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ABSTRACT

Farmers in dryland regions are highly vulnerable to rainfall variability. This vulnerability is unequal, as it is mediated by biophysi-

cal and social factors. Implementing policies for climate resilience requires the ability to identify the farmers who are most

vulnerable to extreme events like dry spells. We develop a novel approach by conceptualizing dry spell vulnerability in terms

of monsoon crop water deficit at the farm scale. Using inputs of weather, terrain, soil properties, land-use-land-cover, crop

properties, and a cadastral map, our tool models an hourly soil water balance at 30 m� 30 m resolution and maps the crop

water deficit under rainfed conditions. This is a good indicator of the relative sensitivity of farmers to dry spells and allows prior-

itization of interventions within the focus region. Our tool, developed and deployed within the Maharashtra State Project on

Climate-Resilient Agriculture, is iteratively calibrated and refined. We present the result of one such iteration in which 72%

of cases were found to have an agreement between the modelled output and farmers’ perception of dry spell-induced crop

water stress. Our work demonstrates how vulnerability to climate hazards may be mapped at micro-scales to assist policy-

makers in targeting interventions in ecologically fragile regions with high rainfall variability.

Key words: Climate-resilient agriculture, Crop water stress, Dry spell, Protective irrigation, Transdisciplinary research,

Vulnerability

HIGHLIGHTS

• Vulnerability of rainfed farmers to dry spells is unequal.

• Mapping farm-level vulnerability is important to target interventions for climate-resilient agriculture in ecologically fragile

regions.

• We conceptualize farm-level dry spell vulnerability as a function of biophysical and social attributes and extend the concept

to practice in the form of a tool that is embedded in the state process.

1. INTRODUCTION

The Indian summer monsoon provides close to 85% of the annual rainfall to the Indian subcontinent. It crucially

supports food production and livelihood security for a large population. Climate change impact is causing a shift
in the rainfall pattern (Singh et al., 2014) seen in the form of delayed onset of monsoons, long dry spells, and
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destructive floods, resulting in large crop failures and economic losses. The agricultural sector, dominated by mar-
ginal and smallholders, is highly vulnerable to monsoon variability. The monsoon (or kharif) crop is the most
important crop, especially in dryland regions where most smallholders rely heavily on it for their livelihoods

and household nutritional security.
Farmer vulnerability to monsoon variability is unequal (Kuchimanchi et al., 2019; Dagdeviren et al., 2021), and

is mediated by access to natural, social, and economic resources (Duncan et al., 2017; Singh, 2020). Farmers who
have farms with poor soil quality or unfavourable locations within the watershed, and have limited or no access to

irrigation are highly vulnerable to dry spell-induced crop losses (Kumar et al., 2018). Depletion of soil moisture
during dry spells, especially during key crop growth stages have been shown to have a significant impact on yield
(Panigrahi et al., 2005). A systems study of dryland farmers in Northeastern Tanzania has shown how climate-

related poverty traps are created as a result of crop losses from frequent dry spells and depletion of soil moisture
(Enfors, 2013). Securing irrigation and retaining soil moisture is emphasized as an important strategy to reduce
yield gaps caused by dry spells in Africa (Rockström & Falkenmark, 2000; Rockström et al., 2010) and India

(Manivasagam & Nagarajan, 2017; Sikka et al., 2018). This has also been extended to watershed-scale sup-
plementary irrigation planning (Imbulana & Manoharan, 2020; Hessari & Oweis, 2021). The ability to identify
and map relative vulnerability is therefore desirable in order to target investments for life-saving irrigation

access to farmers who are most vulnerable to dry spell-induced crop losses. This is true not only for India but
also for dryland rainfed regions all over the world which face increasingly variable rainfall seasons. However,
there is a gap in methodology on how dry spell vulnerability may be conceptualized and computed at the unit
of a farm and, at the same time, mapped for all farms at an aggregate scale such as a village to support policy

implementation.
Vulnerability has been defined and used in many different contexts and disciplines. In the context of climate

change, the IPCC’s third assessment report provides a commonly accepted definition that frames the vulnerability

of a system as a function of its exposure to a climate hazard, its sensitivity to the hazard, and its adaptive capacity.
Brooks (2003) refers to this as the biophysical vulnerability, which relates to the combined effect of the physical
impact of the hazard (e.g., loss in soil moisture or crop stress) and its eventual outcome (e.g., economic loss). One

of the determinants of biophysical vulnerability is the social vulnerability of the system (Brooks, 2003). This is
understood as a system’s structural property determined by deep-rooted factors such as poverty, inequality,
power relations, and access to resources (Ramprasad, 2018; Nyantakyi-frimpong, 2020), which mediate the
impact of climate events resulting in outcomes such as economic damage or loss of life.

Studies on climate vulnerability assessments use varied approaches and differ in their objective, scale, and how
actionable they are. The purpose of the assessments may be to identify current and potential hotspots to identify
entry points for climate adaptation intervention (Kienberger et al., 2016) or to track changes in vulnerability

through monitoring of adaptation efforts. The scale of mapping varies from national to village scale, and the
unit of mapping varies accordingly. Studies vary in their focus on different components of vulnerability, i.e.,
exposure to climate hazard, sensitivity, or adaptive capacity. For example, Kadiyala et al. (2021) and Kuchiman-

chi et al. (2021) have mapped block-level exposure to variability in climatic elements in the Indian state of
Telangana, but do not focus on differences in sensitivity or adaptive capacity. de Sherbinin et al. (2019) provide
a comprehensive review of different studies for mapping social vulnerability. Social mapping is useful to under-

stand who is structurally the most vulnerable and how this variation in vulnerability results in unequal outcomes
of a climate hazard (Kuchimanchi et al., 2019; Swami & Parthasarathy, 2020). However, these studies do not cap-
ture the biophysical drivers of sensitivity to climate hazards. Also, de Sherbinin et al. (2019) find that while most
works emphasize the importance of vulnerability mapping to adaptation planning, not many engage with policy-

makers to support decision-making. A variety of indicators and composite indices-based vulnerability assessments
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have been made by scholars to estimate and compare both social and biophysical vulnerability to droughts and
other climate hazards at local or regional level (Lindoso et al., 2014; Keshavarz, 2016; Swami et al., 2018).
Kienberger et al. (2016) identified and mapped a variety of geo-spatial indicators to spatially assess vulnerability

of agricultural and pastoral livelihood systems to climate change in two provinces of Mauritania using a combi-
nation of methods including stakeholder engagement, modelling, composite index development, and visual
mapping. Remote sensing-based approaches have also been used to capture spatial and temporal aspects for
the computation of drought vulnerability indicators at national and sub-national scales (Meza et al., 2021).
In our review of current vulnerability assessments, we do not find one that is developed to identify differential

vulnerability to dry spells at the intra-village scale, incorporating biophysical and social drivers. Moreover, none
are developed for the purpose of empowering communities for demanding greater accountability from state inter-

ventions which may otherwise be appropriated by local political interests. Our paper addresses this gap by not
only making a contribution to the scientific literature through our conceptualization of dry spell vulnerability
as a measurable and comparable entity but also contributing to the practice of science, by developing a tool to

map farmer vulnerability to dry spell hazards at the farm scale in the context of a state implemented project.
Our objective is to conceptualize and map farm-level vulnerability to dry spells to target interventions in regions

that face high rainfall variability. This entails conceptualizing dry spell vulnerability, using an appropriate model to

capture it, and developing a tool to map it. An iterative cycle of model calibration and tool enhancements is fol-
lowed to improve the social acceptance of the final outcome. In this paper, we present the model and the results
of one such cycle of field application to illustrate the novelty of the approach and the challenges to be overcome.
Finally, we reflect on our transdisciplinary approach to inform decision-making for climate-resilient agriculture.

