers who demand/need that data.

In the following, the context in which this approach will be implemented is explained briefly. This
also explains the choices made regarding the implementation. Next, the architecture of the
integrated system is presented. Finally, a detailed protocol to be followed to implement and
operationalize the architecture is presented.

GIS data-sets
From the technical viewpoint, there are generally three broad GIS data-types: points, lines and
polygons. Every ​GIS-(data-)entity​ (a location, a segment of a path/network, boundary of a
region) has one of these GIS data-types (point, line, polygon respectively) and has some
attribute data linked to it. In this document, we refer to a GIS-entity coupled with its linked
attribute data as a ​GIS data-set​. For example, attributes of an FFS are primarily linked to its
location; hence it forms a point-based GIS data-set. Attributes for a drainage network are linked
to the lines representing the network-segments; hence it forms a line-based GIS data-set.
Finally, say the attributes like cluster-assistants, cluster-level plans, etc. is linked to the
cluster-boundary; hence it forms a polygon-based GIS data-set.

GIS database
GIS is a significant component of PoCRA’s technical support. Most of the GIS data-sets being
used in the project are stored as shapefiles and geotiffs on the hard-disks of the various
workstations procured for the project-work. At the same time, a GIS-enabled database on the
cloud-platform used in the project is a suitable place to store them such that, this database not
only provides a common reference point for all GIS data-sets, but also enables GIS
computations and selective publication(on web-GIS maps) from this same reference point.

GIS dashboard
The GIS-dashboard is meant to be the public-facing application that publishes GIS data-sets
from this GIS-enabled common reference database. While it is possible, in principle, to store the
complete GIS data-sets on the GIS reference database, it may reduce performance, flexibility
and ease of maintenance. The attribute data from these GIS- data-sets is of significant size and
generally would require independent maintenance owing to its domain-specific concerns.

The solution for geo-visualization is then to store the attribute data from these GIS data-sets in
their own independent databases. For example, there is a database maintaining the attributes
for the FFSs, a different database maintaining the attributes for MLP, another one for DBT, and
so on. None of these need to be GIS-enabled, since geo-visualization is not a crucial
component of their purpose and would require the replication of required GIS-entities (like
district-boundaries, etc.) in each of them. On the other hand, the GIS-dashboard has it stored in

its GIS-database, all the GIS-entities to which the above attributes from various databases are
conceptually linked. To enable geo-visualization, this conceptual linkage has to be translated
into concrete data-linkage by implementing IT-coupling between the GIS-dashboard application
and the project’s various databases.

This IT-coupling can be implemented, as mentioned earlier, by allowing the GIS-dashboard
application to access (parts of) the project’s attribute databases. There are a few important
implementation concerns in doing so. We describe them below.

● How frequently do the GIS-entities change?:
Location GIS-entities are prone to frequent changes. New locations may be added(eg:
new weather stations) and also entirely new location-based data-sets may be added (eg:
soil-sampling locations from some study). On the other hand, path/network and
regional-boundary GIS-entities change much less frequently. This may probably be
because of the time, effort and costs associated with generating such data-sets as
opposed to mapping a set of few locations, for example using the common GPS-enabled
mobile-phone.

● Response-time of the GIS-dashboard application when displaying the GIS-entities:
As a GIS-(data-)entity, locations are very light-weight in terms of storage, computation
and transferring over the internet. On the other hand, paths/networks and
region-boundaries consume considerable resources and take time for communication. A
typical client (web-browser on the user’s computer) can map locations easily, while
mapping paths and region-boundaries is resource- and time-expensive. For the latter, it
is better to compute images of their maps on the server and serve those images instead.
This is a job requiring specialized GIS software (like a mapping server).

Thus it is seen that the GIS-entities(points) in a location-based data-set can change frequently,
have low computational resource demands and do not require a GIS-enabled database to store
legibly. On the other hand, GIS-entities having GIS data-type ‘line’ and ‘polygon’ rarely change
over the duration of the project(or even later), have high computational resource demands and
require GIS-expertise for maintenance in a GIS-enabled database. These implementation
concerns lead to two categories of GIS data-sets: location-based data-sets and others
(path/network and regional boundary data-sets). The former can be maintained entirely in the
project’s databases while the latter must be loaded into the GIS-dashboard’s database.

The architecture
The following two parts of any GIS data-set have to be considered in-tandem when designing
the architecture to offer web-based geo-visualization:

1. GIS entity-set (‘points’, ‘lines’ or ‘polygons’)
2. attributes linked to each of these entities (‘plot_id’ of FFS, ‘total_storage_capacity’ in the

village, etc.)

Accordingly, the architecture, as depicted above, consists of:

1. GIS entity-sets: A set of GIS entity-sets will be maintained by the GIS-dashboard
developers. Each entity-set will have a specified index key to identify the GIS-entities.
For example the GIS entity-set of polygons of village boundaries can be indexed by the
census code.

