
CS 333: Operating Systems Lab
Autumn 2018

Lab 6: munching on memory

Goal
In this lab we will understand how xv6 handles memory for user processes and the kernel.

Before you begin
• Download the source code for xv6 from the following url:
http://www.cse.iitb.ac.in/~puru/courses/autumn18/labs/xv6-public.tar.gz
Make sure you read the README to understand how to boot into a xv6-based system.

• Download, read and use as reference the xv6 source code companion book.
url: http://www.cse.iitb.ac.in/~puru/courses/autumn18/labs/xv6-rev10.pdf

• The xv6 OS book is here:
http://www.cse.iitb.ac.in/~puru/courses/autumn18/labs/xv6-book-rev10.pdf

0. Breaking the ice
In this exercise, you will walk through the xv6 code to understand how xv6 manages memory. xv6 uses
32-bit virtual addresses, resulting in a virtual address space of 4GB. It uses paging to manage its memory
allocations with page size of 4KB and a two level page table structure.

• Look up description of Figures 1-3, 2-1, and 2-2, in the xv6 book, on pages 23, 30, and 31 respec-
tively.

• A list of relevant function names and macros is as follows: kalloc, kfree, allocuvm, growproc,
walkpgdir, PDX, PTE_ADDR, v2p, p2v, mappages ...

You should read the relevant code of above functions and macros, and explain the following in a file
memory.txt. Keep your answers brief and precise.

1. Explain the code in each of the lines 3177 and 3178.
3177 r->next = kmem.freelist;
3178 kmem.freelist = r;

2. Consider the following sequence of statements executed in walkpgdir function. Explain what each
line in this code is trying to do and how it achieves it.
1740 pde = &pgdir[PDX(va)];
1742 pgtab = (pte_t*)p2v(PTE_ADDR(*pde));
1753 return &pgtab[PTX(va)];

Additional Reading: These can be read offline after the lab.

• The function userinit (line 2520) creates the first user process. For the user part of the memory,
the function inituvm (line 1886) allocates one physical page of memory, copies the init executable
into that memory, and sets up a page table entry for the first page of the user virtual address space.

• In fork (line 2580), once a child process is allocated, its memory image is setup as a complete copy
of the parent’s memory image by a call to copyuvm (line 2035). This function walks through the
entire address space of the parent in page-sized chunks, gets the physical address of every page of
the parent using a call to walkpgdir, allocates a new physical page for the child using kalloc,
copies the contents of the parent’s page into the child’s page, adds an entry to the child’s page
table using mappages, and returns the child’s page table.

• allocuvm (line 1927) allocates physical pages from the kernel’s free pool via calls to kalloc, and
sets up page table entries. Likewise deallocuvm (line 1961) deallocates pages and adds them to
kernel’s pool via calls to kfree.

1

http://www.cse.iitb.ac.in/~puru/courses/autumn18/labs/xv6-public.tar.gz
http://www.cse.iitb.ac.in/~puru/courses/autumn18/labs/xv6-rev10.pdf
http://www.cse.iitb.ac.in/~puru/courses/autumn18/labs/xv6-book-rev10.pdf


1. Walking down memory lane
(a) Implement a system call get_va_to_pa to return the physical address mapping of a virtual address.

int get_va_to_pa(uint va, uint* pa, int* flag)

If a physical mapping exists for the virtual address va, the system call get_va_to_pa returns
the physical address using the pointer pa and read/write PTE flag using flags, and returns 1.
If a valid V2P mapping does not exist, the call should return 0.

A sample program v2p.c has been given to test your implementation.

(b) Implement the following functions in a user program.
int getpusz() // return size of user virtual address space of a process with valid mappings.
int getpksz() // return size of kernel virtual address space of a process with valid mappings.

Hints: For each of these function calls, find the valid VA to PA mappings using the
get_va_to_pa system call and count the total allocated physical pages. Note this can be done at
the granularity of a page.

Implement the following system call,
int getpsz() // return size of the (user) process as stored in the PCB.

Note: You are also given a sample program proc-size.c. Implement all the above functions in
proc-size.c and test your implementations.

(c) Self-study. Do this part now or later. Ignore it at your own peril.
Implement a function print_vm_block() which prints contiguous virtual address regions with the
following information. For all valid V2P mappings, it should print
[<VA-start address> <VA-end-address>] <R/W-flag> <size>.

