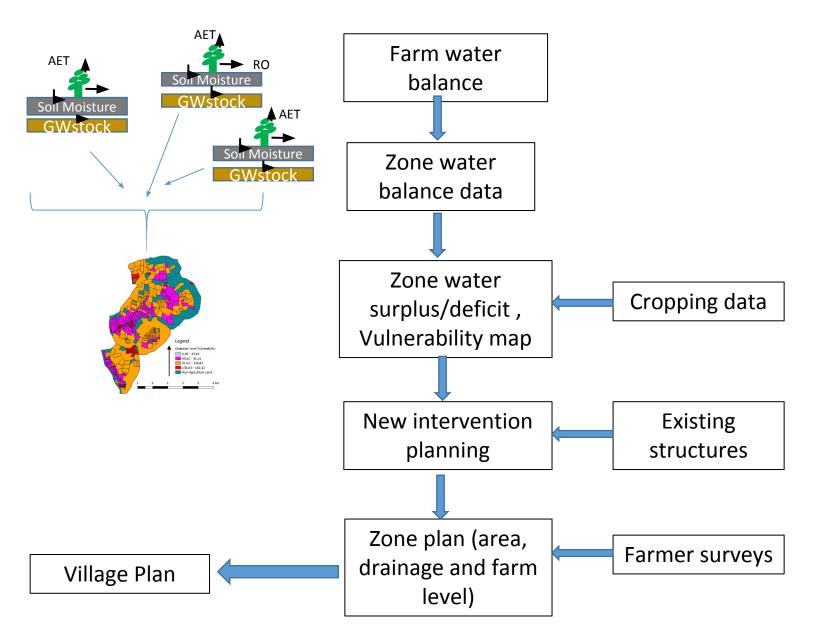
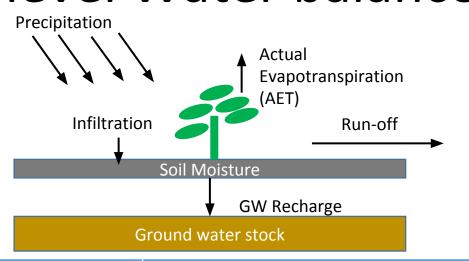
POCRA water budget and planning


Scope for improvements

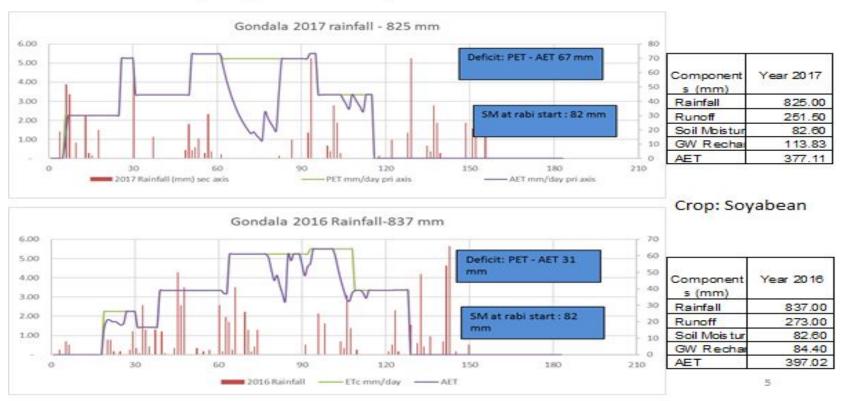
11 May 2018 IITB POCRA Team


Agenda

- Water Balance enabled planning methodology
- Scope for improvements
 - Parameters impacting water balance output
 - Cropping data
 - Link to planning: enabling farm level water access

