CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2022
Lab 4: xv6 inside-out

Goal
In this lab we will learn how to use the xv6 operating system, implement our own system calls and explore
examples of OS states.

Task 0: Setting up xv6

Follow the instructions given here for xv6 installation. xv6 runs on an x86 emulator called QEMU that emulates x86
hardware on your local machine. In the xv6 folder, run the following command sequence ..

make
make gemu Or make-gemu—-nox

to boot xv6 and open a shell.

l. At the shell try out a few shell commands starting with 1s to find a list of available programs and then try
and execute a few of them.

Il. Look up the implementation of these programs. For example, cat.c is the source code for the cat
program. Execute and lookup the following: Is, cat, wc, echo, grep etc. Understand how the syntax in some
places is different from normal C syntax.

Il Check the makefile to see how the program wc is set up for compilation.

make gemu

Build everything and start gemu with the VGA console in a new window and the serial console in your terminal. To
exit, either close the VGA window or press Citrl-c or Ctrl-a x in your terminal.

make gemu-nox

Like make gemu, but run with only the serial console. To exit, press Ctrl-a x. This is particularly useful over SSH
connections.

Task 1: Adding new programs to xv6

(a) Display first n lines of a file
Copy the existing cat.c program of xv6 to a file head.c and modify it to print the first n lines of a file to
the terminal. The command should handle multiple filenames as input, the first argument is always the
number of lines from start of file to print. Also, look at the cat.c program for the error message if the file
passed through argument does not exist.

Note:

(i) Will need to make additions to the Makefile to add new programs for compilation and also to include as
part of the xv6 viewable disk image (to read/write files e.g., abc.txt, hello.txt).

To do this, look for the following keywords in the makefile.

“UPROGS=\": List names of all user programs which are available after xv6 boot up.

“EXTRA=\": List of all files (source programs and other scripts and data files) available after xv6
bootup.

“fs.img”: List of files to be added to the xv6 startup disk (imagefile).

(i) The xv6 OS itself does not have any text editor or compiler support, so you must write and compile the
code in your host machine, and then run the executable in the xv6 QEMU emulator.

https://github.com/cserl-iitb/bootcamp2022/blob/main/week1_warmup/xv6_Installation/README.md

CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay
Sample output:
$ head 3 README abc.txt hello.txt
————— README————-
MNOTE: we have stopped maintaining the x86 wversion of xv6, and switched
our efforts to the RISC-V version

vB-riscv.git)

(b) shell in a shell

Write a program cmd. c that creates a child process, child process executes a program, and parent waits
till completion of the child process before terminating. This program should use the fork and exec system
calls of xv6. The program to be executed by the child process can be any of the simple xv6 programs and
should be specified at the command line.

Sample output:

¢ cmd 1s

FEADME 2 2 2286
hello. txt 16
43

16288

15146

7 9452

init: starting sh

$ cmd echo Welcome to xv6

Welcome to xv6

Y |

Task 2: Adding new system calls to xv6

To understand and work with system calls and process related information and action, the following files of the xv6
OS are important:

usys.S, user.h, defs.h, sysproc.c, syscall.h, syscall.c, proc.h, proc.c.

o user.h contains the system call definitions in xv6.

o usys.S contains a list of system calls exported by the kernel, and the corresponding invocation of the
trap instruction.

o syscall.h contains a mapping from system call name to system call number. Every system call must
have a number assigned here.

o syscall.c contains helper functions to parse system call arguments, and pointers to the actual system
call implementations.
sysproc.c contains the implementations of process related system calls.
defs.h is a header file with function definitions in the kernel.

CS333 Autumn 2022 Department of Computer Science and Engineering

Indian Institute of Technology Bombay

proc.h contains the struct proc structure.

proc.c contains implementations of various process related system calls, and the scheduler function.
This file also contains the definition of ptable, and several examples of functions traversing/using the
process list.

All or most of these files will have to be used/updated to implement new system calls.
New files, new programs, new data files need to be added to xv6 via the xv6 Makefile.
All changes (updates/new files) are to be followed by a clean compile, followed by executing xv6.

Note that the xv6 OS itself does not have any text editor or compiler support, so you must write and compile the
code in your host machine, and then run the executable in the xv6 QEMU emulator.

(a)

(b)

(c)

system call first look!

Modify the k111 () system call to print the PID of the process it kills.
You should use cprintf () inside the ki1l () system call to print the process PID.
A simple test program test-mod-kill.c is also provided you can use it to test your implementation.

Sample Output:
$ test-mod-kill
Child Pid - 4
Parent Pid - 3
Proc th pid-'4"' killed
$z ombie

$

the helloYou system call

Implement a system call, with the following declaration helloYou (char* name), which prints the string
name to the console. The function cprint £ if used for printing in the kernel mode.
A simple test program test-helloworld.c is also provided to test your implementation.

Note: Look up the helper functions argint, argstr, argptr for arguments of system calls.

More process information

Implement the following system calls:
getNumProc () which returns the total number of processes in the system
(either in embryo, running, runnable, sleeping, or zombie states).

getMaxPid () that returns the maximum PID amongst the PIDs of all currently active
processes in the system.

Use the test program test-getprocesses.c to test your implementation.

Sample Output:
$ test-getprocesses
Total Number of Processes:
Maximum PID: 3
-——After single fork
Total Number of Proces

Maximum PID: 5

-—-After multiple fork-—
Total Number of Processes: 7
Maximum PID: 7

CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

(d) More system calls (Optional)

e int numOpenFiles() — Implement a system call to report the number of open file descriptors used
by the current process. You can write a test program to test your implementation.

Hint : Look at the struct proc in the proc.h file and observe how other system calls retrieve
information about the current process.

e int csinfo() — Implement a system call to return the number of context switches that took place in
the process from the time it started.

A simple test program test csinfo.c is provided, you can use it to test your implementation.

Hint: Implementing this will require keeping an additional counter in the per process PCB
objects—struct proc of xv6.

e get_sibling() — Implement a system call to print the details of siblings of the calling process to the
console. The output should be in the format of:
<pid> <process status>
<pid> <process status>

Sample output:

$ my siblings6121020
4 RUNNABLE

5 ZOMBIE

6 RUNNABLE

7 SLEEPING

8 ZOMBIE

9 SLEEPING

Sample user program my siblings.c and a sample output file output my sibling.txt.iis
provided.

The program takes an integer n, followed by a combination of 0, 1 and 2 of length n, as command
line arguments— 0/1/2 specify the process state of the n child processes. The (n+1)th child
process executes the get_sibling() system call and displays the output.

Hints: You need to find the process ID of the calling process, and process ID of its parent and
traverse all the PCBs and compare their parent PID with the parent of the calling process.

e Extend the get_sibling call to accept a PID as an argument, to perform the same task (as of
get_sibling) on the specified PID.

Submission instructions:
e All submissions via moodle. Name your submissions as: <rollnumber> lab4.tar.gz
(e.g. 219050003 lab4.tar.gz)

e The tar should contain the following files in the specified directory structure:
<rollnumber> lab4/
\ head.c
\ cmd.c
\ <all modified files in xv6 such as proc.c, syscall.c, syscall.h,
sysproc.c, defs.h, user.h, and usys.S>
\ <any new files added to the xv6 img>

\ Makefile
Please adhere to this format strictly.

e Command to tar your submission directory ...
tar -zcvf <rollnumber> lab4d.tar.gz <rollnumber> lab4

e Due date: 29th August 2022, 5.15 pm

