CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2022
Lab 7: lock-and-key with pthreads

Goal: Understand pthread synchronization mechanisms — mutexes, CVs and semaphores.

0. Threads are fun!

We have looked at processes; now, let us look at threads. There are two programs named
processes.c and threads.c. Both programs have the global variable x. In processes.c, xis
incremented by 5 by the child process and then printed by both parent and child processes.
Furthermore, in threads. ¢, two threads are created, x is incremented by 5 by a thread in the routine
foo (), and both threads print the value of x.

Compile and run both programs and study outputs. Specifically, observe the process ids and thread ids
in the output and explain the values of x printed by both programs in a report.

Note: You must use -1pthread flag while compiling your code containing the pthread library
(e.g. gcc threads.c -o threads.o -lpthread)

1. Where did the money go?

Task 1A: Don’t touch my Money

For this task, refer to the file addmillion. c; the file has a routine named increment (), which the
bank uses to increment the amount of account balance for each deposit (banks do not repeatedly
add 1, demonstrating a flaw mentioned later in the question). A deposit can only be made of 1 million. If
anyone goes to their bank and makes ten such deposits, they expect the account balance to be 10
million because the account balance is incremented by a sequential program. However, now say,
ten people at ten different banks make one deposit in one account, the bank balance is still expected
to be 10 million. The program addmillion.c simulates ten different transactions at ten different banks
using ten threads. Compile and run the program.

Is the output 10 million?

No! Where did the money go?

This condition is called a race condition.

Now implement a locking mechanism using pthread mutexes and get the desired 10 million as the
account balance.

Task 1B: The Sweet Spot

Further, modify the addmillion. c to take the number of threads as a command line argument.
Depending on the number of threads, your program should make a valid deposit of 2048 million (e.g., for
two threads, each thread should deposit 1024 million each). Understand how arguments are passed to
threads and modify the increment () routine to take the number of million as input. (Create an outer
loop for iterating over the for loop that is already present). Run the program with threads ranging from 2 -

CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

1024 (in powers of 2) and analyze the time taken for each run. So does increasing the number of
threads result in better performance?

Submit the plot of the time taken by the different runs and conclude the key takeaway from the task in
the report. You should also submit the final addmillion. c in your submission.
Note:
e You should measure time from the start of main () to program exit WITHIN the program and
report it in the EXACT format: Time spent: <time taken> ms
e Use the bash script analysis. sh to generate the plot.
e |Install the prerequisites using: sudo apt install plotutils

2. Task server with a thread pool

For this question, you need to refer to the file taskqueue. c; the file contains self-explanatory global
variables which are updated inside the routine processtask (), the program takes input from a file
tasklist, and each line in the tasklist is a task or the time for which there is no task.

For each line:

I. Aprocessing task (p) is written as ‘p 2’ where p stands for processing task and 2 is the burst time
(in seconds) for the task.

II. Awaiting period (w) is written as ‘w 1’, where w stands for a waiting period, and 1 denotes the
time (in seconds) for which there are no tasks.

For processing each task, the processtask () routine is called. The routine simulates a task by
sleeping for the given task’s burst time. With the given tasks in the task1ist file, the current sequential
program will take 10 seconds. Moreover, it gives the following output:

adarsh@apc:~/Desktop/05% ./a.out tasklist
The number of tasks are : 4

Task completed

Wait Over

Task completed

Task completed

82123
adarsh@apc:~/Desktop/0S$ []

In the output the last line denotes the final values of the global variables, after the processing is done by
all processing tasks.

Implement a multi-threaded version of this program to reduce the time to process all the tasks by
implementing the following:

e The main thread reads the number of worker threads as a command line argument and creates a
pool of worker threads.
The main thread reads the tasks one by one from the file and enters the task into a queue.
A free thread from the thread pool picks up the task and processes it.
Once all tasks are complete, the main thread joins the other threads and the global variables are
printed.

CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Note: The first line of the tasklist file contains the number of tasks, followed by a task or waiting

period.
Testing: To test your multithreaded version use the file tasklistmultithreaded as input.