1.1. State response for climate-resilient agriculture

India has a long history of watershed programmes in drought-prone regions which have evolved over time with a
gradual change in their goals and implementation methods. Although a watershed-based approach to land man-
agement started in the early 1960s, planning of scattered soil and water conservation efforts pre-dated this. The

Drought-Prone Areas Programme (DPAP) was one of the early programmes launched in 1972–73 focusing on soil
and water conservation in fragile, drought-prone regions. Following the severe drought of 1987, the concept of
integrated watershed development was institutionalized in the form of National Watershed Development Pro-
gramme for Rainfed Areas in 1990–91. There was also a subsequent shift from the programmes being driven

by state technical agencies to greater participation of non-governmental organizations.
The state of Maharashtra has been at the forefront of watershed development programmes. Drought-proofing

works were already being promoted under the Employment Guarantee Scheme in the 1970s. Also in the 1970s,

the Pani Panchayat movement in Maharashtra offered many success stories of people-centred watershed devel-
opment which became role models for the participatory watershed programmes that emerged in the 1990s.
Over the next couple of decades, watershed development guidelines called ‘Hariyali guidelines’ were developed

and refined, eventually leading to the Integrated Watershed Management Programme (IWMP) in 2008. Jalyukta
shivar abhiyaan (JSA), launched in 2014, was a major state-led watershed programme that promised to make all
villages in Maharashtra ‘drought-free’ by the end of year 2019. The programme focused on conventional water
conservation activities for augmenting water availability, and at the same time introduced steps towards

demand-side management. Simultaneously, Magel tyala shettale was launched in 2016, which offered subsidy
to farmers for constructing private farm-ponds. Programmes such as the JSA typically expended between INR
5 million to INR 30 million in a village. Although there have been success stories (Garg et al., 2020), there
have also been criticisms of the programmes by experts, civil society organizations and practitioners regarding
the conduct and lack of scientific soundness of the programmes (DTE, 2019; Prasad et al., 2022).
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The Project on Climate-Resilient Agriculture (PoCRA) was launched in the state of Maharashtra in 2017.
Funded by the World Bank, PoCRA is the first state project on climate-resilient agriculture in the country,
being implemented in over 5,000 villages in 15 districts, largely in Marathwada and Vidarbha regions. It aims

to address farm-level vulnerability not only to inter-seasonal climate variability but also to intra-season variability.
The programme especially focuses on farmer vulnerability to dry spells that occur during the rainfall season. Our
work is developed in the capacity of a knowledge partner to the Project Management Unit of PoCRA. One of our
mandates is to conceptualize climate vulnerability as an actionable condition that may be mapped and compared

within a village and to develop a tool to guide the targeting of state investments. The tool is to support not only the
programme implementation agency but also the villagers themselves by bringing greater accountability and trans-
parency in the targeting of state interventions.

2. METHODS

In this section, we begin by first discussing our conceptualization of dry spell vulnerability based on the IPCC

definition of climate vulnerability. We then describe the method used to compute and map farm-level sensitivity
to dry spells followed by our approach for field-level application of the developed mapping tool.

2.1. Conceptualizing dry spell vulnerability

Based on the commonly accepted IPCC definition of vulnerability, we conceptualize monsoon dry spell vulner-

ability for a farmer as a combination of three components: exposure to the climate hazard, sensitivity to the
exposure, and adaptive capacity of farmer. Specifically, we consider (a) exposure in the form of t occurrence
of dry spells within the rainfall season, (b) the crop’s sensitivity to dry spells in terms of the water stress experi-

enced by it given the farm biophysical attributes, and (c) adaptive capacity in terms of access to irrigation for
the farm plot under consideration. Since the purpose of this exercise is to map relative vulnerability within a
village, it may be assumed that exposure to dry spells is not a differentiating factor, as all farm plots at a village

scale are likely to experience the same dry spell events. The key differentiating factor is the sensitivity of the
plots to a dry spell event and the farmers’ adaptive capacities. We conceptualize sensitivity to dry spells in
terms of the water deficit faced by the crop on a given farm plot during a dry spell event. This deficit is a func-
tion of the available soil moisture relative to the crop water need and depends upon the farm’s biophysical

properties and farm practices for moisture retention. The sensitivity varies within a village because of the varia-
bility in soil moisture retention across plots, which itself is due to the diversity in soil type within a village
(Prasad & Sohoni, 2020). For example, farms with thin sandy soils experience greater crop stress than those

with deep clayey soils. Hence, the need for life-saving protective irrigation (Jurriens et al., 1996) during dry
spells (both quantity and frequency) varies depending upon the biophysical attributes of the farm plot for
the same choice of crop. To map this sensitivity, we compute the monsoon crop water deficit (in mm of

water) for the predominant kharif crop at the unit of a farm plot. Computation of this is an important require-
ment from our model and our key contribution in incorporating the biophysical drivers of vulnerability. Finally,
the adaptive capacity of the farmer is seen as a combination of the capacity to irrigate and socio-economic fac-
tors such as access to capital, knowledge, social networks, etc. which determine access to irrigation (Kumar &

Saleth, 2018). We use two proxies to capture the adaptive capacity: (a) cropping intensity of the farm as indi-
cated by the land-use map, i.e., if only one rainfed crop is cultivated on the farm or if the farmer can farm in
multiple seasons indicating that they have access to irrigation, and (b) socio-economic factors such as landhold-

ing size, gender, and caste. Together, these are used to capture farmer vulnerability to monsoon dry spell
hazards.
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2.2. Estimating dry spell sensitivity

The agricultural calendar has three main seasons – kharif (the monsoon crop, from June to September), rabi (the
post-monsoon winter crop, from October to February), and summer (March–June). For most farmers, kharif is the
main cropping season for food and income security. Typical kharif crops in the regions targeted under PoCRA are
soybean, lentils such as mung, urad, or long kharif crops (6–8 month duration) such as tur (pigeon pea) and
cotton. Rabi crops require irrigation and are usually cultivated only on a part of the cultivated area, and by

those who have access to irrigation. Unlike other parts of Maharashtra, sugarcane cultivation in the project
focus villages is limited due to no access to canal irrigation and unreliability of groundwater availability.
The primary source of water for kharif crops is the soil moisture replenished by monsoon rainfall. Variability in

rainfall in the form of long dry spells causes soil moisture stress during key crop growth stages and results in crop
water deficits. For the same level of exposure, the sensitivity of farm plots to a dry spell (in terms of crop stress)
may be unequal. In this section, we first discuss our method to compute dry spell sensitivity at the unit of a farm,

and then discuss how this information is aggregated to produce village-level maps.

