
CS 333: Operating Systems Lab, Autumn 2018
15th October 2018

Lab Quiz #3, 30 marks
1. semaphores with xv6 (15 marks)

The following kernel functions are provided as part of xv6 kernel implementation, and need to be
used in the corresponding system call implementations.

• spinlock_acquire(spinlock *s) A kernel function to acquire a spinlock.

• spinlock_release(spinlock *s) A kernel function to release a spinlock.

• cv_sleep(void *variable, spinlock *s) A kernel function to put a process to sleep on a
condition variable.

• Implement the semaphore functionality by implementing the following systems calls:

sem_init(index, value) . . . initializes the ith semaphore to value and initialize rest of
semaphore struct/object.
sem_up(index) . . . increments value of semaphore and issues wake up.
sem_down(index) . . . if possible, decrements value of semaphore else sleeps.

Print index and value of sempahore, and pid of process when value of semaphore is updated.
The semaphore objects are stored in the kernel and accessed via the the above system calls
from user-processes. Using a structure to represent the semaphore would be a good idea, the
structure can hold the value, required locks, variables etc. Note that the semaphore value is
never negative.

Look up test programs to test semaphore implementation.

• Using the semaphore implementation build a producer-consumer application. Implement the
producer and consumer functions in the template code provided in the file prodcon.c.
The program takes as input the maximum size of the buffer (for production), number of
producers, number of items produced by each producer, number of consumers, and number
of item consumed per consumer.
e.g., ./prodcon 10 5 4 4 5 . . . 5 producers producing 4 items each, and 4 consumers
consuming 5 items each.

• Look up the README file for usage details.

2. just a barrier away! (15 marks)

• This part of the quiz requires you to use the pthreads library.

• Implement the barrier functionality using the following functions.

– barrier_init(struct barrier*, int nthreads) initializes the barrier structure vari-
able, nthreads is number of threads on which the barrier should hold.

– barrier_wait(struct barrier*) wait on barrier if all n threads have not reached this
point of execution.
support of the pthreads library.

– Implementation files: barrier.c and barrier.h
– Test cases in: barrier1.c, barrier2.c . . .
– Look up the README file for usage details and also the output directory for sample outputs.

Refer to the README file for more details. Check the tar file for sample testcases and outputs.

Deadline: 15th October 5.00 p.m.
Submission via moodle.

1



Submission Guidelines

• All submissions via moodle. Name your submission as: <rollno-labquiz3>.tar.gz

• Execute the following command in the xv6 directory to clean the source code.
make clean

• Use the following command to create the submission archive.
tar -cvzf ~/rollno-labquiz3.tar.gz ~/rollno-labquiz3

• The tar should contain the following files in the following directory structure:
<rollno-labquiz3>/
|__part1
|____xv6/
|______<the xv6 directory with all files>
|____sample-outputs/
|______<sample outputs>
|__part2/
|____barrier.h
|____barrier.c
|____barrier-testcase<1,2,3>.c

• Verify submission archive exists in the home directory.

• Upload on moodle.

2


