
1 KReSIT, IIT BombayKReSIT, IIT Bombay

ComponentComponent--Based WhiteBased White--Box TestingBox Testing
By

Prathab K
(Roll No: 06329902)

Under the guidance of

Prof. Deepak B. Phatak

2 KReSIT, IIT BombayKReSIT, IIT Bombay

OutlineOutline

• Component-based software development

• Software component testing

• White-box testing methods for software components

• Systematic procedure for white-box testing of software
components

• Conclusions & Future work

3 KReSIT, IIT BombayKReSIT, IIT Bombay

ComponentComponent--based Software Developmentbased Software Development

4 KReSIT, IIT BombayKReSIT, IIT Bombay

Software ComponentsSoftware Components

• What is software component?
– confirms to a component model
– independently deployable
– composed according to a composition standard (EJB, CORBA, or COM+)

Reuse

Software components System assemblyNotion of components

5 KReSIT, IIT BombayKReSIT, IIT Bombay

Engineering process for software componentsEngineering process for software components

• Component-based software development involves:
– Component qualification
– Component adaptation
– Assembling components into systems
– System evolution

off-the-shelf
components

qualified
components

adapted
components

assembled
components

updated
components

States

qualification to
discover interface
and fitness for use

adaptation to
remove
architectural
mismatch

composition
into a
selected
architectural
style

evolution to
updated
components

Activities/
Transformations

6 KReSIT, IIT BombayKReSIT, IIT Bombay

Software Component TestingSoftware Component Testing

7 KReSIT, IIT BombayKReSIT, IIT Bombay

Testing software componentsTesting software components

• Involves
– Testing individual components
– Testing interaction among components

• Necessity
– Inconsistent infrastructure and environment
– Inconsistent interaction model

• Challenges
– Lack of source code availability
– Performance and reliability analysis
– Test Adequacy criteria

8 KReSIT, IIT BombayKReSIT, IIT Bombay

Te
st

in
g

In
te

rf
ac

e

ComponentComponent

Methods to increase component testabilityMethods to increase component testability

• Component testability
– degree of component facility for component testing

Components

Testing
Framework

Component

F1 T

F2 T

Component

F

F

T1

T2

Framework-based testing facility[4] Built-in tests[5] Systematic component wrapping
for testing (testable beans)[6]

[4] Stocks, P. A., and Carrington, D. A, “A Framework for Specification-Based Testing”
[5] Wang, Yingxu, King, Graham, and Wickburg, Hakan, “A Method for Built-in Tests in Component-based Software Maintenance”
[6] Gao, J., et al., “On Building Testable Software Components”

9 KReSIT, IIT BombayKReSIT, IIT Bombay

WhiteWhite--box Testing Methods for Software box Testing Methods for Software
ComponentsComponents

10 KReSIT, IIT BombayKReSIT, IIT Bombay

WhiteWhite--box testingbox testing

• “Testing that takes into account the internal mechanism of a
system or component”

• White-box vs Black-box testing?
– Black-box testing against the specification
– White-box testing against the implementation

• Is white-box = unit testing?
– Not exactly!

11 KReSIT, IIT BombayKReSIT, IIT Bombay

Flow graph notationFlow graph notation

• Flow graph notation represents the structure of the program
S1: Integer MinElement (Array A){
S2: min = Interger.MAX;
S3: for(i=0; i < A.length; i++) {
S4: if(min > A[i]) {
S5: min = A[i]; }
S6: }
S7: return min;
S8: }

Sbegin

S1

S2

S3_1S3_2

S4

S3_3

Send

S7S5

i < A.length

i =0

i++

min > A.[i] min = A[i]

i < A.length

min = Interger.MAX

A flow graph example

12 KReSIT, IIT BombayKReSIT, IIT Bombay

Path testingPath testing

• To ensure all independent paths through a code are tested

• Coverage factors:
– Statement coverage
– Branch coverage
– Multiple-condition coverage
– Path coverage
– Loop coverage

• Independent paths
– McCabe’s cyclomatic measurement

• v(G) = e – n + p

e - Edges
n - Nodes
p - no. of connected components

Sbegin

S1

S2

S3_1S3_2

S4

S3_3

Send

S7S5

i < A.length

i =0

i++

min > A.[i] min = A[i]

i < A.length

min = Interger.MAX

13 KReSIT, IIT BombayKReSIT, IIT Bombay

Data flow and ObjectData flow and Object--oriented testingoriented testing

• Data flow testing
– Observing the lifecycle of a particular data (variable)

• Object-oriented testing
– Test the OO features like inheritance, polymorphism, binding coverage, state-based

testing

14 KReSIT, IIT BombayKReSIT, IIT Bombay

Issues & Challenges in testing software componentsIssues & Challenges in testing software components

• Components developed in a context and deployed in another
context

• More expensive to fix the faults, after component delivery

• Identifying the possible external and internal scenarios for a
software component

• Applying strict test adequacy criteria

15 KReSIT, IIT BombayKReSIT, IIT Bombay

Systematic procedure for whiteSystematic procedure for white--box testing of box testing of
software componentssoftware components

16 KReSIT, IIT BombayKReSIT, IIT Bombay

Is whiteIs white--box testing ignored?box testing ignored?

• White-box testing requires high expenses in terms of time and
resources

• Test code is greater than the development code

• Developers are confident on their code

• Developers tends to overlook their faults, during unit testing

• Sometimes white-box testing is done for the sake of organizational
process

• Criticism causes quarrel among the team members

17 KReSIT, IIT BombayKReSIT, IIT Bombay

WhiteWhite--box testing toolsbox testing tools

• Wide variety of white-box testing tools are available

• Testing Framework
– JUnit, NUnit,…

• Test case generation tools
– JTest, TBrun,…

• Test coverage tools
– Clover, Cobertura,…

18 KReSIT, IIT BombayKReSIT, IIT Bombay

Does coverage is enough?Does coverage is enough?