2.2.1. Computing sensitivity to dry spell at the farm plot unit

To compute dry spell sensitivity, we develop a location-based point model for soil water balance that uses the
FAO methodology (Allen et al., 1998) and SWAT methodology (Neitsch et al., 2011) as shown in the upper

panel of Figure 1. The input is the rainfall pattern (daily or hourly data for a selected year) and farm-level soil
and crop parameters. The model first partitions the rainfall as run-off and infiltration. The soil is considered as
two layers, the top layer being the crop root zone for the crop under consideration. The infiltrated water

Fig. 1 | Method developed for mapping dry spell vulnerability. An hourly soil water balance is modelled for each point at 30 m�
30 m resolution within the aggregate village boundary and the resultant crop water deficit over the rainfed season is mapped for
each point. This creates the dry spell sensitivity map, which when combined with context-specific indicators of farmer adaptive
capacity helps to identify farmers who are most vulnerable to dry spells.
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replenishes the soil moisture in the two layers and the excess is accounted as deep percolation that ultimately
recharges the groundwater. Part of the available soil moisture in the root zone is used by the crop to grow and
is thus converted to actual crop evapotranspiration (AET). When there is insufficient soil moisture due to dry

spells, the AET falls below the potential crop evapotranspiration (ET) leading to crop water stress. The crop
water deficit is computed as the difference between potential crop ET and AET over the rainfed season. Depend-
ing upon the stage of crop growth, the impact of crop water stress on crop yield may be substantial. If the farmer is
able to access protective irrigation, then it is possible to reduce loss in yield due to this stress. The model thus

translates farm-level biophysical parameters and rainfall regimes into quantifiable crop water deficits which
can be compared across plots (for the same crop) to identify the farmers who are most sensitive to dry spells.

Application of the farm-level water balance tool to different farm plots allows us to compare their relative sen-

sitivity to monsoon dry spells. Figure 2 illustrates this for two different plots of the soybean crops in Sangamner

Fig. 2 | Crop water deficit for soybean crop during a 33-day monsoon dry spell modelled for two different farm plots in San-
gamner, Maharashtra, for year 2016. (a) Clayey loam soil of 1 m thickness and (b) gravelly sandy loam soil of 40 cm thickness.
The shaded area shows the kharif crop water deficit which is computed as the difference between crop evapotranspiration and
actual evapotranspiration. For the purpose of illustration, the sowing date is assumed to be the same in both cases.
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district of Maharashtra when a 32-day-long dry spell occurred during August and September in the monsoon of
2016. The model shows very significant differences in the impact of the dry spell on the same crop in two different
soil types. In the case of deep clayey soil, the soil moisture is built up gradually and is retained longer, but in the

case of the shallow gravelly sandy loam soil, the moisture holding capacity is less and the moisture is drained
quickly. As a result, we see that when a dry spell occurs, in the case of the deep clayey soil the crop water require-
ment continues to be met to some degree with the available soil moisture. The crop suffers water stress of about
83 mm, but there is not a single day when the crop receives no water from the soil. On the other hand, in the case

of the gravelly sandy loam soil, the same crop suffers 203 mm of water stress which is almost half the crop water
requirement. The crop gets no moisture for about 25 days which would lead to a serious reduction in yield if not
complete crop failure. This can be avoided if the farmer is able to access protective irrigation. Thus, the farm with

shallow gravelly sandy loam soil is significantly more sensitive to dry spell impact than the one with deep clayey
soil. Identification and mapping of such farms is an important step in planning interventions for dry spell
resilience.

2.2.2. Collating and aggregating sensitivity over the village map

The above section discussed the procedure developed to compute monsoon crop water deficit at a single point. To
compare this across all farm plots in a village, we incorporate the model into a tool that maps this value for all
points (i.e., ‘pixels’ at the resolution of 30 m� 30 m) in the cropped area within the village boundary. This is done

using a Python plugin for QGIS, an open-source GIS platform. The plugin accesses GIS input layers, viz., the
village boundary, land-use map, digital elevation map, soil depth, and texture map to produce a grid of crop
water deficit values (see Figure 1). The crop water deficit values are classified into different categories (e.g.,

0–25 mm, 25–50 mm, 50–75 mm, etc.) for visual comparison. The village cadastral map is overlaid on this to
obtain a farm-plot level mapping of sensitivity to dry spells. This indicates which farm plots have a greater pro-
tective irrigation need than others to be resilient to monsoon dry spells. In the results section, we illustrate

this for two selected villages. When this dry spell sensitivity map is seen in combination with farmers’ adaptive
capacity, it allows us to capture relative farmer vulnerability to dry spells. We illustrate an application of this in
the Supplementary file.

2.3. Field application: study area

The outputs of the model, and hence the vulnerability maps, depend on sound data inputs and calibration,
especially soil and crop parameters. Thus, an important task is to combine the calibration of the model with
the verification of the key input data sets through field application in sampled villages. We made a comparison

of the simulated impact of dry spells in preceding years obtained by the model against the farmers’ experiences.
This was recorded through farmer surveys in more than 20 villages as part of the PoCRA project in iterative
cycles. Here, we present the results of one such exercise conducted in two villages.

The two villages are Adgaon in Yavatmal district and Mangrul in Nanded district of Maharashtra (Figure 3).
Adgaon is a large village of about 1,400 ha and population of 1,835, compared to Mangrul which is a smaller vil-
lage of 375 ha and a population of 598. The 5-year average annual rainfall for the villages is 754 mm for Adgaon
and 1,081 mm for Mangrul. Both villages have predominantly clayey soils, but also areas with soils that are loamy

sand, clay loam, gravelly clay loam, or silty clay loam. The depth of the soil also differs from shallow soils in the
upper reaches and deeper soils in lowlands. The predominant crops cultivated in the villages are cotton and soy-
bean. Other crops include lentils (especially, pigeon pea or tur) and turmeric in kharif, and millets, groundnut, or

wheat in rabi. There is no access to surface water irrigation, but many farmers have their own private wells and
borewells. However, the groundwater availability is unreliable, and many wells are dry between March and July.
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For each village, we developed a model-computed dry spell sensitivity map. We then conducted farm surveys by
sampling farm plots to cover a wide geography and hence different soil attributes of the village. Farmers were
asked for details such as: farm biophysical properties (soil quality, depth), kharif crops sown, dry spell details
(if experienced, how long and when), if the crop required irrigation, and if they were able to irrigate. We also

asked the farmers their perception about the potential yield loss if they were unable to irrigate. In the next section,
we elaborate on the findings.

3. RESULTS

In this section, we present the results of applying the dry spell sensitivity mapping tool to the two selected villages

for the monsoon of 2021. We then compare the model output against farmers’ own perception of the water deficit
faced by their crops during the dry spells.

3.1. Dry spell analysis

We first study the rainfall pattern of 2021 monsoon for the two villages. 2021 was an above average rainfall year.

Total rainfall received was 1,613 mm for Mangrul and 990 mm for Adgaon (50 and 31%, above average rainfall,
respectively). However, as shown in Figure 4, despite being good rainfall years in terms of the total quantity of
rainfall, Mangrul had a long dry spell of 23 days (between 24 July and 15 August), and Adgaon had three shorter

dry spells of 12 days (29 June–10 July), 9 days (24 July–1 August), and 11 days (5 August–15 August). Both villages,
especially Mangrul, also experienced an intense wet spell during the soybean harvesting time in late September
which adversely impacted yields. Sowing of soybean and cotton was done in the early or end of June.

3.2. Dry spell sensitivity map

In order to compute the plot level sensitivity to the observed dry spells, we follow the method discussed in the
previous section to prepare monsoon dry spell sensitivity maps. Figures 5(a)–5(f) and 6(a)–6(f) show the spatial
input (secondary) data used to do so for the two villages. Figures 5(g) and 6(g) show the output, i.e., the monsoon

dry spell sensitivity computed for the predominant kharif crop soybean. Since 2021 was a high rainfall year, the
crop deficits are seen to be generally small, but the impact of the dry spells can be seen differently in the two

Fig. 3 | Location of field application.
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Fig. 4 | Daily monsoon rainfall pattern and dry spells for the year 2021: (a) Mangrul village, Nanded district and (b) Adgaon
village, Yavatmal district (rainfall data source: Skymet).

