CS 333: Operating Systems Lab, Autumn 2018

3rd September 2018

Lab Quiz #2, 25 marks
1. process parade (10 marks)

e Add a new system call int getps(struct ps_entry *), which takes a pointer to an array of
type struct ps_entry. This call writes the process related information such as PID, PPID,
size, state, and name of process for all processes in the system, and returns the number of
processes. An array of struct ps_entry variables will be required to get information of all
processes and has to be declared in the user process. The information tuple for all process is
to be copied into the output variable sent as an argument to the system call.

e Write a program ps.c that uses the above system call to get the details of all processes in the
system, and prints them to the screen.
Note: The process details should be printed in the user program and not in the system call.

2. just share it! (15 marks)
Inter-process communication can be implemented using different mechanisms like pipe, signals,
shared memory etc. As part of this exercise, we are to setup a simple method to share memory
between processes.

Implement a memory sharing interface between processes. Assume that the kernel supports a set
of 10 pages (in total) that can be shared across processes. Each page is referred with a key to get
access, e.g., shm_get (key) called from a process should return a process virtual address which is
mapped to the page referred to by the key. Exit of processes should be handled to release physical
pages if no virtual pages are mapped to them.

To share a page between two virtual pages or more, the corresponding page tables should be
updated in such a way that the page table entries of both the virtual pages map to the same
physical page.

Following changes will be needed (code segments for some of these are already added to source files
and are commented),

e Add new structure struct shm_entry to store the meta-data information of the shared pages.
Meta-data such as number of virtual pages mapped (reference count) and kernel virtual address
of the shared page. The kernel virtual address is required as the shared page is allocated
and maintained by the kernel and the corresponding physical page is shared via user virtual
addresses.

e Add a new system call shm_get (int key) which returns a user-space virtual address cor-
responding to the page referred to by the key. Note that two or more processes that call
shm_get with the same key, should be mapped to the same physical page (maybe at different
local user space addresses) and hence share a page!

Important:

- The invariant to be maintained is that if no user virtual address is mapped to a shared page
(corresponding to a key), no physical page should be allocated to the corresponding key.
For example, on boot up, when no shm_get call has been made yet, no pages are allocated
and maintained by the kernel for sharing. The first request for each key should allocate a
physical page. If a key has no references, it should hold no memory.

- Note that if the current address (proc->sz) is not page aligned, skip to the next page-aligned
address (i.e., the address of first byte in the next page). This is required as all page table
mappings are done at page granularity.

e When a process terminates, de-allocation (deallocuvm(...)) in xv6, the reference count of
each key, if mapped to virtual addresses of the process, should be decremented and shared
pages freed if no mappings remain.

Note that a single process may have multiple virtual address mappings to the same shared
page or to different pages. For example, the following calls in a process can occur,

shm_get (1) ; shm_get(5); shm_get(1), and each of them will be associated with a different
virtual address in the user space, irrespective of the shared physical mappings.



e A system call shm_stat() prints shared memory statistics (reference count and the kernel
virtual address of the mapped shared physical page).
Implementation of this function is provided in the lab archive.

Refer to the README file for more details. Check the tar file for sample testcases and outputs.

Deadline: 3¢ September 5.00 p.m.
Submission via moodle.

Submission Guidelines

o All submissions via moodle. Name your submission as: <rollno_labquiz2>.tar.gz

Execute the following command in the xv6 directory to create the submission archive.
make clean; tar -cvzf ~/rollno-labquiz2.tar.gz ./

Verify submission archive exists in the home directory.

Upload on moodle.