Outline of water balance enabled planning

Farm level Water balance



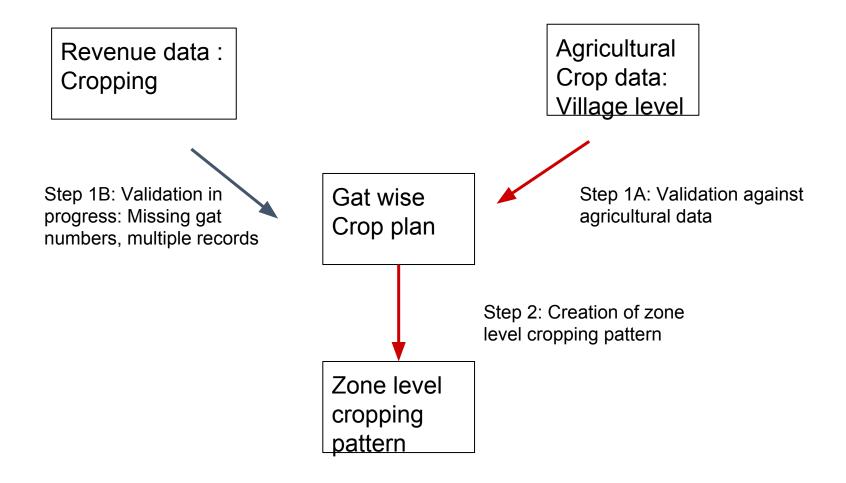
Model Validated against SWAT and field observations

Component	Method (Reference)	Data source
Rainfall	Input	Maharain.gov.in
run-off, infiltration	SWAT method based on SCS-Curve number adjusted for slope	SWAT theory
Potential crop ET (PET)	Modified Penman method	ETO: WALMI, Kc: FAO
Actual crop ET (AET)	FAO methodology	Soil properties: FC, WP, Crop root depth
GW recharge	SWAT methodology	Soil conductivity function of soil texture input
Soil moisture	Mass balance (based on a two layer cascading soil water model)	

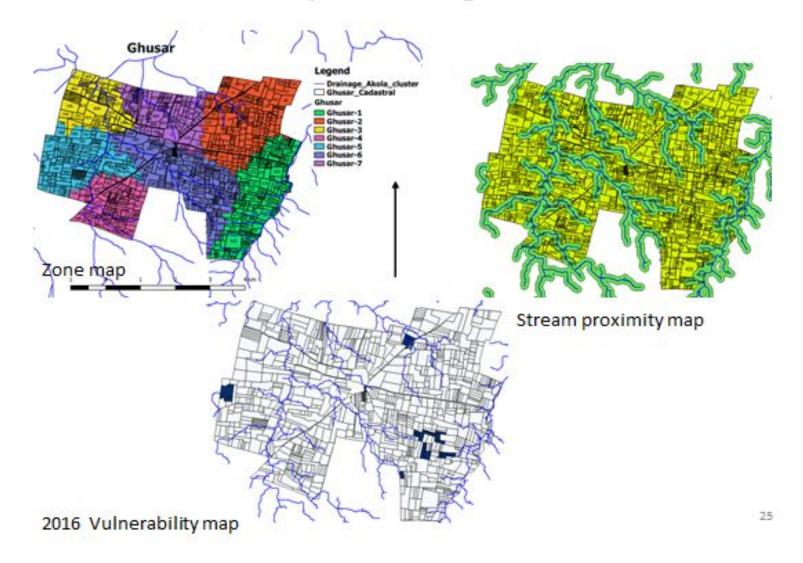
Zones slides here?