• Objects and variables may be in many states

• Presence of conditionals creates multiple paths of execution

• Does not validates the implementation behavior (logic)

19 KReSIT, IIT BombayKReSIT, IIT Bombay

Shrinking the development timeShrinking the development time

• Modern IDEs and Tools shrinks the development time

• Most of the development time wasted in regression errors

• Late detection of regression error costs more
– more code changes had happened
– developer forgot the context
– developer spend more time in building new code on top of faulty code

20 KReSIT, IIT BombayKReSIT, IIT Bombay

Continuous testingContinuous testing

• Idea of continuous testing[9], uses real-time integration with the
development environment to asynchronously run tests

• Achieved by constructing safe asynchronous model – test execution is
done on current code version and feedback is provided to the developer

• Resembles to TOTE (Test-Operate-Test-Exit) model of cognitive behavior

• Continuous testing reduces wasted time by 92-98%, over other
approaches

Running
Test Suite

Add/Modify
Code

Successful
Test Run

Test Operate Exit

Continuous Testing (TOTE model)

[9] David Saff, Michael D. Ernst, “Reducing wasted development time via continuous testing”

21 KReSIT, IIT BombayKReSIT, IIT Bombay

Who watches the watchman?Who watches the watchman?

• Any form of observation is also an interaction, that the act of
testing can also affect that which is being tested

• Members of the "context-driven" school of testing believe that
there are no "best practices" of testing

• Good software testing is a challenging intellectual process

22 KReSIT, IIT BombayKReSIT, IIT Bombay

ReRe--test model for whitetest model for white--box testingbox testing

• Problems
– Identify the component's change and analyze their impacts to its component test

suite
– A cost-effective method for test suite updates and maintenance

• Solution: Re-test model
– To identify the relationships between components at unit level
– To identify the reusable test cases and to define re-test criteria
– Facilitate automatic test generation and adaptation to the modified component

• Component Function Access Graph (CFAG) model[10]

– view depicting the dependency and data flow among the functions within a
component

• Dynamic-CFAG[11]

– dynamic view of the function invocation by a test case

[10] Jerry Gao, Raquel Espinoza, Jingsha He, "Testing Coverage Analysis for Software Component Validation“
[11] J. Gao, D. Gopinathan, Quan Mai, Jingsha He, “A Systematic Regression Testing Method and Tool For Software Components”

23 KReSIT, IIT BombayKReSIT, IIT Bombay

Mapping of test cases to development codeMapping of test cases to development code
• Mapping of test cases to development code at statement level helps:

– to have an effective white-box testing activities
– to identify the regression test suite (especially for continuous testing)
– to study the test suite impact analysis
– prioritizing the test cases

Test cases mapping to
development code.
Depicts the mapping of
test set to module level
and test case at
statement level

24 KReSIT, IIT BombayKReSIT, IIT Bombay

ConclusionsConclusions

• White-box testing contributes the major effort towards the
component quality assurance

• IDEs and Tools should assist the developer to form a quality test
suite for an effective white-box testing

• To develop a tool which will aid the developer to perform an
efficient white-box testing process by collaborating with the
existing tools and utilizing the discussed concepts

25 KReSIT, IIT BombayKReSIT, IIT Bombay

ReferencesReferences

[1] Heineman, G. T., and W. T. Councill, (eds.), “Component-Based Software Engineering:
Putting the Pieces Together”, Reading, MA:Addison-Wesley, 2001.

[2] Jerry Zeyu Gao, H.S. Jacob Taso, Ye Wu – “Testing And Quality Assurance For
Component Based Software”,Artech House Boston, 2003.

[3] Gao, J., “Challenges and Problems in Testing Software Components”, Proc. of
ICSE2000's 3rd International Workshop on Component-Based Software Engineering:
Reflects and Practice, Limerick, Ireland, June 2000.

[4] Stocks, P. A., and Carrington, D. A, “A Framework for Specification-Based Testing”, IEEE
Transaction on Software Engineering, Vol. 22 (11), IEEE Computer Society Press (1996),
777-794.

[5] Wang, Yingxu, King, Graham, and Wickburg, Hakan, “A Method for Built-in Tests in
Component-based Software Maintenance”, Proceedings of the 3rd European Conference
on Software Maintenance and Reengineering, (1998).

[6] Gao, J., et al., “On Building Testable Software Components”, Proc. of 1st International
Conference on Cost-Based Software System, 2002, pp. 108-121.

26 KReSIT, IIT BombayKReSIT, IIT Bombay

ReferencesReferences

[7] McCabe, T., “A Complexity Measure”, IEEE Transactions on Software Engineering,
December 1976.

[8] http://www.testingfaqs.org/t-unit.html - Unit Testing Tools

[9] David Saff, Michael D. Ernst, “Reducing wasted development time via continuous testing”.
In 14th International Symposium on Software Reliability Engineering, pages 281 - 292,
2003

[10] Jerry Gao, Raquel Espinoza, Jingsha He, "Testing Coverage Analysis for Software
Component Validation". In Proceedings of the 29th Annual International Computer
Software and Applications Conference (COMPSAC’05), 2005

[11] J. Gao, D. Gopinathan, Quan Mai, Jingsha He, “A Systematic Regression Testing
Method and Tool For Software Components”. In Proceedings of 30th Annual International
on Computer Software and Applications Conference, Volume 1, pages 455 - 466. IEEE
Computer Society, September 2006.

