
CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

CS 333: Operating Systems Lab
Autumn 2022

Lab8: the clone primitive
Lab8: Kernel Threads in xv6 (clone, join, and target functions)

This lab explores the introduction of multi-threading and locking in xv6. In this lab, we will
modify the xv6 code to create the clone and join system calls for multi-threading and add
user target functions to wrap them.

1. clone

In this subsection, you have to implement a clone() system call. This system call creates a
new kernel thread for a process. Recall that while kernel threads are independently
schedulable entities like processes, all the threads of a process share the same virtual address
space and file descriptors.

In order to allow for multi-threading in xv6, we need to come up with a design for Thread
Control Blocks (TCBs). For this lab, use struct proc itself as the PCB-cum-TCB for all the
threads. You will need to add some thread-relevant fields to your PCB, such as:

- A thread-ID like the process-ID. For this lab, use the pid field of the struct proc as the
thread-ID for different threads.

- A thread-group-ID, which can be the main thread’s process-ID. This will help us tie
together threads that belong to a process.

- A count of the number of threads of a process
- A pointer to the user stack of the thread (each thread has its own user and kernel

stacks)

The signature of the clone system call is as follows:

int clone(void(*fn)(int*), int *arg, void *stack)

This system call will effectively create a kernel thread and the thread will start execution at
the function fn with arg as the function’s argument using the given stack argument as its
stack. Note that we are designing the system call to work only with functions that take one
argument.

For the arguments of clone system call:
- fn -> indicates the start point of execution of the thread
- arg -> pointer to the argument of function fn
- stack -> base address of the stack allocated for thread

On success, the clone call returns the thread-id of the new thread and if unsuccessful, it
returns -1.

You must create a wrapper function for calling in user space on top of the system call defined
above.

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

int create_thread(void(*fn)(int*), int *arg)

In this wrapper function, malloc one page and assign the malloced page as the stack
argument, and THEN call the clone system call to start the thread. On success, this call
returns the thread-id of the new thread and if unsuccessful, it returns -1.

Notes:

1. You may encounter undefined reference to malloc error while implementing the
above function and calling make. This can be prevented by adding umalloc.o to
“_forktest” in MakeFile in the following manner (see the 3rd line, umalloc.o after
usys.o).

2. The stack pointer is passed from the thread wrapper function (which allocates memory
on the virtual space of the calling process). This stack pointer (virtual address of main
process, pointing to a single page) will be used as the user stack of the cloned process.
Implement the wrapper function create_thread in the file ulib.c.

Why/How will this work?

3. Following are the expectations around the system call—
- All the threads of a process must have an identical virtual address space and

share the same physical pages (and hence share a single page table).
- All the threads of a process must share the same set of file descriptors. For this

lab, you can implement it like the way fork does it (by copying over the FDs to
the new proc table entry) as opposed to sharing it. This would mean that a fopen
or fclose call needs its effects to be replicated across threads but for this lab, you
may assume that these calls will not happen.

- Every thread has its own user stack for user functions.
- To initialize a thread, the instruction pointer and the stack pointer of the new

thread need to be initialized. The base pointer also needs to be intiliazed.
- A new thread once created and initialized, when scheduled, should start

executing at the user specified function.
- Each thread function MUST end execution with an explicit call to exit().

Why is this required? and if not present, how to handle correct termination of a
thread?

- Based on your logic, you might need to make a few changes to at least the fork,
wait, exit and kill implementations to properly initialise and clean-up the
TCB entries.

- When the main process is about to exit, it should kill and reap all its threads
before exiting.

- For a process to be reaped, all of its threads must have been reaped before (refer

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

to the join system call described in the next subsection).

2. join

1. In this subsection, we will implement a join system call. join can be called in the
main process to reap a thread that has exited. This is a blocking system call which
should work in a similar manner as the wait system call. The signature of the system
call is as follows:

int join()

Like wait, join is a blocking system call that returns the thread-ID of a reaped thread,
when called from the main thread. If none of the other threads have exited, then the
thread calling join waits for one of the threads to exit. If there are no threads left to
exit then join will return -1.

Reaping a thread involves cleaning up its TCB(-cum-PCB), and updating the PCB of the
process, which consists of steps like:

- Freeing up the kernel-stack of the thread (we are not freeing the user-stack as
explained later).

- Setting the PCB and TCB entries of the kernel thread to their respective default
values, like in the implementation of wait (for example, set the state field to
UNUSED).

- Decrementing the thread-count of the process.

Based on our design, the join may lead to a page-sized memory leak due to the stack
memory allocated earlier and not freed on thread termination. Our current design will
keep things simple and let this be. As an extension, you can think of how to overcome
these leaks cleanly.

Note: The wrapper function should be available as part of every program that runs in
xv6. Thus, you should add prototypes to user/user.h and the actual code to implement
the library routines in user/ulib.c.

3. Testing

You can make sure that your cloned processes are properly reaped after the thread exits. This
can be done by proper implementation of the join system call. Two test case files are added in
the testcases/ directory to test your implementation.

For a test case named tc-<something>.c, add _tc-<something> to UPROGS in the MakeFile
similar to the previous labs and tc-<something>.c to EXTRA definition in MakeFile and then
run make and make qemu-nox. On the command prompt of xv6, execute tc-<something> to
run the test case.

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

1. Global Variable (tc-var.c)

This test case contains a global variable initialised to zero and the main process creates
N threads and each thread increments the global variable value by 1, and prints the
value after incrementing. Finally, after joining all the threads, the main program prints
the updated value of the variable, which could be N (or less than N, because of possible
race conditions). For a given testcase, N is 5.

Expected Output:

2. Global Array Sums (tc-array.c)

This test case contains two globally initialized arrays, and the argument for the
function of the thread will be its “rank”. Two threads are created with ranks 0 and 1. If
cloned threads are working properly, the 0th ranked thread will calculate the sum of
all elements of the first half of the first array and all elements of the second half of the
second array. Similarly, rank 1 thread will calculate the sum of the remaining elements
of both arrays, and both threads will print in the following manner. The main process
will then print the cumulative sum of both arrays which should be equal to the sum of
individual sums.

Expected Output:

CS 333: Autumn 2022 Department of Computer Science and Engineering
Indian Institute of Technology Bombay

Submission Instructions

● All submissions are to be done on moodle only.

● Name your submission as <rollnumber>_lab8.tar.gz (e.g 190050004_lab8.tar.gz)

● The tar should contain the following files in the following directory structure:
<rollnumber>_lab8/

|__< all modified files in xv6 such as

syscall.c, syscall.h, sysproc.c, user.h, usys.S, proc.c, trap.c, defs.h, proc.h, . . . >

|__Makefile

Please adhere to it strictly.

● Your modified code/added code should be well commented on and readable.

● tar -czvf <rollnumber>_lab8.tar.gz <rollnumber>_lab8

Deadline: Monday, 14th October 2022, 11:59 PM via moodle.