Kharif dry spell impact

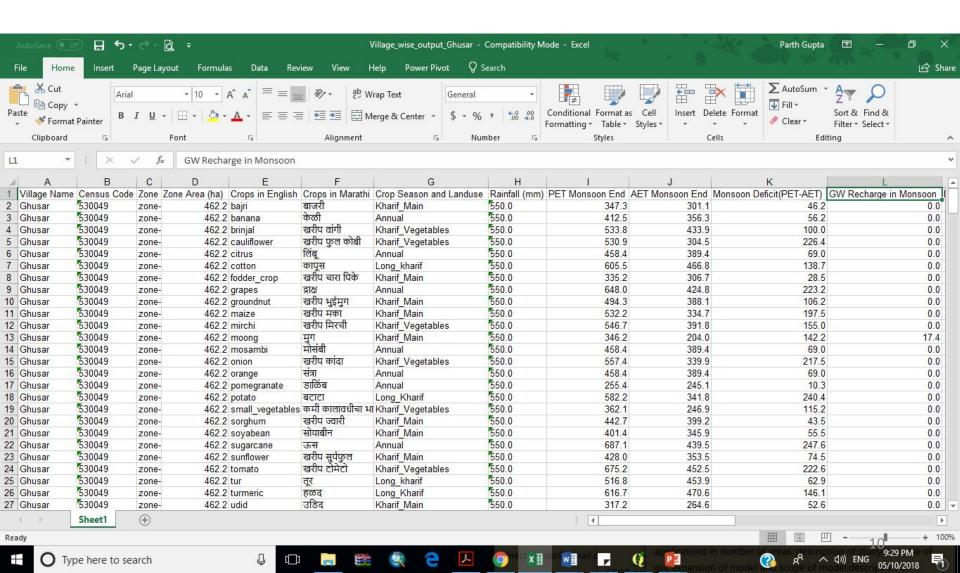
Parameters affecting WB output

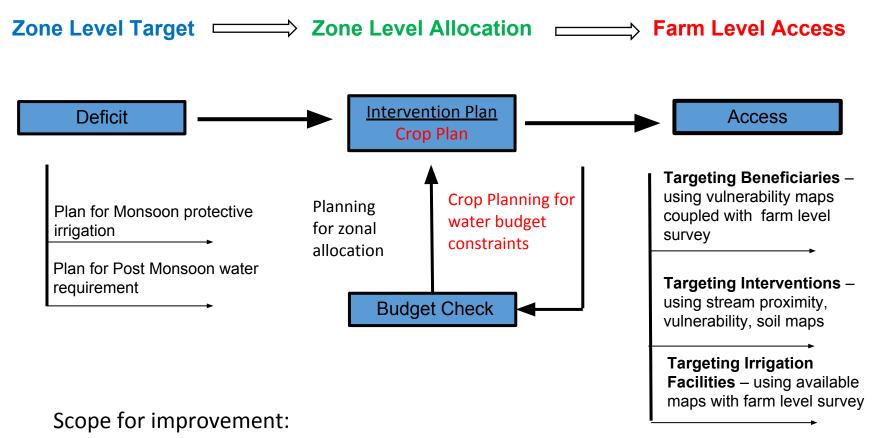

- Soil texture mapping to AWC, soil bulk density, conductivity MRSAC soil texture name mapped to values using SPAW (USDA) refinement need for pocra region
- Crop water requirement (PET) refer to calibration of crop water requirement doc release
 - Crop Kc (for specific crop variety being used by crop development stage) WALMI and FAO data
 - ETO (farm location per month) WALMI data for 6 stations by month
 - Non-agricultural LU PET JYS guidelines need for improved data/ guidelines
- Actual Crop ET: crop depletion factor, root depth for the crop variety being used FAO data need for our specific crop varieties
- Curve number, Initial rainfall abstraction SWAT guidelines; need for calibration against field observation
- Daily rainfall data Circle level data need for village level weather stations

Zones


Example – Ghusar (saline belt) village

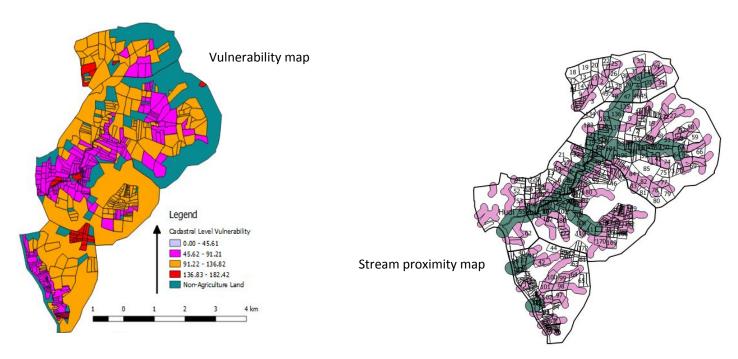
inputs Akola Cluster Soil Depth 501, pt-18, 62 \$605_ph-58_60 Akola Cluster_LULC Akola Cluster_Streams Akola Cluster_Cadastral \$66 pt-18 83 ultural Land-One Land-Rate One


