
CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2022

Lab5: Memory Management in xv6

In this lab, we explore how xv6 does memory management.

Before You Begin:

● Setting up xv6 (part of lab4)

○ Follow the instructions given here for the xv6 installation. xv6 runs on an x86 emulator
called QEMU that emulates x86 hardware on your local machine. In the xv6 folder, run
the following command sequence

○ make
make qemu or make qemu-nox
to boot xv6 and open a shell.

● For this lab, you will need to understand the following files: syscall.c, syscall.h, sysproc.c, user.h,
usys.S, vm.c, proc.c, trap.c, defs.h, mmu.h, kalloc.c

○ The files sysproc.c, syscall.c, syscall.h, user.h, usys.S link user system calls to system call
implementation code in the kernel.

○ mmu.h and defs.h are header files with various useful definitions pertaining to memory
management.

○ The file vm.c contains most of the logic for memory management in the xv6 kernel, and
proc.c contains process-related system call implementations.

○ The file trap.c contains trap handling code for all traps including page faults.
○ Understand the implementation of the sbrk system call that spans all of these files.

● Download, read and use as reference the xv6 source code companion book.
○ https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf (page no - 29 to 35)

● The xv6 OS book is here
○ https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

Part1: Displaying memory information

1. Implement a new system call freememstat that will print the available system memory (in
bytes) in xv6. Specifically, it should have the following interface:
int freememstat(void);
It takes no arguments and returns the amount of memory available in the system.

A user-level program freememtestcase.c is provided which takes size(in bytes) as a command line
argument and allocates the physical memory of the given size, calls the new system call(i.e.
freememstat) and prints the result on qemu-terminal (assume that the number of bytes is a
positive number and is a multiple of page size). Add _freememtestcase to the UPROGS and
freememtestcase.c to the EXTRA definition in Makefile if it is not already there.

https://github.com/cserl-iitb/bootcamp2022/blob/main/week1_warmup/xv6_Installation/README.md
https://pdos.csail.mit.edu/6.828/2017/xv6/book-rev10.pdf
https://pdos.csail.mit.edu/6.828/2017/xv6/xv6-rev10.pdf

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Sample Output:

$ freememtestcase
Usage: freememtestcase size(in bytes)

$ freememtestcase 0
Available memory: 232611840

$ freememtestcase 4096
Available memory: 232607744

$ freememtestcase 8192
Available memory: 232603648

Hint: To count up the available system memory, you should walk the linked list used by the
memory allocator(kmem.freelist) and count how many pages are still available on that list.
You may find the kalloc function in kalloc.c helpful. Also, look up the init2 function and the
PHYSTOP variable.

2. Next, we want to print memory information for an active process in the xv6 system (either in
embryo, running, runnable, sleeping, or zombie states). For that, you should implement another
system call void getmeminfo(int pid) that prints the stats shown below.

a. Size of virtual address space
the number of virtual/logical pages in the user part of the address space of the
process, up to the program size stored in struct proc. You must count the stack
guard page as well in your calculations.

b. Size of allocated physical address space
the number of physical pages in the user part of the address space of the process.
You must count this number by walking the process page table, and counting the
number of page table entries that have a valid physical address assigned.

c. Page Table Size
the number of the page table pages(i.e. directory pages and the page table pages).

void getmeminfo(int pid)
If pid is greater than 0 print details for specified pid, if it equals zero print stats for all pids
(i.e., all currently active processes) and error message in case of invalid pid (i.e., pid less than 0)
or failure.

Note: xv6 does not use demand paging by default, you can expect the number of virtual and
physical pages to be the same initially. However, part 2 of this lab will change this property.

Also, you may want to implement functionality by adding details of one stat at a time to the
system call.

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Hints:

A. You can use cprintf for printing in kernel mode.

B. To iterate over all active processes in the xv6 system(i.e when pid equals 0 in the
getmeminfo argument) and print their information to the screen, you should iterate
over ptable. Look up the code for the kill function in proc.c to understand how to
iterate over ptable.

C. To count up the virtual pages in the user part of the memory, check struct proc
declaration and also the PAGESIZE constant.

D. You can walk the page table of the process by using the walkpgdir function which is
present in vm.c. You can look up loaduvm and deallocuvm in vm.c to see how to invoke
the walkpgdir function. To compute the number of physical pages in a process, you can
write a function that walks the page table of a process in vm.c and invoke this function
from the system call handling code.