2. Database-views of linked attributes: Each database that needs geo-visualization on
the dashboard will maintain a set of database-views. Each such view will contain
attributes linked to one of the GIS entity-sets maintained as in item 1. This link will be
manifested by the view through columns referring to that GIS entity-set’s
index-key(mentioned in item 1). For example, a database needing geo-visualization
cropping attributes per village, will have a database-view having census_code as one of
its columns, while the other columns specify the actual cropping attributes.

3. The linkage between GIS-dashboard and project’s databases: The dashboard will
display the attribute-views from project’s databases using the linked GIS entity-set and
allow for filters on the attributes of as well as selected geographic properties of the
GIS-entities. For example, the phase of implementation of each village or the area of the
villages can be used to filter the set of village polygons.

Some of the GIS data-sets currently available for use on the GIS dashboard are:

Name Type Keys

District Polygon district

Taluka Polygon district, taluka

Cluster Polygon cluster_code

Village Polygon census_code

The protocol to operationalize the architecture:
Following are the steps to be followed when integrating GIS data-sets to the GIS-dashboard.
Steps specific to a category are indicated appropriately.

1. PMU shares the data files containing the GIS-entities with the GIS-dashboard
developers. Existing examples are the shapefile of all the villages in the 15 districts of
PoCRA, the shapefile of drainage networks in these districts, etc.

2. The GIS entity-set obtained in step 1 is loaded into the dashboard’s database.

3. The GIS-dashboard developers publish the name of the loaded GIS entity-set and also a
key (represented by a tuple of database-columns) that can be used to index into the
entity-set. For example, the census-code of a village may be published as the key (tuple
<census_code> containing just one column) for the ‘Village’ entity-set. A census-code,
say 532643, will refer to the village polygon having census-code 532643.

4. New point-data sets can be created as well. Create a database-table containing the
following columns so that each row uniquely represents one location:

a. myname_id: data-type integer(unique within this view/table); identifying a
location in the data-set

b. latitude:​ data-type real/double-precision; representing the latitude of the location
c. longitude: data-type real/double-precision; representing the longitude of the

location
d. Any other geographical attribute.

This table can be named as the database managers see fit. For example:
‘FFS_locations’. However, the three column names (‘FFS_id’, ‘latitude’ and ‘longitude’)
mentioned above should be used exactly as specified. This table will be converted by
the GIS dashboard into a GIS data set and will be made available to the PMU to create
views.

5. Managers of a project’s database who wish to use geo-visualization, can create any
number of database-views whose columns contain the actual attribute data that has to
be geo-visualized. Each of the views must satisfy the following criterion:

A. It may refer to keys from several GIS datasets, however, for each view, there should be
a designated geographical key. For example, a view on cropping patterns may link with
the village GIS dataset and use the census-code key as an index for the view.

Example 1:
View-name: ​Village_crops

census_code crop_name crop_area_ha crop_type... ..

‘530764’ soyabean 50 Long Kharif ..

‘531027’ cotton 75

..

..

Note: The “census_code” column of this table will be used to refer to the
corresponding village’s polygon in the GIS-dashboard’s database.

Example 2:
View-name: ​FFS_static

id plot_code soil_type

1 plot_code_1 medium

2 plot_code_2 deep

..

..

Note: The “id” column of this table will be used (for its geographic location
information) to refer to the row in the view/table created in step 4.

B. If a view V must have links to two GIS keys, for example FFS_id and census_code, then
two copies will be created, Va and Vb where the first key is the designated geographical
key and Vb where the second key is the designated key. This will enable the display of
Va as points and Vb as polygons by the dashboard.

6. The project’s database managers will avail the geo-visualization facilities by sharing a
document with the GIS-dashboard developers that contains the following details:

a. Name of the data-set it wishes to publish (as the user would see it). For example:
Village-wise Cropping

b. Database access details (of its own database):
■ Host-name (or IP)
■ Port
■ Database-name
■ User-name
■ Password

c. GIS entity-set to link to: Mention database as ‘GIS-database’ and the name (as
published by the GIS-dashboard developers) of the GIS entity-set to link to. For
example: ‘Database: GIS-database, Name: Village’ for the example of step 3.

d. Meaning of the data-attributes provided through the views.

Example:

View-name:​ FFS_locations GIS dataset

column_name column_label​(What
name the user would
see for this attribute)

meaning​ (What does
the column of the view

represent?)

FFS_id N/A or null GIS key

latitude Latitude (pre-defined as)latitude
of the location

longitude Longitude (pre-defined
as)longitude of the

location

elevation Elevation Elevation of the location
above mean sea-level

..

View-name:​ FFS_static_data

column_name column_label​(What
name the user would
see for this attribute)

meaning​ (What does
the column of the view

represent?)

FFS_id N/A or null GIS key which links to
FFS_locations

plot_code Plot-Code Unique code given to
the FFS plot

soil_type Soil-Type Soil-type

..

View-name:​ crop_current_status

column_name column_label​(What
name the user would
see for this attribute)

meaning​ (What does
the column of the view

represent?)

FFS_id N/A or null GIS key which links to
FFS_locations

season Season Name of ongoing
season

cropping_system Cropping-System Type of the
cropping-system used

One table each for any more such views.

7. The dashboard will display the attribute-data from the views as being linked to the
corresponding GIS entity (village, location, etc.)