Cropping pattern data reconciliation


Ghusar: Microplanning kit

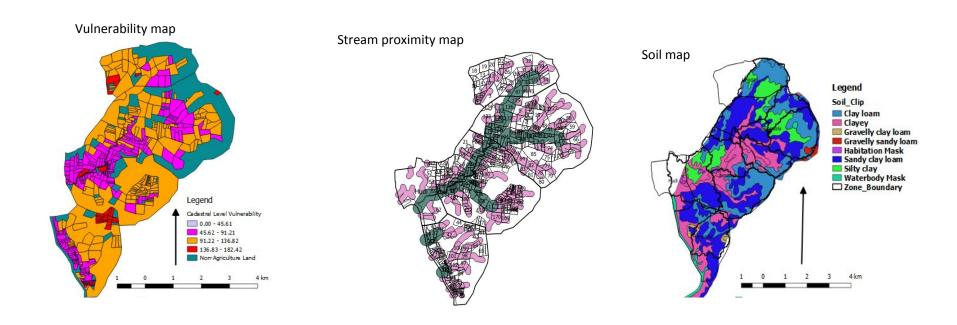
Zone xl-sheets picture here

Planning Cycle



1. Fine tune the target by capturing farmers operating point on yield watering curve to get planning fraction for deficit.

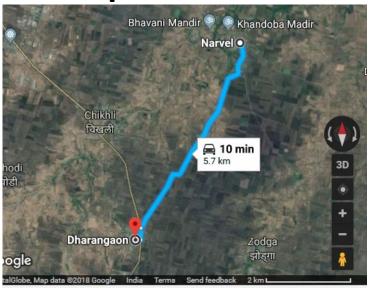
Challenges:


- 1. Accurate zonal cropping pattern data
- 2. Farm level water source, availability and access data for access planning

Access Issue: Reaching the vulnerable beneficiaries

- Coupled with farm level survey these maps can be used to target beneficiaries and interventions in the village
- This can also serve as farm level metric for access to water and improvement in yield

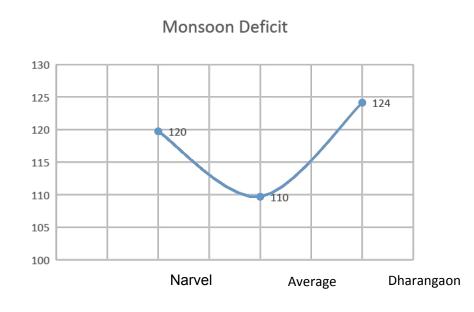
Access Issue: Targeting interventions


- Soil type and depth is an important factor for natural vulnerability of farm (eg it can be seen that vulnerability is lowest in deep clayey soil)
- Transferring silt to reduce vulnerability can also be an option
- Stream proximity can be utilized to plan for stream based interventions inlet outlet based farm ponds, wells

13

 Sizing private / community ponds based on water budget runoff as per soil parameters

Backup: rainfall interpolation analysis


Impact of interpolation on water balance: Example

- Rainfall Circle 1: Narvel, Buldhana
- Rainfall Circle 2: Dharangaon, Buldhana
- Distance 6 km
- Narvel Rainfall 2017: 638 mm
- Dharangaon Rainfall 2017: 716 mm

Water Balance comparison with interpolated daily rainfall

Circle	Narvel	Dharangaon	Average	
rainfall (input)				
rannan (mpac)	638	716	677	
Runoff	149	198	159	
Infiltration	489	517	518	
SM	55	55	55	
GW recharge				
GW recharge	142	175	161	
AET	292	287	302	
PET (input)	412	411	412	
Deficit	120	124	110	