Fig. 5 | Mangrul village maps: (a) satellite map of village from Google Earth, drainage, (b) elevation, (c) land-use and land-cover
(LULC), (d) cadastral map, (e) soil depth, (f) soil texture and output sensitivity map, and (g) cadastral level crop water deficit (in
mm) for soybean crop in monsoon of 2021. Maps (a)–(f) are input data, which result in the output map (g). LULC, soil depth and
soil texture maps based on shape files sourced from Maharashtra Remote Sensing Application Center (MRSAC), cadastral map
sourced from Maha-bhulekh.
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villages. The map for Mangrul (Figure 5(g)) shows many farms with a crop water deficit of more than 75 mm due
to the long dry spell. However, in the case of Adgaon in Figure 6(g), the model shows that most farm plots suffered

less than 75 mm deficit due to the shorter, frequent dry spells. Plots with deep clayey soils were able to withstand
these dry spells to some degree, but farms with shallow gravelly soils in the upstream region faced a much higher
crop water deficit for the same rainfall pattern, thus requiring crop-saving protective irrigation.

3.3. Field interview findings

In this section, we share the comparison of the model output of dry spell sensitivity map with the farmers’ per-
ception gathered through surveys conducted at the end of the 2021 kharif season. A total of 69 farmers were

sampled: 30 in Mangrul and 39 in Adgaon. Surveys revealed that there was a significant mismatch between
the remotely sensed MRSAC soil maps and farmers’ own description of their soil type and depth. To address
this, the crop water stress for the sampled plots was recomputed using primary soil information instead of

MRSAC soil maps. As seen in Figure 7, this had a significant impact on the computed deficit for the farm plot
and indicated the need for improved input maps.

We now compare themodel output of cropwater deficit with farmers’ perceptions of the need for irrigation using
the corrected soil data (Figures 8 and 9). The monsoon crop water deficit was computed for each plot and those

which had a computed deficit of more than 15 mm were shown as ones needing irrigation. Figure 8(b) and 8(d)
shows the model output for soybean and cotton, respectively, for Mangrul (and similarly Figure 9(b) and 9(d) for
Adgaon). They are compared with Figure 8(c) and 8(e) which show farmers’ perceptions captured through surveys.

We note that farmers often sow multiple crops on the same plot, i.e., some acres may be devoted to soybean and
some to cotton. Farmers also inter-crop cotton–soybean or tur–soybean. Hence, even though the total number of

Fig. 6 | Adgaon village maps: (a) satellite map of village from Google Earth, drainage, (b) elevation, (c) land-use and land-cover
(LULC), (d) cadastral map, (e) soil depth, (f) soil texture and output sensitivity map, and (g) cadastral level crop water deficit (in
mm) for soybean crop in monsoon of 2021. Maps (a)–(f) are input data, which result in the output map (g). LULC, soil depth and
soil texture maps based on shape files sourced from Maharashtra Remote Sensing Application Center (MRSAC), cadastral map
sourced from Maha-bhulekh.
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surveyed farmers was 69, several farmers provided dry spell impact data for more than one crop giving us a total of

108 crop-farm plot combinations ranging over five crops.We limit our analysis to the 77 crop-farm pairs for the two
dominantmonsoon crops: soybean and cotton. Cotton is a long kharif crop (6–8months) which is sown at the onset
of monsoon. Those with access to irrigation provide a few irrigations to the crop after the end of the monsoon. The

irrigation requirement indicated in the maps refers to irrigation required to meet the water deficit experienced by
the crop during the monsoon season (and not in the post-monsoon period of the crop).
As an example, let us consider plot number 129 in Mangrul (Figure 8(a)). There are multiple farmers within the

plot and two of them were interviewed. The first farmer cultivates 1.25 acres on this plot and also owns three

other plots (numbers 106, 113, and 119) with a total of 7.65 acres across the four plots. The second farmer culti-
vates 3.7 acres on plot number 129. In the kharif season of 2021, the first farmer cultivated soybean while the
second farmer cultivated both soybean and cotton. For farm plot 129, the MRSAC data indicated shallow soil

depth (between 10 and 25 cm deep). Due to this, the computed deficit in Figure 5(g) is high (75–100 mm for soy-
bean). However, both farmers described the soil depth in their farms to be more than 2 feet (.60 cm). As a result,
we recomputed the crop water stress with corrected soil depth for all surveyed plots. With the correction, the

model output shows that soybean would face a water deficit of about 30 mm. This agrees with the farmers’
view who both indicated that their soybean crop needed to be irrigated. The first farmer was able to provide
this by accessing a well, while the second was unable to do so. This was also reflected in the differences in
their crop yields for soybean. In the case of the cotton crop on the same plot, the model estimates no need for

irrigation due to the larger root zone for cotton from which moisture is accessible to the crop. However, in
this, there was a disagreement with the farmer who believed that the crop needed irrigation (although he was
unable to irrigate) while the model estimated that it was not needed.

In this way, a plot-wise comparison was made for each crop and farmer. This comparison is tabulated in
Table 2, where the rows are the bins for the deficits obtained from the corrected soil parameters, and column

Fig. 7 | Comparison of soybean crop water deficit computed for surveyed plots using two different input data for soil type (state
MRSAC data vs. primary field data).
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A is the frequency of that bin. Columns B and C record the farmer’s perceptions for comparison. We find that for

72% (i.e., 56 of the 77 farm-crop pairs) of the data points there is an agreement between the model’s output and
the farmers’ perception about their need for irrigation. It was seen that there are several nuances in farmers’ per-
ception of when a crop needs irrigation. Some farmers do not feel that there is a need for irrigation unless there is

significant crop water stress, i.e., they seek protective irrigation for the crop to avoid a heavy loss of yield. And
there are others who believe that irrigation is needed at the earliest signs of stress, i.e., they aim for productive
irrigation to maximize crop yields. It is therefore expected that due to the qualitative nature of the questions
posed to the farmers, there would not be a perfect match between farmers’ perceptions and the model output.

However, the model and farmers’ perceptions match for plots with high crop water deficit (75 mm and higher)
where protective irrigation would typically be required to reduce significant yield loss. Since 2021 was a high rain-
fall year, there were few plots with high crop water deficits. Another factor that may have contributed to

mismatches between the model output and farmer perspective is poor recall of the dry spell impact by the farmers
as they were heavily impacted by the destructive wet spell at the harvesting stage.

4. DISCUSSION

Vulnerability is a complex phenomenon, which needs better understanding and conceptualization. Currently, in
practice, it is measured through social identities such as caste, class, gender, and their intersections which are

Fig. 8 | Kharif dry spell vulnerability in 2021 monsoon for Mangrul (a) interviewed farm plots, (b and d) dry spell sensitivity map
in terms of irrigation requirement for (b) soybean and (d) cotton based on farmer’s soil description (assumes irrigation not
needed when crop water deficit is �15 mm, and irrigation needed when deficit is more than 15 mm), (c and e) farmer’s
description of whether irrigation was needed in 2021 monsoon for (c) soybean and (e) cotton. (0¼ no need; 1¼ needed).
Cadastral map sourced from the government of Maharashtra Maha-bhulekh.
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Fig. 9 | Kharif dry spell vulnerability in 2021 monsoon for Adgaon (a) interviewed farm plots, (b and d) dry spell sensitivity map in
terms of irrigation requirement for (b) soybean and (d) cotton based on farmer’s soil description (assumes irrigation not needed
when crop water deficit is �15 mm, and irrigation needed when deficit is more than 15 mm), (c and e) farmer’s description of
whether irrigation was needed in 2021 monsoon for (c) soybean and (e) cotton. (0¼ no need; 1¼ needed). Cadastral map
sourced from the government of Maharashtra Maha-bhulekh.

