
1 KReSIT, IIT BombayKReSIT, IIT Bombay

ComponentComponent--Based WhiteBased White--Box TestingBox Testing
By

Prathab K
(Roll No: 06329902)

Under the guidance of

Prof. Deepak B. Phatak



2 KReSIT, IIT BombayKReSIT, IIT Bombay

OutlineOutline

• Component-based software development

• Software component testing

• White-box testing methods for software components

• Systematic procedure for white-box testing of software 
components

• Conclusions & Future work



3 KReSIT, IIT BombayKReSIT, IIT Bombay

ComponentComponent--based Software Developmentbased Software Development
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Software ComponentsSoftware Components

• What is software component?
– confirms to a component model
– independently deployable
– composed according to a composition standard (EJB, CORBA, or COM+)

Reuse

Software components System assemblyNotion of components
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Engineering process for software componentsEngineering process for software components

• Component-based software development involves:
– Component qualification
– Component adaptation
– Assembling components into systems
– System evolution
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Software Component TestingSoftware Component Testing
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Testing software componentsTesting software components

• Involves
– Testing individual components
– Testing interaction among components

• Necessity
– Inconsistent infrastructure and environment
– Inconsistent interaction model

• Challenges
– Lack of source code availability
– Performance and reliability analysis
– Test Adequacy criteria
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Methods to increase component testabilityMethods to increase component testability

• Component testability
– degree of component facility for component testing

Components

Testing 
Framework
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Framework-based testing facility[4] Built-in tests[5] Systematic component wrapping 
for testing (testable beans)[6]

[4] Stocks, P. A., and Carrington, D. A, “A Framework for Specification-Based Testing”
[5] Wang, Yingxu, King, Graham, and Wickburg, Hakan, “A Method for Built-in Tests in Component-based Software Maintenance”
[6] Gao, J., et al., “On Building Testable Software Components”
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WhiteWhite--box Testing Methods for Software box Testing Methods for Software 
ComponentsComponents
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WhiteWhite--box testingbox testing

• “Testing that takes into account the internal mechanism of a 
system or component”

• White-box vs Black-box testing?
– Black-box testing against the specification
– White-box testing against the implementation

• Is white-box = unit testing?
– Not exactly!
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Flow graph notationFlow graph notation

• Flow graph notation represents the structure of the program
S1: Integer MinElement (Array A){
S2:    min = Interger.MAX;
S3:    for(i=0; i < A.length; i++) {
S4:      if(min > A[i]) {
S5:        min = A[i]; }
S6:    }
S7:    return min;
S8: }

Sbegin

S1

S2

S3_1S3_2

S4

S3_3

Send

S7S5

i < A.length

i =0

i++

min > A.[i] min = A[i]

i < A.length

min = Interger.MAX

A flow graph example
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Path testingPath testing

• To ensure all independent paths through a code are tested

• Coverage factors:
– Statement coverage
– Branch coverage
– Multiple-condition coverage
– Path coverage
– Loop coverage

• Independent paths
– McCabe’s cyclomatic measurement

• v(G) = e – n + p

e - Edges 
n - Nodes 
p - no. of connected components

Sbegin

S1

S2

S3_1S3_2

S4

S3_3

Send

S7S5

i < A.length

i =0

i++

min > A.[i] min = A[i]

i < A.length

min = Interger.MAX



13 KReSIT, IIT BombayKReSIT, IIT Bombay

Data flow and ObjectData flow and Object--oriented testingoriented testing

• Data flow testing
– Observing the lifecycle of a particular data (variable)

• Object-oriented testing
– Test the OO features like inheritance, polymorphism, binding coverage, state-based 

testing
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Issues & Challenges in testing software componentsIssues & Challenges in testing software components

• Components developed in a context and deployed in another 
context

• More expensive to fix the faults, after component delivery

• Identifying the possible external and internal scenarios for a 
software component

• Applying strict test adequacy criteria
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Systematic procedure for whiteSystematic procedure for white--box testing of box testing of 
software componentssoftware components



16 KReSIT, IIT BombayKReSIT, IIT Bombay

Is whiteIs white--box testing ignored?box testing ignored?

• White-box testing requires high expenses in terms of time and 
resources

• Test code is greater than the development code

• Developers are confident on their code

• Developers tends to overlook their faults, during unit testing

• Sometimes white-box testing is done for the sake of organizational 
process

• Criticism causes quarrel among the team members
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WhiteWhite--box testing toolsbox testing tools

• Wide variety of white-box testing tools are available

• Testing Framework
– JUnit, NUnit,…

• Test case generation tools
– JTest, TBrun,…

• Test coverage tools
– Clover, Cobertura,…
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Does coverage is enough?Does coverage is enough?

• Objects and variables may be in many states

• Presence of conditionals creates multiple paths of execution

• Does not validates the implementation behavior (logic)
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Shrinking the development timeShrinking the development time

• Modern IDEs and Tools shrinks the development time

• Most of the development time wasted in regression errors

• Late detection of regression error costs more
– more code changes had happened
– developer forgot the context
– developer spend more time in building new code on top of faulty code
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Continuous testingContinuous testing

• Idea of continuous testing[9], uses real-time integration with the 
development environment to asynchronously run tests

• Achieved by constructing safe asynchronous model – test execution is 
done on current code version  and feedback is provided to the developer

• Resembles to TOTE (Test-Operate-Test-Exit) model of cognitive behavior

• Continuous testing reduces wasted time by 92-98%, over other 
approaches

Running
Test Suite

Add/Modify
Code

Successful
Test Run

Test Operate Exit

Continuous Testing (TOTE model)

[9] David Saff, Michael D. Ernst, “Reducing wasted development time via continuous testing”
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Who watches the watchman?Who watches the watchman?

• Any form of observation is also an interaction, that the act of 
testing can also affect that which is being tested

• Members of the "context-driven" school of testing believe that 
there are no "best practices" of testing 

• Good software testing is a challenging intellectual process
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ReRe--test model for whitetest model for white--box testingbox testing

• Problems
– Identify the component's change and analyze their impacts to its component test 

suite
– A cost-effective method for test suite updates and maintenance

• Solution: Re-test model
– To identify the relationships between components at unit level
– To identify the reusable test cases and to define re-test criteria
– Facilitate automatic test generation and adaptation to the modified component

• Component Function Access Graph (CFAG) model[10]

– view depicting the dependency and data flow among the functions within a 
component

• Dynamic-CFAG[11]

– dynamic view of the function invocation by a test case

[10] Jerry Gao, Raquel Espinoza, Jingsha He, "Testing Coverage Analysis for Software Component Validation“
[11] J. Gao, D. Gopinathan, Quan Mai, Jingsha He, “A Systematic Regression Testing Method and Tool For Software Components”
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Mapping of test cases to development codeMapping of test cases to development code
• Mapping of test cases to development code at statement level helps:

– to have an effective white-box testing activities
– to identify the regression test suite (especially for continuous testing)
– to study the test suite impact analysis
– prioritizing the test cases

Test cases mapping to 
development code. 
Depicts the mapping of 
test set to module level 
and test case at 
statement level
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ConclusionsConclusions

• White-box testing contributes the major effort towards the 
component quality assurance

• IDEs and Tools should assist the developer to form a quality test 
suite for an effective white-box testing

• To develop a tool which will aid the developer to perform an 
efficient white-box testing process by collaborating with the 
existing tools and utilizing the discussed concepts
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