- Interpolation reduces the variance and hence underestimates dry spells and their impact
- Need for village level weather stations for climate resilience

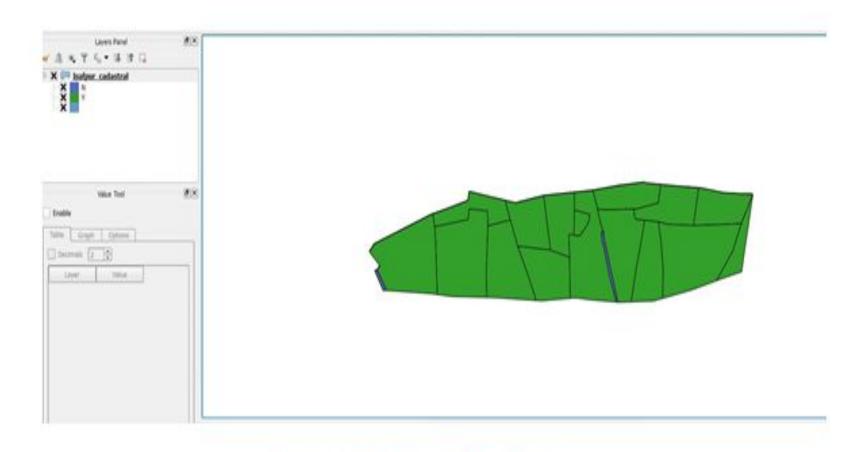
Analysis of Croppin Data

★ Objective:

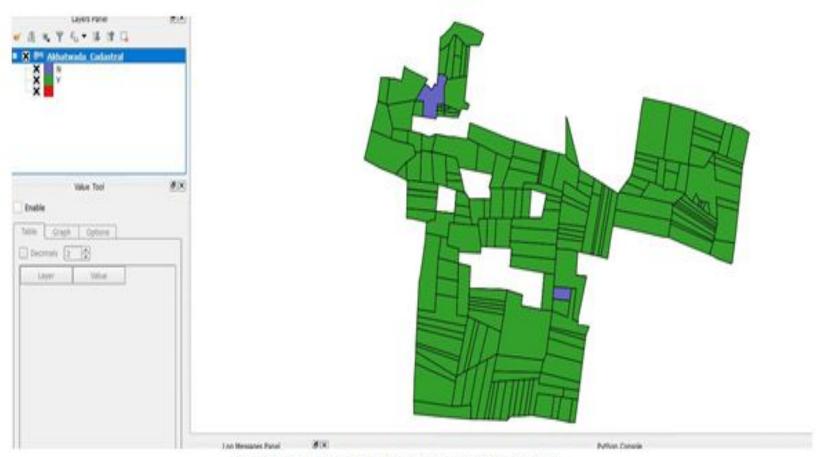
 Data is as collected by Mahabhulekh and objective is to analyse its comparability with cadastral Maps; i.e. ratio of surveys in cadastral are also present in Mahabhulekh cropping data.

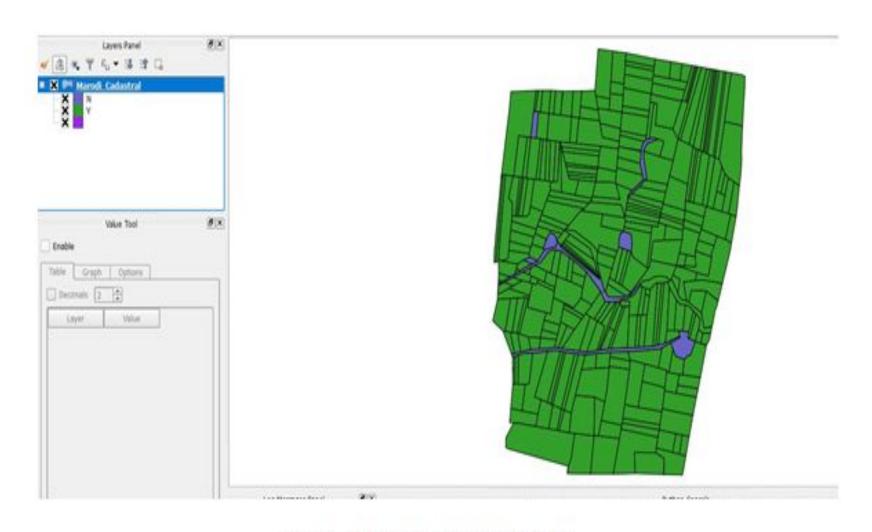
★ Method:

- Removing of duplicacy from cropping data as for multiple owners in same surve/subsurvey_no, there were duplicacy for crop1...crop n for all khatas(owners).
- Single entry for tuple (survey no + survey area + crop + crop area) is kept.
- Extracting numeric first part of survey nos (as cadastral maps only has numeric only survey nos) for each entry
- Comparing survey list obtained from above step with cadastral maps


★ Output Analysis and comments:

District	Village	Gat present/ Total survey nos	Total survey nos extracted from cropping data	Comments	
Washim	Wai	142/202	175	Nearly 60 % surveys matched with cadastral	
Washim	Isafpur	27/30	62	Cropping data has more survey nos than total gat in cadastral	
Akola	Akhatwada	189/194	174	Mora data matched (189>174) as few polygons having same survey no	
Akola Moradi		298/307	292	Mora data matched(298>292) as few polygons having same survey no	




Cropping data analysis for Wai, Washim

Cropping data analysis for Isafpur, Washim

Cropping data analysis for Akhatwada, Akola

Cropping data analysis for Marodi, Akola

Ghusar Post monsoon computation (good year and bad year)

2017: Ra ir ıfa ll 550mm	PET Monsoon End	AET Monsoon End	Monsoon Deficit(PET- AET)	GW Recharge in Monsoon	Runoff in Monsoon	Soil Moisture Monsoon end	Post Monsoon PET
Cotton	401.09	381.15	19.95	- 12 <u>-</u> 27	76.93	76.92	389.13
Moong	261.37	228.09	33.28	939	116.66	190.25	970
Tur	376.04	359.13	16.91	273	90.45	85.42	242.37
Soyabean	434.56	377.16	57.39	3.5	69.08	88.76	
Harbhara	1100	0-0	+.	(30)	(*)		250.00
2016: Ra irtfall 920mm	PET Monsoon End	AET Monsoon End	Monsoon Deficit(PET- AET)	GW Recharge in Monsoon	Runoff in Monsoon	Soil Moisture Monsoon end	Post Monsoon PET
Cotton	342.51	337.27	5.24	-	410.14	113.60	424.43
Udid	232.12	228.80	3.32	4.68	426.45	201.06	
Tur	314.97	295.34	19.63	950	437.19	126.45	288.90
Soyabean	403.78	346.98	56.80		402.37	111.65	18.62

Ghusar field inputs: cropping pattern and current structures

Crop	Ghusar 1	Ghusar 2	Ghusar 3	Ghusar 4	Ghusar 5	Ghusar 6	Ghusar 7	Total village
Soybean	20	21.29	0	0	0	15.6	10.11	67
Jowar	14	6	8	7	4	20	13	72
Cotton	314.92	375	70	67.89	149	348.95	257	1582.76
Moong	52	90	182	177	220	70	26	817
Udid	5	4	5	5	7	12	6	44
Tur	55	65	35	30	27	60	20	292
Total	460.92	561.29	300	286.89	407	526.55	332.11	2874.76
Ag Area	461.92	561.29	300	297.41	407.73	526.55	332.11	2887.01
Non Ag	0.27	0	0	0	0	0	0	
Farm ponds	33	30	34	19	21	36	39	212