Table 1 | Computation method for farm-level water balance tool.

Water balance component Computation method Reference

Precipitation Input from meteorological data

Reference
Evapotranspiration

Hargreaves model FAO Paper 56 (Allen
et al., (1998))

Surface Run-off SCS Curve number adjusted for slope SWAT manual
(Neitsch et al.,
(2011))

Crop evapotranspiration
(ETc)

FAO methodology for crop ET under standard conditions FAO Paper 56 (Allen
et al., (1998))

Actual crop
evapotranspiration (AET)

FAO methodology for crop ET under soil water stress FAO Paper 56 (Allen
et al., (1998))

GW recharge SWAT methodology SWAT manual
(Neitsch et al.,
(2011))

Soil moisture Mass balance

Monsoon crop water-deficit Difference between potential Crop Evapotranspiration and Actual
evapotranspiration aggregated over the monsoon period
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shown to generally map to different levels of access to material and social assets. When it comes to climate vul-
nerability, these factors influence the adaptive capacity of farmers. However, crop sensitivity to dry spells is a

largely biophysical phenomenon, which has so far not been captured in climate vulnerability literature or in
state interventions to address farmer vulnerability. Our key contribution is our conceptualization of dry spell sen-
sitivity in terms of crop water deficit at the unit of a farm and a methodology to map its distribution to allow

comparison between farms at an aggregate scale such as a village or cluster of villages. A related quantity that
has been considered a good indicator of agricultural droughts is the soil moisture content. However, soil moisture
alone is not a good indicator of dry spell sensitivity as it needs to be seen in combination with other variables such

as precipitation patterns and type of crop grown. For example, Gao et al. (2016) used a distributed hydrological
model to capture and map soil moisture for their study area in North China Plain and extended this to map
drought vulnerability. This required mapping of four distinct factors: rainfall distribution, available run-off, soil
water storage capacity, and crop type, and creating a vulnerability score by weighing them equally. Our

method of mapping crop water deficit is an improvement over such an approach as it integrates these related fac-
tors into a single physical quantity that captures the stress experienced by the crop during a dry spell. Secondly,
crop water deficit is an actionable attribute that suggests the extent of irrigation needed to avoid crop loss. In this

way, our proposed map not only presents who is most vulnerable to dry spells but also relates it to the action
needed to address it. Preston et al. (2011), in their review of approaches to map climate vulnerability, call this
an important criterion for placing vulnerability mapping on a robust footing. Thirdly, our approach to mapping

vulnerability makes it possible to validate or refute the output, unlike vulnerability mapping approaches which
are broader representations of vulnerability and are thus limited in their ability to influence policy and action
(de Sherbinin et al., 2019).

With increasing variability in rainfall patterns across the world, especially in rainfed regions of Asia and Africa,

identifying and targeting support to farmers facing dry spell vulnerability will be increasingly important. Our
method is easily replicable in other geographies. Coupling dry spell sensitivity with appropriate regional proxies
for adaptive capacity (such as access to irrigation, and knowledge) leads to a robust way to measure different

levels of vulnerability to enable action. In the Supplementary material, we illustrate how our tool assists priori-
tization and planning of a specific type of investment, i.e., the open dug-well, within the PoCRA project by

Table 2 | Comparison of modelled monsoon crop water deficit using corrected soil type with survey output for soybean and
cotton farmers, year 2021.

Crop water deficit model
output (mm)

(A) Number of farm
plots

(B) Farmer perspective: irrigation was not
needed

(C) Farmer perspective: irrigation was
needed

0 17 10 7

0–15 21 14 7

15–30 27 6 21

30–45 4 1 3

45–60 0 0 0

60–75 0 0 0

75–100 2 0 2

100–125 6 0 6

Total 77 31 46

It is assumed that a modelled deficit of ,15 mm requires no irrigation. This is compared with farmers’ perception of whether irrigation was needed by the crop.
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Table 3 | Status of input data sets and needs for further improvement.

Input dataset
Current source of
data Scale and resolution Limitation

Corrective measures needed/
taken

Soil texture and soil
depth shape files

Maharashtra
Remote Sensing
Application
Centre
(MRSAC)

Scale: 1:50000 Poor accuracy of soil
texture and depth

MoU with National Bureau
of Soil Survey (NBSS)
initiated for generation of
more accurate (higher
resolution) soil maps

Soil properties (e.g.,
bulk density,
saturated hydraulic
conductivity, field
capacity etc.) for
each texture class

FAO and SPAW
(Soil–Plant–
Air–Water)
model

NA No state-level database
available for local soil
properties, no studies
undertaken

Extensive field surveys and
lab tests required to
generate local state-level
soil databases capturing
organic matter, salinity
etc. that impact soil
properties

Crop properties such
as: root depth,
depletion factor,
crop duration,
growth stages, Kc
value

FAO NA Kc values may differ from
region to region and
variety to variety. No
state-level data
available

Estimation of Kc for few
major crops through
lysimeter experiments at
State Agriculture
Universities to be
initiated in PoCRA. More
local studies required for
documenting different
crop varieties and their
properties

Rainfall and weather
data

Skymet
automated
weather
stations

Spatial: Roughly 1
station per
13,000 ha.
Temporal –
hourly

Problem of some weather
stations going down
during monsoon season
due to power outage or
network issues

Significant improvement in
data resolution and
frequency is already
achieved – from yearly
district level rainfall data
(1998), then daily block
level data (1999),
followed by daily revenue
circle level rainfall data
(from 2013). Since 2018,
hourly weather data is
recorded by Skymet in
collaboration with GoM
through weather stations
in all revenue circles

Curve number USDA Available for
different land
covers and HSGs
(Classified as per
US conditions)

Researchers have shown
differences in curve
numbers when
computed locally. But
no state-wide data
available on curve
numbers.

Need several local studies
for generating local
database for Curve
Numbers

Digital elevation map SRTM 30 m� 30 m Current resolution and
quality are sufficient for

1 m� 1 m resolution DEM
maps available. May be

(Continued.)
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combining dry spell sensitivity maps with indicators of adaptive capacity. Supplementary material, Fig. S1 depicts
the Well Beneficiary module used to create a village scale vulnerability map based on which subsidies for dug
wells are prioritized. A sample of the generated output report is shared in Supplementary material, Fig. S2.

There are, however, many challenges associated with the approach which we reflect on in the following section.
As seen in our results, the quality of input datasets presents many challenges. For example, significant incon-

sistency was found between the soil characteristics as indicated by the state-provided MRSAC maps and the soil
characteristics described by the farmers. As a result, the project partnered with the National Bureau of Soil

Survey and Land-Use Planning (NBSS&LUP) to improve the accuracy of soil maps. Besides this, other challenges
in input data sets were encountered, which are tabulated in Table 2. Similar challenges in vulnerability mapping
have also been called out by other scholars. Given the inter-sectoral nature of vulnerability assessments,

(Kienberger et al., 2016) in their spatial vulnerability mapping in Mauritania emphasize the importance of the
availability of data at good spatial resolution and policies for data sharing across sectors.