VA-start-address and VA-end-address are the virtual address of first and last bytes in a con-
tiguous region respectively. <R/W-flag> denotes the read and write permissions of a contiguous
block.(e.g., r, rw, etc.) A contiguous virtual address region is delineated by a missing mappings of
VA address or by different PTE R/W permissions.

You are also given a sample program vm-block.c. Implement the function print_vm_block()
in vm-block.c and test your implementation.

2: Lazy page allocation in xv6
Source and credits: Homework assignment of course 6.828, MIT

One of the many neat tricks an OS can play with page table hardware is lazy allocation of heap memory.
xv6 applications ask the kernel for heap memory using the sbrk() system call. For example, this system
call is invoked when the shell program does a malloc to allocate memory for the various tokens in the
shell command. In the xv6 kernel we have given you, sbrk() allocates physical memory and maps it
into the process’s virtual address space. However, there are programs that allocate memory but never
use it, for example to implement large sparse arrays. Sophisticated kernels delay allocation of each page
of memory until the application tries to use that page – as signaled by a page fault. You are add this
lazy allocation feature to xv6.

Step 1: Eliminate allocation from sbrk()

Your first task is to remove page allocation/mapping from the sbrk(n) system call imple-
mentation. The sbrk(n) system call grows the process’s (virtual) memory size by n bytes, and then
returns the start of the newly allocated region (i.e., the old size). Your new sbrk(n) should just in-
crement the process’s size It should not allocate and map physical memory. However, you should still
increase process size by n to trick the process into believing that it has the memory requested.

2



Make this modification to the code, boot xv6, and type echo hi to the shell. You should see something
like this:

init: starting sh
$ echo hi
pid 3 sh: trap 14 err 6 on cpu 0 eip 0x12f1 addr 0x4004–kill proc
$

The “pid 3 sh: trap...” message is from the kernel trap handler in trap.c; it has caught a page fault
(trap 14, or T_PGFLT), which the xv6 kernel does not know how to handle. Make sure you understand
why this page fault occurs. The addr 0x4004 indicates that the virtual address that caused the page
fault is 0x4004.
You will need to understand how xv6 gets to the faulting virtual address.

Step 2: Lazy Allocation

Modify the code in trap.c to respond to a page fault from user space by mapping a newly-allocated
page of physical memory at the faulting address, and then returning back to user space to let the pro-
cess continue executing. That is, you must allocate a new memory page (which is free), add suitable
page table entries, and return from the trap handler, so that the process can access the virtual address
originally accessed.
Your code should enable an correct mapping. Part of the exercise is the demonstrate correctness in
different scenarios.
Some helpful hints:

• Look at the cprintf arguments of the appropriate statement in trap.c to see how to find the
virtual address that caused the page fault.

• Understand and steal code from allocuvm() in vm.c, which is what sbrk() originally uses.

• Use PGROUNDDOWN(va) to round the faulting virtual address down to a page boundary.

• Once you correctly handle the page fault, do break or return in order to avoid the cprintf and
the proc->killed = 1 statements.

• You will need to call mappages() from trap.c in order to map the newly allocated page. In order
to do this, you’ll need to delete the static in the declaration of mappages() in vm.c, and you’ll need
to declare mappages() in trap.c. Add this declaration to trap.c before any call to mappages():
int mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm);

• You will have to check whether a fault is a page fault by using tf->trapno.

• You should check whether the page fault was actually due to a lazy allocated page or an actual
page fault (For example - illegal memory access)

If all goes well, your lazy allocation code should result in echo hi working. You should get at least one
page fault (and thus lazy allocation) in the shell, and perhaps two.

You need to implement another system call
After this, run the sample userspace programs lazyvm1, lazyvm2, lazyvm3 provided. These programs
call the system calls and the user space functions implemented in the previous part. The output should
match with the sample output in sample-outputs/afterlazy.txt.

Submission Guidelines
• All submissions via moodle. Name your submission as: <rollno_lab6>.tar.gz item The tar

should contain the following files in the following directory structure:

<rollno_lab6>/
|___ sysproc.c
|___ trap.c
|___ v2p.c

3



|___ proc-size.c
|___ vm-block.c
|___ lazyvm1.c
|___ lazyvm2.c
|___ lazyvm3.c
|___ <other modified files in xv6>

• Deadline: Monday, 27th August 2018 - 05:00 PM.

4