E. xv6 has a 2-level page table organization. You need to calculate the size of the page
table (total level 0 and level 1 pages). You need to iterate over the Page Directory
Entries (PDEs) to check if a page is assigned for storing Page Table Entries (PTEs) for
that PDE.

Note: It is important to keep in mind that the process table struct ptable is protected by a lock.
You must acquire the lock before accessing this structure for reading or writing and must release
the lock after you are done.

You are provided with test-meminfo1.c and test-meminfo2.c to test your implementation.

Sample Output:

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Part2: Sometimes it's ok to be lazy

Implement a simple version of the mmap system call in xv6. The mmap system call should take one
argument: the number of bytes to add to the size of the process. The process size in this context refers
to the heap size.

You may assume that the number of bytes is a positive number and is a multiple of the page size. The
system call should return a value of 0 if any invalid inputs are provided.

In the valid case, the system call should expand the process's size by the specified number of bytes, and
return the starting virtual address of the newly added memory region.

However, the system call should NOT allocate any physical memory corresponding to the new virtual
pages, as we will allocate memory on demand. When the user accesses a memory-mapped page, a page
fault will occur, and physical memory should only be allocated as part of the page fault handling.

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Step 1: mmap() system call, similar to sbrk() but should not call growproc()

Understand the implementation of the sbrk system call. mmap() system call will follow a similar logic.
The sbrk(n) system call is implemented in the function sys_sbrk() in sysproc.c allocates physical memory
and maps it into the process’s virtual address space. The sbrk(n) system call grows the process’s
memory size by n bytes, and then returns the start of the newly allocated region (i.e., the old size). Your
new mmap(n) should only increment the process’s size (myproc()->sz) by n and return the old size. It
should not allocate memory—so you shouldn’t invoke the growproc() (but you still need to increase the

process’s size! The implementation of sbrk() invokes the growproc function).

Step 2: Lazy Allocation

The original version of xv6 does not handle the page fault trap. For this assignment, you must write

extra code to handle the page fault trap in trap.c, which will allocate memory on demand for the page
that has caused the page fault return from the trap handler, so that the process can access the virtual
address originally accessed. You can check whether a trap is a page fault by checking if tf->trapno is
equal to T_PGFLT. Once you write code to handle the page fault, do break or return in order to avoid
the processing of other traps.

Note: Now, you will need to understand how xv6 gets to the faulting virtual address.

Some helpful hints:

● Look at the arguments to the cprintf statements in trap.c to figure out how one can find the
virtual address that caused the page fault.

● Use PGROUNDDOWN(va) to round the faulting virtual address down to the start of a page
boundary.

● You may invoke allocuvm (or write another similar function) in vm.c in order to allocate physical
memory upon a page fault.

● Once you correctly handle the page fault, do break or return in order to avoid the cprintf and
the proc->killed = 1 statement.

● You will need to call mappages() from trap.c in order to map the newly allocated page. In order
to do this, you’ll need to delete the static in the declaration of mappages() in vm.c, and you’ll
need to declare mappages() in the trap.c. Add this declaration to the trap.c before any call to
mappages(): int mappages(pde_t *pgdir, void *va, uint size, uint pa, int perm);

● You should check whether the page fault was actually due to a lazy allocated page or an actual
page fault (For example - illegal memory access)

Note: it is important to call switchuvm to update the CR3 register and TLB every time
you change the page table of the process. This update to the page table will enable the process to
resume execution when you handle the page fault correctly

A user program test-mmap-partial.c(step 1 only) and test-mmap.c(complete implementation) is provided
to test your implementation.

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Sample Output:

● Partial implementation (Step 1 only)

● Complete Implementation (Both step 1 and step 2)

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Submission Instructions

● All submissions to be done on moodle only.

● Name your submission as <rollnumber>_lab5.tar.gz (e.g 190050096_lab5.tar.gz)

● The tar should contain the following files in the following directory structure:
<rollnumber>_lab5/

|__< all modified files in xv6 such as

syscall.c, syscall.h, sysproc.c, user.h, usys.S, proc.c, trap.c, defs.h, kalloc.c, vm.c, . . . >

|__Makefile

Please adhere to it strictly.

● Your modified code/added code should be well commented on and readable.

● tar -czvf <rollnumber>_lab5.tar.gz <rollnumber>_lab5

Deadline: Monday 09th September Friday 2022, 06:30 PM via moodle.