In addition to efforts on improving input data quality, the model requires many refinements, for example, to

improve the calibration and to incorporate the effect of key farm-preparation practices. Although the tool is based
on a standard crop water–soil model, there is a need to calibrate it to context-specific practices, e.g., irrigation
methods, intercropping practices, etc. for better results. For example, Gao et al. (2016) report an error margin of
10% in theirmapping ofmodelled soilmoisturewhen compared to observed values, despite the availability of detailed

input data. Some of our ongoing efforts formodel improvements are tabulated in Table 3. These demonstrate the chal-
lenges in the practical application of science for enhancing climate resilience in agriculture. It requires long-term
engagement, extensive fieldwork, and continuous engagement with a large number of stakeholders.

Our experience is consistent with de Sherbinin et al. (2019) who caution that developing vulnerability maps
should not become an end in itself. The centrality of stakeholder engagement in vulnerability mapping cannot

Table 3 | Continued

Input dataset
Current source of
data Scale and resolution Limitation

Corrective measures needed/
taken

generating slope and
drainage maps.

used for better
delineation of stream
proximity regions in the
future

LULC data MRSAC Scale: 1:50000
Temporal: once
in 5 years

Latest available data is
from 2015 to 16. Yearly
changes in LULC due
to rainfall are
important but not
currently recorded/
published

LULC map must be
updated at least every
year but preferably
quarterly to capture
seasonal cropping

Cadastral data Maha-Bhulekh
and MRSAC

Temporal
frequency: Maps
updated every 5
years

Changes and divisions of
land-parcels not
reflected yearly.
Quality: several
duplicates, overlaps in
cadastre polygons,
survey plot numbers
encountered

Data needs frequent
updates, resolution of
errors
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be sufficiently emphasized. At the same time, conducting transdisciplinary research with different stakeholders

who have different expectations has its own challenges. For example, the government agencies want measurable
output within a given timeframe, the scientists look for scientific robustness of the output and the communities
expect an outcome that they deem to be relatable and understandable. The desired approaches of each stake-

holder are also different. State agencies look for more centralized, secondary data-based processes to plan
interventions. The communities have their institutions and structures of power and politics embedded within
them which have strong interests in planning interventions. It is these considerations that researchers must nego-

tiate when working together with policymakers and programme implementors.

5. CONCLUSION

All over the world, rainfed agriculture faces growing risk from climate change. Farmers suffer from dry spell-
induced crop failures. Implementing policies to enhance climate resilience of farmers within the dryland regions
requires ways of identifying and mapping relative vulnerability in order to target investments to the most vulner-

able. Vulnerability mapping has been used at coarser scales for problem orientation and policy decisions on
which hotspots to focus on. Here, we present a methodology that allows vulnerability mapping at the unit of a

Table 4 | Ongoing and planned model improvements.

No. Problem addressed Model improvement Remark Status

1 Model run-off higher
than field
observation

Change from daily to
hourly time-step

Complete. Report published
here: https://www.cse.iitb.ac.
in/∼pocra/Report_a.pdf

2 Shift from using static
monthly ET0 values to
weather-based hourly
values.

Linked with hourly Skymet
data

Complete

3 Calibrating reference
evapotranspiration (ET0)
computation

Comparison of ET0 values
from three different
empirical equations
(Hargreaves, Jensen-Haise
and FAO-56 Penman
Monteith) against measured
data from WALMI to select
the appropriate one

Complete. Report published
here: https://www.cse.iitb.ac.
in/∼pocra/MoU%20II%
20Phase%20II/PET_Method.
pdf

4 Different farm
practices and their
impact on recharge
and soil moisture
retention

Furrows: Incorporating
ponding effect

Ponding constant introduced
in the model

Complete. Report published
here: https://www.cse.iitb.ac.
in/∼pocra/Report_a.pdf

5 Impact of intercropping To be addressed in the future

6 Improvement in
groundwater
recharge estimates in
high rainfall
situations

Improvement in
groundwater recharge
estimation

Incorporating hydrogeological
parameters such as aquifer
thickness and specific yield
for capping GW recharge
and accounting excess as
surface or base flows

Conceptual prototype
recommended and accepted
by GoM. The changes can be
implemented over the whole
state once GSDA publishes/
shares better resolution
hydrogeological data
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farm, which is useful to support targeting of interventions for climate resilience within a project focus area, such
as a cluster of villages. This is important since there is wide variation in vulnerability within any focus region.

In India, the Government of Maharashtra’s PoCRA is the first state programme in the country that has the man-

date to support farmers identified as most vulnerable. Our scientific inputs and tools for mapping vulnerability
have been developed and deployed in the programme through a transdisciplinary partnership with the imple-
menting agency. Our scientific contribution is in the conceptualization of dry spell vulnerability as a
combination of crop water deficit, which is a function of farm biophysical attributes, and the farmers’ adaptive

capacity, which is driven by social attributes. We extend this concept to practice in the form of a tool that is
embedded in the state process to target interventions and bring more transparency to the process. The develop-
ment of our tool has been through an iterative effort of field validation, reporting, and model improvements. The

paper presents the results of one such cycle of field application. Our work demonstrates how vulnerability to cli-
mate hazards may be mapped at micro-scales to assist policy-makers and practitioners in targeting interventions.
Our methods can be easily adapted to plan for climate resilience in other ecologically fragile regions which

experience high variability in rainfall and other weather parameters. Our tool and the process in which it is
embedded is a significant step in current intervention planning for climate-resilient agriculture, yet there continue
to be several areas of improvement. Our key learning is that enhancing climate resilience in agricultural pro-

duction requires infusion of new science within state processes through long-term partnerships with different
agencies and communities.

ACKNOWLEDGEMENTS

The authors would like to acknowledge the support of the PoCRA Project Management Unit (PMU): Shri Rastogi
(IAS, Project Director till 2021), Shri Kolekar (Agronomist), Ms Indra Mallo (IAS, Project Director), the staff at
PMU and relevant staff of the Department of Agriculture, Government of Maharashtra. We also thank the innu-

merable farmers who provided key inputs. We would like to acknowledge the inputs of all the students who have
been associated with the project – Gopal Chavan, Swapnil Patil, current staff member Asim R. P. (who contrib-
uted to the Well Beneficiary module), and previous staff members: Dr Rahul Gokhale, Shubhada Sali, and
Vidyadhar Konde.

DATA AVAILABILITY STATEMENT

All relevant data are included in the paper or its Supplementary Information.

CONFLICT OF INTEREST

The authors declare there is no conflict.

REFERENCES

Allen, R. G., Pereira, L. S., Raes, D. & Smith, M. (1998). FAO irrigation and drainage paper. Irrigation and Drainage 300(56),
300. https://doi.org/10.1016/j.eja.2010.12.001.

Bhopale, M. (2019). Implementing Climate Resilience in Agriculture, M.Tech. Thesis, Indian Institute of Technology Bombay,
India. Available at: https://www.cse.iitb.ac.in/∼pocra/MTP2reportmanasi.pdf.

Brooks, N., (2003). Vulnerability, risk and adaptation: A conceptual framework. Tyndall Centre for climate change research
working paper, (38).

Dagdeviren, H., Elangovan, A. & Parimalavalli, R. (2021). Climate change, monsoon failures and inequality of impacts in South
India. Journal of Environmental Management 299(August), 113555. https://doi.org/10.1016/j.jenvman.2021.113555.