3. Cricket goes threads!

There is a cricket ground in the city where at max 22 players can play a game of cricket, i.e., 11 players
per side. Since the T20 World Cup is near, the ground sees much activity, and many players want to play
a match. However, the ground can accommodate only 22 players at a given time.

Design a mechanism such that at a given time, only 22 players are allowed to enter the ground.
Upon entering the ground, the first 11 players bat for team Capitals and the next 11 bat for Titans (Read
bullet 4 of Structure). In the match, each player scores some runs simulated with a random number
generator that can generate a number between 0-100. The team’s score is the sum of all scores made
by its players (i.e., the 11 players). At the end of each match, print the highest individual score in the
match and the total runs scored by both teams and display the name of the winning team (the team with
the higher score wins the match) along with the margin of victory.

When all matches have concluded display the summary for the day. Display the total matches
played, match records for both the teams, Capitals and Titans, the highest team score for the day and
the highest individual score (refer to sample output for format).

Implement the mechanism and provide two separate solutions using:
e Condition Variables & Mutexes: Provide the solution in cricket-cv-mutex.c
e Semaphores: Provide the solution in cricket-semaphores.c

Assumptions:

e One player can play only one match.

e The number of matches that can be played will depend on the total number of players and is the
floor of the number of players divided by 22. The program ends when the max number of
matches that can be played is done. When the number of players is not a multiple of 22 then the
match cannot be scheduled. So for input ./a.out 50, 2 matches can be scheduled and 6 players
can not play a match so output the fact that match 3 cannot take place.

Structure of Solution:

Each player is a thread

The match starts when 22 players have entered the ground.

You can create a game thread that handles the start and end of a game.

When a thread enters, it checks the value of the Capitals counter variable to see if it is less than
11, if so, the thread bats (makes random runs), adds score to Capital score, and then exits. This
happens for the first 11 threads, indicating that the capitals side has batted (all 11 players have
made runs). When the capital counter reaches 11, the Titan's side is in, so the next 11 threads
will bat (make runs), and they will add score to Titans.

The match ends when both teams have batted after which they leave the ground.

Only when all 22 players have left the ground the next set of 22 players can enter.

At the completion of a match, all the players (threads) have left (joined in the main thread). New
threads representing new players then play the next match.

CS333 Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Sample Output:
$./a.out <number of players>

adarsh@apc:~/Desktop/05% ./a.out 88
MATCH : (1) Summary

SCORE: Capitals : 481 :: Titans : 536
Highest Individual Score : 92
Result : Titans won by 55 runs

MATCH : (2) Summary

SCORE: Capitals : 587 :: Titans : 372
Highest Individual Score : 91
Result : Capitals won by 215 runs

MATCH : (3) Summary

SCORE: Capitals : 525 :: Titans : 534
Highest Individual Score : 94
Result : Titans won by 9 runs

MATCH : (4) Summary

SCORE: Capitals : 635 :: Titans : 705
Highest Individual Score : 91
Result : Titans won by 70 runs

Matches Played :

Titans it Won : 3
Capitals :: Won : 1
Highest Team Score
Highest Individual Score

adarsh@apc:~/Desktop/0S$ []

Testing: You can use testcricket.awk to test your program’s correctness (if it is free from

deadlocks) like so
./a.out 660 | awk -f testcricket.awk

Submission Instructions

All submissions are to be done on moodle only.
Name your submissions as: <rollnumber> lab7.tar.gz (.9 123456 lab7.tar.gz)

e The tar should contain the following files in the specified directory structure:
<rollnumber> lab7/

addmillion.c

——— analysis.sh

———— cricket-cv-mutex.c

——— cricket-semaphores.c

F——— report.pdf

——— tasklist

tasklistmultithreaded
taskqgqueue.c
testcricket.awk

Please adhere to this format strictly

Your modified code/added code should be well commented on and readable.
Command to compress your submission directory:
tar -zcvf <rollnumber> lab7.tar.gz <rollnumber> lab’

Submission Due: 3rd Oct, 5 P.M. via moodile.