Water Policy Vol 00 No 0, 18

Uncorrected Proof

Downloaded from http://iwaponline.com/wp/article-pdf/doi/10.2166/wp.2023.036/1254221/wp2023036.pdf
by guest
on 21 July 2023

http://dx.doi.org/10.1016/j.eja.2010.12.001
https://www.cse.iitb.ac.in/&sim;pocra/MTP2reportmanasi.pdf
http://dx.doi.org/10.1016/j.jenvman.2021.113555
http://dx.doi.org/10.1016/j.jenvman.2021.113555


de Sherbinin, A., Bukvic, A., Rohat, G., Gall, M., McCusker, B., Preston, B., Apotsos, A., Fish, C., Kienberger, S., Muhonda, P.,
Wilhelmi, O., Macharia, D., Shubert, W., Sliuzas, R., Tomaszewski, B. & Zhang, S. (2019). Climate vulnerability mapping:
a systematic review and future prospects. Wiley Interdisciplinary Reviews: Climate Change 10(5), 1–23. https://doi.org/
10.1002/wcc.600.

DTE (2019). Drought but why: What Happened to the Promise of Drought-Free Maharashtra? Down to Earth. Available at:
https://www.downtoearth.org.in/news/agriculture/drought-but-why-what-happened-to-the-promise-of-a-drought-free-
maharashtra–63417 (accessed 9 March 2019).

Duncan, J. M., Tompkins, E. L., Dash, J. & Tripathy, B. (2017). Resilience to hazards: rice farmers in the Mahanadi Delta, India.
Ecology and Society 22(4). https://doi.org/10.5751/ES-09559-220403.

Enfors, E. (2013). Social – ecological traps and transformations in dryland agro-ecosystems : using water system innovations to
change the trajectory of development. Global Environmental Change 23(1), 51–60. https://doi.org/10.1016/j.gloenvcha.
2012.10.007.

Gao, X., Lu, C., Luan, Q., Zhang, S., Liu, J. & Han, D. (2016). Mapping farmland-soil moisture at a regional scale using a
distributed hydrological model: case study in the North China plain. Journal of Irrigation and Drainage Engineering 142(9).
https://doi.org/10.1061/(ASCE)IR.1943-4774.0001036

Garg, K.K., Singh,R., Anantha,K.H., Singh,A.K., Akuraju, V. R., Barron, J., Dev, I., Tewari, R. K.,Wani, S. P., Dhyani, S. K.&Dixit,
S. (2020). Building climate resilience in degraded agricultural landscapes through water management: a case study of
Bundelkhand region, Central India. Journal of Hydrology 591(April), 125592. https://doi.org/10.1016/j.jhydrol.2020.125592.

Hessari, B. & Oweis, T. (2021). Conjunctive use of green and blue water resources in agriculture: methodology and application
for supplemental irrigation*. Irrigation and Drainage 70(5), 1193–1208. https://doi.org/10.1002/ird.2611.

Imbulana, N. & Manoharan, S. (2020). Hydrological and water balance studies to evaluate options for climate resilience in
smallholder irrigation systems in Sri Lanka. Water Policy 22(6), 1024–1046. https://doi.org/10.2166/wp.2020.111.

Jurriens, M., Mollinga, P. P. & Wester, P. (1996). Scarcity by design. Protective irrigation in India and Pakistan. Liquid gold
paper 1(July 2016), 1–60.

Kadiyala, M. D. M., Gummadi, S., Irshad, M. A., Palanisamy, R., Gumma, M. K. & Whitbread, A. (2021). Assessment of climate
change and vulnerability in Indian state of Telangana for better agricultural planning. Theoretical and Applied Climatology
143(1–2), 309–325. https://doi.org/10.1007/s00704-020-03425-8.

Keshavarz, M. (2016). Agricultural water vulnerability in rural Iran. Water Policy 18(3), 586–598.
Kienberger, S., Borderon, M., Bollin, C. & Jell, B. (2016). Climate change vulnerability assessment in Mauritania: reflections on

data quality, spatial scales, aggregation and visualizations. GI_Forum 4(1), 167–175. https://doi.org/10.1553/
giscience2016_01_s167.

Kuchimanchi, B. R., Nazareth, D., Bendapudi, R., Awasthi, S. & D’Souza, M. (2019). Assessing differential vulnerability of
communities in the agrarian context in two districts of Maharashtra, India. Climate and Development 11(10), 918–929.
https://doi.org/10.1080/17565529.2019.1593815.

Kuchimanchi, B. R., van Paassen, A. & Oosting, S. J. (2021). Understanding the vulnerability, farming strategies and
development pathways of smallholder farming systems in Telangana, India. Climate Risk Management 31(April 2020),
100275. https://doi.org/10.1016/j.crm.2021.100275.

Kumar, M. D. & Saleth, R. M. (2018). Inequality in the Indian water sector: challenges and policy options. Indian Journal of
Human Development 12(2), 265–281. https://doi.org/10.1177/0973703018793727.

Kumar, M. D., Reddy, V. R., Narayanamoorthy, A., Bassi, N. & James, A. J. (2018). Rainfed areas: poor definition and flawed
solutions. International Journal of Water Resources Development 34(2), 278–291. https://doi.org/10.1080/07900627.2017.
1278680.

Lindoso, D. P., Rocha, J. D., Debortoli, N., Parente, I. I., Eiró, F., Bursztyn, M. & Rodrigues-Filho, S. (2014). Integrated
assessment of smallholder farming’s vulnerability to drought in the Brazilian Semi-arid: a case study in Ceará. Climatic
Change 127(1), 93–105. https://doi.org/10.1007/s10584-014-1116-1.

Manivasagam, V. S. & Nagarajan, R. (2017). Assessing the supplementary irrigation for improving crop productivity in water
stress region using spatial hydrological model. Geocarto International 32(1), 1–17. https://doi.org/10.1080/10106049.
2015.1120355.

Meza, I., Eyshi Rezaei, E., Siebert, S., Ghazaryan, G., Nouri, H., Dubovyk, O., Gerdener, H., Herbert, C., Kusche, J., Popat, E.,
Rhyner, J., Jordaan, A., Walz, Y. & Hagenlocher, M. (2021). Drought risk for agricultural systems in South Africa: drivers,
spatial patterns, and implications for drought risk management. Science of the Total Environment 799. https://doi.org/
10.1016/j.scitotenv.2021.149505.

Water Policy Vol 00 No 0, 19

Uncorrected Proof

Downloaded from http://iwaponline.com/wp/article-pdf/doi/10.2166/wp.2023.036/1254221/wp2023036.pdf
by guest
on 21 July 2023

http://dx.doi.org/10.1002/wcc.600
http://dx.doi.org/10.1002/wcc.600
https://www.downtoearth.org.in/news/agriculture/drought-but-why-what-happened-to-the-promise-of-a-drought-free-maharashtra&ndash;63417
https://www.downtoearth.org.in/news/agriculture/drought-but-why-what-happened-to-the-promise-of-a-drought-free-maharashtra&ndash;63417
http://dx.doi.org/10.5751/ES-09559-220403
http://dx.doi.org/10.1016/j.gloenvcha.2012.10.007
http://dx.doi.org/10.1016/j.gloenvcha.2012.10.007
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0001036
http://dx.doi.org/10.1061/(ASCE)IR.1943-4774.0001036
http://dx.doi.org/10.1016/j.jhydrol.2020.125592
http://dx.doi.org/10.1016/j.jhydrol.2020.125592
http://dx.doi.org/10.1002/ird.2611
http://dx.doi.org/10.1002/ird.2611
http://dx.doi.org/10.2166/wp.2020.111
http://dx.doi.org/10.2166/wp.2020.111
http://dx.doi.org/10.1007/s00704-020-03425-8
http://dx.doi.org/10.1007/s00704-020-03425-8
http://dx.doi.org/10.2166/wp.2015.175
http://dx.doi.org/10.1553/giscience2016_01_s167
http://dx.doi.org/10.1553/giscience2016_01_s167
http://dx.doi.org/10.1080/17565529.2019.1593815
http://dx.doi.org/10.1080/17565529.2019.1593815
http://dx.doi.org/10.1016/j.crm.2021.100275
http://dx.doi.org/10.1016/j.crm.2021.100275
http://dx.doi.org/10.1177/0973703018793727
http://dx.doi.org/10.1080/07900627.2017.1278680
http://dx.doi.org/10.1080/07900627.2017.1278680
http://dx.doi.org/10.1007/s10584-014-1116-1
http://dx.doi.org/10.1007/s10584-014-1116-1
http://dx.doi.org/10.1080/10106049.2015.1120355
http://dx.doi.org/10.1080/10106049.2015.1120355
http://dx.doi.org/10.1016/j.scitotenv.2021.149505
http://dx.doi.org/10.1016/j.scitotenv.2021.149505


Neitsch, S. L., Arnold, J. G., Kiniry, J. R. & Williams, J. R. (2011). Soil & water assessment tool theoretical documentation
version 2009. Texas Water Resources Institute, 1–647. https://doi.org/10.1016/j.scitotenv.2015.11.063.

Nyantakyi-frimpong, H. (2020). Unmasking difference : intersectionality and smallholder farmers ‘ vulnerability to climate
extremes in Northern Ghana. Gender, Place & Culture 27(11), 1536–1554. https://doi.org/10.1080/0966369X.2019.
1693344.

Panigrahi, B., Panda, S. N. & Agrawal, A. (2005). Water balance simulation and economic analysis for optimal size of on-farm
reservoir. Water Resources Management 19(3), 233–250. https://doi.org/10.1007/s11269-005-2701-x.

Prasad, P. & Sohoni, M. (2020). Agricultural intensification and risk in water-constrained hard-rock regions: a social-ecological
systems study of horticulture cultivation in Western India. Ecology and Society 25(4), 1–20. https://doi.org/10.5751/
ES-11825-250402.

Prasad, P., Damani, O. P. & Sohoni, M. (2022). How can resource-level thresholds guide sustainable intensification of
agriculture at farm level? A system dynamics study of farm-pond based intensification. Agricultural Water Management
264. https://doi.org/10.1016/j.agwat.2021.107385.

Preston, B. L., Yuen, E. J. & Westaway, R. M. (2011). Putting vulnerability to climate change on the map: a review of
approaches, benefits, and risks. Sustainability Science 6, 177–202. https://doi.org/10.1007/s11625-011-0129-1.

Ramprasad, V. (2018). Debt and vulnerability : indebtedness, institutions and smallholder agriculture in South India. The
Journal of Peasant Studies 0(0), 1–22. https://doi.org/10.1080/03066150.2018.1460597.

Rockström, J. & Falkenmark, M. (2000). Semiarid crop production from a hydrological perspective: gap between potential and
actual yields. Critical Reviews in Plant Sciences 19(4), 319–346. https://doi.org/10.1080/07352680091139259.

Rockström, J., Karlberg, L., Wani, S. P., Barron, J., Hatibu, N., Oweis, T., Bruggeman, A., Farahani, J. & Qiang, Z. (2010).
Managing water in rainfed agriculture-The need for a paradigm shift. Agricultural Water Management 97(4), 543–550.
https://doi.org/10.1016/j.agwat.2009.09.009.

Sikka, A. K., Islam, A. & Rao, K. V. (2018). Climate-smart land and water management for sustainable agriculture. Irrigation and
Drainage 67(1), 72–81. https://doi.org/10.1002/ird.2162.

Singh, S. (2020). Bridging the gap between biophysical and social vulnerability in rural India: a community livelihood
vulnerability approach. Area Development and Policy 5(4), 390–411. https://doi.org/10.1080/23792949.2020.1734473.

Singh, D., Tsiang, M., Rajaratnam, B. & Diffenbaugh, N. S. (2014). Observed changes in extreme wet and dry spells during the
South Asian summer monsoon season. Nature Climate Change 4, 456.

Swami, D. & Parthasarathy, D. (2020). A multidimensional perspective to farmers ‘ decision making determines the adaptation
of the farming community. Journal of Environmental Management 264(March), 110487. https://doi.org/10.1016/
j.jenvman.2020.110487.

Swami, D., Dave, P. & Parthasarathy, D. (2018). Agricultural susceptibility to monsoon variability: a district level analysis of
Maharashtra, India. Science of the Total Environment 619–620, 559–577. https://doi.org/10.1016/j.scitotenv.2017.10.328.

First received 5 February 2023; accepted in revised form 2 July 2023. Available online 19 July 2023

Water Policy Vol 00 No 0, 20

Uncorrected Proof

Downloaded from http://iwaponline.com/wp/article-pdf/doi/10.2166/wp.2023.036/1254221/wp2023036.pdf
by guest
on 21 July 2023

http://dx.doi.org/10.1016/j.scitotenv.2015.11.063
http://dx.doi.org/10.1016/j.scitotenv.2015.11.063
http://dx.doi.org/10.1080/0966369X.2019.1693344
http://dx.doi.org/10.1080/0966369X.2019.1693344
http://dx.doi.org/10.1007/s11269-005-2701-x
http://dx.doi.org/10.1007/s11269-005-2701-x
http://dx.doi.org/10.5751/ES-11825-250402
http://dx.doi.org/10.5751/ES-11825-250402
http://dx.doi.org/10.1016/j.agwat.2021.107385
http://dx.doi.org/10.1016/j.agwat.2021.107385
http://dx.doi.org/10.1007/s11625-011-0129-1
http://dx.doi.org/10.1007/s11625-011-0129-1
http://dx.doi.org/10.1080/03066150.2018.1460597
http://dx.doi.org/10.1080/07352680091139259
http://dx.doi.org/10.1080/07352680091139259
http://dx.doi.org/10.1016/j.agwat.2009.09.009
http://dx.doi.org/10.1002/ird.2162
http://dx.doi.org/10.1080/23792949.2020.1734473
http://dx.doi.org/10.1080/23792949.2020.1734473
http://dx.doi.org/10.1038/nclimate2208
http://dx.doi.org/10.1038/nclimate2208
http://dx.doi.org/10.1016/j.jenvman.2020.110487
http://dx.doi.org/10.1016/j.jenvman.2020.110487
http://dx.doi.org/10.1016/j.scitotenv.2017.10.328
http://dx.doi.org/10.1016/j.scitotenv.2017.10.328

	Mapping farmer vulnerability to target interventions for climate-resilient agriculture: science in practice
	INTRODUCTION
	State response for climate-resilient agriculture

	METHODS
	Conceptualizing dry spell vulnerability
	Estimating dry spell sensitivity
	Computing sensitivity to dry spell at the farm plot unit
	Collating and aggregating sensitivity over the village map

	Field application: study area

	RESULTS
	Dry spell analysis
	Dry spell sensitivity map
	Field interview findings

	DISCUSSION
	CONCLUSION
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY STATEMENT
	CONFLICT OF INTEREST
	REFERENCES


